/* tests/test_multiple_inheritance.cpp -- multiple inheritance, implicit MI casts Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" namespace { // Many bases for testing that multiple inheritance from many classes (i.e. requiring extra // space for holder constructed flags) works. template struct BaseN { BaseN(int i) : i(i) { } int i; }; // test_mi_static_properties struct Vanilla { std::string vanilla() { return "Vanilla"; }; }; struct WithStatic1 { static std::string static_func1() { return "WithStatic1"; }; static int static_value1; }; struct WithStatic2 { static std::string static_func2() { return "WithStatic2"; }; static int static_value2; }; struct VanillaStaticMix1 : Vanilla, WithStatic1, WithStatic2 { static std::string static_func() { return "VanillaStaticMix1"; } static int static_value; }; struct VanillaStaticMix2 : WithStatic1, Vanilla, WithStatic2 { static std::string static_func() { return "VanillaStaticMix2"; } static int static_value; }; int WithStatic1::static_value1 = 1; int WithStatic2::static_value2 = 2; int VanillaStaticMix1::static_value = 12; int VanillaStaticMix2::static_value = 12; // test_multiple_inheritance_virtbase struct Base1a { Base1a(int i) : i(i) { } int foo() { return i; } int i; }; struct Base2a { Base2a(int i) : i(i) { } int bar() { return i; } int i; }; struct Base12a : Base1a, Base2a { Base12a(int i, int j) : Base1a(i), Base2a(j) { } }; // test_mi_unaligned_base // test_mi_base_return struct I801B1 { int a = 1; I801B1() = default; I801B1(const I801B1 &) = default; virtual ~I801B1() = default; }; struct I801B2 { int b = 2; I801B2() = default; I801B2(const I801B2 &) = default; virtual ~I801B2() = default; }; struct I801C : I801B1, I801B2 {}; struct I801D : I801C {}; // Indirect MI } // namespace TEST_SUBMODULE(multiple_inheritance, m) { // Please do not interleave `struct` and `class` definitions with bindings code, // but implement `struct`s and `class`es in the anonymous namespace above. // This helps keeping the smart_holder branch in sync with master. // test_multiple_inheritance_mix1 // test_multiple_inheritance_mix2 struct Base1 { Base1(int i) : i(i) { } int foo() { return i; } int i; }; py::class_ b1(m, "Base1"); b1.def(py::init()) .def("foo", &Base1::foo); struct Base2 { Base2(int i) : i(i) { } int bar() { return i; } int i; }; py::class_ b2(m, "Base2"); b2.def(py::init()) .def("bar", &Base2::bar); // test_multiple_inheritance_cpp struct Base12 : Base1, Base2 { Base12(int i, int j) : Base1(i), Base2(j) { } }; struct MIType : Base12 { MIType(int i, int j) : Base12(i, j) { } }; py::class_(m, "Base12"); py::class_(m, "MIType") .def(py::init()); // test_multiple_inheritance_python_many_bases #define PYBIND11_BASEN(N) py::class_>(m, "BaseN" #N).def(py::init()).def("f" #N, [](BaseN &b) { return b.i + N; }) PYBIND11_BASEN( 1); PYBIND11_BASEN( 2); PYBIND11_BASEN( 3); PYBIND11_BASEN( 4); PYBIND11_BASEN( 5); PYBIND11_BASEN( 6); PYBIND11_BASEN( 7); PYBIND11_BASEN( 8); PYBIND11_BASEN( 9); PYBIND11_BASEN(10); PYBIND11_BASEN(11); PYBIND11_BASEN(12); PYBIND11_BASEN(13); PYBIND11_BASEN(14); PYBIND11_BASEN(15); PYBIND11_BASEN(16); PYBIND11_BASEN(17); // Uncommenting this should result in a compile time failure (MI can only be specified via // template parameters because pybind has to know the types involved; see discussion in #742 for // details). // struct Base12v2 : Base1, Base2 { // Base12v2(int i, int j) : Base1(i), Base2(j) { } // }; // py::class_(m, "Base12v2", b1, b2) // .def(py::init()); // test_multiple_inheritance_virtbase // Test the case where not all base classes are specified, and where pybind11 requires the // py::multiple_inheritance flag to perform proper casting between types. py::class_(m, "Base1a") .def(py::init()) .def("foo", &Base1a::foo); py::class_(m, "Base2a") .def(py::init()) .def("bar", &Base2a::bar); py::class_(m, "Base12a", py::multiple_inheritance()) .def(py::init()); m.def("bar_base2a", [](Base2a *b) { return b->bar(); }); m.def("bar_base2a_sharedptr", [](std::shared_ptr b) { return b->bar(); }); // test_mi_unaligned_base // test_mi_base_return // Issue #801: invalid casting to derived type with MI bases // Unregistered classes: struct I801B3 { int c = 3; virtual ~I801B3() = default; }; struct I801E : I801B3, I801D {}; py::class_(m, "I801B1").def(py::init<>()).def_readonly("a", &I801B1::a); py::class_(m, "I801B2").def(py::init<>()).def_readonly("b", &I801B2::b); py::class_(m, "I801C").def(py::init<>()); py::class_(m, "I801D").def(py::init<>()); // Two separate issues here: first, we want to recognize a pointer to a base type as being a // known instance even when the pointer value is unequal (i.e. due to a non-first // multiple-inheritance base class): m.def("i801b1_c", [](I801C *c) { return static_cast(c); }); m.def("i801b2_c", [](I801C *c) { return static_cast(c); }); m.def("i801b1_d", [](I801D *d) { return static_cast(d); }); m.def("i801b2_d", [](I801D *d) { return static_cast(d); }); // Second, when returned a base class pointer to a derived instance, we cannot assume that the // pointer is `reinterpret_cast`able to the derived pointer because, like above, the base class // pointer could be offset. m.def("i801c_b1", []() -> I801B1 * { return new I801C(); }); m.def("i801c_b2", []() -> I801B2 * { return new I801C(); }); m.def("i801d_b1", []() -> I801B1 * { return new I801D(); }); m.def("i801d_b2", []() -> I801B2 * { return new I801D(); }); // Return a base class pointer to a pybind-registered type when the actual derived type // isn't pybind-registered (and uses multiple-inheritance to offset the pybind base) m.def("i801e_c", []() -> I801C * { return new I801E(); }); m.def("i801e_b2", []() -> I801B2 * { return new I801E(); }); // test_mi_static_properties py::class_(m, "Vanilla") .def(py::init<>()) .def("vanilla", &Vanilla::vanilla); py::class_(m, "WithStatic1") .def(py::init<>()) .def_static("static_func1", &WithStatic1::static_func1) .def_readwrite_static("static_value1", &WithStatic1::static_value1); py::class_(m, "WithStatic2") .def(py::init<>()) .def_static("static_func2", &WithStatic2::static_func2) .def_readwrite_static("static_value2", &WithStatic2::static_value2); py::class_( m, "VanillaStaticMix1") .def(py::init<>()) .def_static("static_func", &VanillaStaticMix1::static_func) .def_readwrite_static("static_value", &VanillaStaticMix1::static_value); py::class_( m, "VanillaStaticMix2") .def(py::init<>()) .def_static("static_func", &VanillaStaticMix2::static_func) .def_readwrite_static("static_value", &VanillaStaticMix2::static_value); struct WithDict { }; struct VanillaDictMix1 : Vanilla, WithDict { }; struct VanillaDictMix2 : WithDict, Vanilla { }; py::class_(m, "WithDict", py::dynamic_attr()).def(py::init<>()); py::class_(m, "VanillaDictMix1").def(py::init<>()); py::class_(m, "VanillaDictMix2").def(py::init<>()); // test_diamond_inheritance // Issue #959: segfault when constructing diamond inheritance instance // All of these have int members so that there will be various unequal pointers involved. struct B { int b; B() = default; B(const B&) = default; virtual ~B() = default; }; struct C0 : public virtual B { int c0; }; struct C1 : public virtual B { int c1; }; struct D : public C0, public C1 { int d; }; py::class_(m, "B") .def("b", [](B *self) { return self; }); py::class_(m, "C0") .def("c0", [](C0 *self) { return self; }); py::class_(m, "C1") .def("c1", [](C1 *self) { return self; }); py::class_(m, "D") .def(py::init<>()); }