/* tests/test_factory_constructors.cpp -- tests construction from a factory function via py::init_factory() Copyright (c) 2017 Jason Rhinelander All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include #include // Classes for testing python construction via C++ factory function: // Not publicly constructible, copyable, or movable: class TestFactory1 { friend class TestFactoryHelper; TestFactory1() : value("(empty)") { print_default_created(this); } TestFactory1(int v) : value(std::to_string(v)) { print_created(this, value); } TestFactory1(std::string v) : value(std::move(v)) { print_created(this, value); } TestFactory1(TestFactory1 &&) = delete; TestFactory1(const TestFactory1 &) = delete; TestFactory1 &operator=(TestFactory1 &&) = delete; TestFactory1 &operator=(const TestFactory1 &) = delete; public: std::string value; ~TestFactory1() { print_destroyed(this); } }; // Non-public construction, but moveable: class TestFactory2 { friend class TestFactoryHelper; TestFactory2() : value("(empty2)") { print_default_created(this); } TestFactory2(int v) : value(std::to_string(v)) { print_created(this, value); } TestFactory2(std::string v) : value(std::move(v)) { print_created(this, value); } public: TestFactory2(TestFactory2 &&m) { value = std::move(m.value); print_move_created(this); } TestFactory2 &operator=(TestFactory2 &&m) { value = std::move(m.value); print_move_assigned(this); return *this; } std::string value; ~TestFactory2() { print_destroyed(this); } }; // Mixed direct/factory construction: class TestFactory3 { protected: friend class TestFactoryHelper; TestFactory3() : value("(empty3)") { print_default_created(this); } TestFactory3(int v) : value(std::to_string(v)) { print_created(this, value); } public: TestFactory3(std::string v) : value(std::move(v)) { print_created(this, value); } TestFactory3(TestFactory3 &&m) { value = std::move(m.value); print_move_created(this); } TestFactory3 &operator=(TestFactory3 &&m) { value = std::move(m.value); print_move_assigned(this); return *this; } std::string value; virtual ~TestFactory3() { print_destroyed(this); } }; // Inheritance test class TestFactory4 : public TestFactory3 { public: TestFactory4() : TestFactory3() { print_default_created(this); } TestFactory4(int v) : TestFactory3(v) { print_created(this, v); } ~TestFactory4() override { print_destroyed(this); } }; // Another class for an invalid downcast test class TestFactory5 : public TestFactory3 { public: TestFactory5(int i) : TestFactory3(i) { print_created(this, i); } ~TestFactory5() override { print_destroyed(this); } }; class TestFactory6 { protected: int value; bool alias = false; public: TestFactory6(int i) : value{i} { print_created(this, i); } TestFactory6(TestFactory6 &&f) { print_move_created(this); value = f.value; alias = f.alias; } TestFactory6(const TestFactory6 &f) { print_copy_created(this); value = f.value; alias = f.alias; } virtual ~TestFactory6() { print_destroyed(this); } virtual int get() { return value; } bool has_alias() { return alias; } }; class PyTF6 : public TestFactory6 { public: // Special constructor that allows the factory to construct a PyTF6 from a TestFactory6 only // when an alias is needed: PyTF6(TestFactory6 &&base) : TestFactory6(std::move(base)) { alias = true; print_created(this, "move", value); } PyTF6(int i) : TestFactory6(i) { alias = true; print_created(this, i); } PyTF6(PyTF6 &&f) : TestFactory6(std::move(f)) { print_move_created(this); } PyTF6(const PyTF6 &f) : TestFactory6(f) { print_copy_created(this); } PyTF6(std::string s) : TestFactory6((int) s.size()) { alias = true; print_created(this, s); } ~PyTF6() override { print_destroyed(this); } int get() override { PYBIND11_OVERLOAD(int, TestFactory6, get, /*no args*/); } }; class TestFactory7 { protected: int value; bool alias = false; public: TestFactory7(int i) : value{i} { print_created(this, i); } TestFactory7(TestFactory7 &&f) { print_move_created(this); value = f.value; alias = f.alias; } TestFactory7(const TestFactory7 &f) { print_copy_created(this); value = f.value; alias = f.alias; } virtual ~TestFactory7() { print_destroyed(this); } virtual int get() { return value; } bool has_alias() { return alias; } }; class PyTF7 : public TestFactory7 { public: PyTF7(int i) : TestFactory7(i) { alias = true; print_created(this, i); } PyTF7(PyTF7 &&f) : TestFactory7(std::move(f)) { print_move_created(this); } PyTF7(const PyTF7 &f) : TestFactory7(f) { print_copy_created(this); } ~PyTF7() override { print_destroyed(this); } }; class TestFactoryHelper { public: // Non-movable, non-copyable type: // Return via pointer: static TestFactory1 *construct1() { return new TestFactory1(); } // Holder: static std::unique_ptr construct1(int a) { return std::unique_ptr(new TestFactory1(a)); } // pointer again static TestFactory1 *construct1_string(std::string a) { return new TestFactory1(a); } // Moveable type: // pointer: static TestFactory2 *construct2() { return new TestFactory2(); } // holder: static std::unique_ptr construct2(int a) { return std::unique_ptr(new TestFactory2(a)); } // by value moving: static TestFactory2 construct2(std::string a) { return TestFactory2(a); } // shared_ptr holder type: // pointer: static TestFactory3 *construct3() { return new TestFactory3(); } // holder: static std::shared_ptr construct3(int a) { return std::shared_ptr(new TestFactory3(a)); } }; TEST_SUBMODULE(factory_constructors, m) { // Define various trivial types to allow simpler overload resolution: py::module m_tag = m.def_submodule("tag"); #define MAKE_TAG_TYPE(Name) \ struct Name##_tag {}; \ py::class_(m_tag, #Name "_tag").def(py::init<>()); \ m_tag.attr(#Name) = py::cast(Name##_tag{}) MAKE_TAG_TYPE(pointer); MAKE_TAG_TYPE(unique_ptr); MAKE_TAG_TYPE(move); MAKE_TAG_TYPE(shared_ptr); MAKE_TAG_TYPE(derived); MAKE_TAG_TYPE(TF4); MAKE_TAG_TYPE(TF5); MAKE_TAG_TYPE(null_ptr); MAKE_TAG_TYPE(null_unique_ptr); MAKE_TAG_TYPE(null_shared_ptr); MAKE_TAG_TYPE(base); MAKE_TAG_TYPE(invalid_base); MAKE_TAG_TYPE(alias); MAKE_TAG_TYPE(unaliasable); MAKE_TAG_TYPE(mixed); // test_init_factory_basic, test_bad_type py::class_(m, "TestFactory1") .def(py::init([](unique_ptr_tag, int v) { return TestFactoryHelper::construct1(v); })) .def(py::init(&TestFactoryHelper::construct1_string)) // raw function pointer .def(py::init([](pointer_tag) { return TestFactoryHelper::construct1(); })) .def(py::init([](py::handle, int v, py::handle) { return TestFactoryHelper::construct1(v); })) .def_readwrite("value", &TestFactory1::value) ; py::class_(m, "TestFactory2") .def(py::init([](pointer_tag, int v) { return TestFactoryHelper::construct2(v); })) .def(py::init([](unique_ptr_tag, std::string v) { return TestFactoryHelper::construct2(v); })) .def(py::init([](move_tag) { return TestFactoryHelper::construct2(); })) .def_readwrite("value", &TestFactory2::value) ; // Stateful & reused: int c = 1; auto c4a = [c](pointer_tag, TF4_tag, int a) { (void) c; return new TestFactory4(a);}; // test_init_factory_basic, test_init_factory_casting py::class_>(m, "TestFactory3") .def(py::init([](pointer_tag, int v) { return TestFactoryHelper::construct3(v); })) .def(py::init([](shared_ptr_tag) { return TestFactoryHelper::construct3(); })) .def("__init__", [](TestFactory3 &self, std::string v) { new (&self) TestFactory3(v); }) // placement-new ctor // factories returning a derived type: .def(py::init(c4a)) // derived ptr .def(py::init([](pointer_tag, TF5_tag, int a) { return new TestFactory5(a); })) // derived shared ptr: .def(py::init([](shared_ptr_tag, TF4_tag, int a) { return std::make_shared(a); })) .def(py::init([](shared_ptr_tag, TF5_tag, int a) { return std::make_shared(a); })) // Returns nullptr: .def(py::init([](null_ptr_tag) { return (TestFactory3 *) nullptr; })) .def(py::init([](null_unique_ptr_tag) { return std::unique_ptr(); })) .def(py::init([](null_shared_ptr_tag) { return std::shared_ptr(); })) .def_readwrite("value", &TestFactory3::value) ; // test_init_factory_casting py::class_>(m, "TestFactory4") .def(py::init(c4a)) // pointer ; // Doesn't need to be registered, but registering makes getting ConstructorStats easier: py::class_>(m, "TestFactory5"); // test_init_factory_alias // Alias testing py::class_(m, "TestFactory6") .def(py::init([](base_tag, int i) { return TestFactory6(i); })) .def(py::init([](alias_tag, int i) { return PyTF6(i); })) .def(py::init([](alias_tag, std::string s) { return PyTF6(s); })) .def(py::init([](alias_tag, pointer_tag, int i) { return new PyTF6(i); })) .def(py::init([](base_tag, pointer_tag, int i) { return new TestFactory6(i); })) .def(py::init([](base_tag, alias_tag, pointer_tag, int i) { return (TestFactory6 *) new PyTF6(i); })) .def("get", &TestFactory6::get) .def("has_alias", &TestFactory6::has_alias) .def_static("get_cstats", &ConstructorStats::get, py::return_value_policy::reference) .def_static("get_alias_cstats", &ConstructorStats::get, py::return_value_policy::reference) ; // test_init_factory_dual // Separate alias constructor testing py::class_>(m, "TestFactory7") .def(py::init( [](int i) { return TestFactory7(i); }, [](int i) { return PyTF7(i); })) .def(py::init( [](pointer_tag, int i) { return new TestFactory7(i); }, [](pointer_tag, int i) { return new PyTF7(i); })) .def(py::init( [](mixed_tag, int i) { return new TestFactory7(i); }, [](mixed_tag, int i) { return PyTF7(i); })) .def(py::init( [](mixed_tag, std::string s) { return TestFactory7((int) s.size()); }, [](mixed_tag, std::string s) { return new PyTF7((int) s.size()); })) .def(py::init( [](base_tag, pointer_tag, int i) { return new TestFactory7(i); }, [](base_tag, pointer_tag, int i) { return (TestFactory7 *) new PyTF7(i); })) .def(py::init( [](alias_tag, pointer_tag, int i) { return new PyTF7(i); }, [](alias_tag, pointer_tag, int i) { return new PyTF7(10*i); })) .def(py::init( [](shared_ptr_tag, base_tag, int i) { return std::make_shared(i); }, [](shared_ptr_tag, base_tag, int i) { auto *p = new PyTF7(i); return std::shared_ptr(p); })) .def(py::init( [](shared_ptr_tag, invalid_base_tag, int i) { return std::make_shared(i); }, [](shared_ptr_tag, invalid_base_tag, int i) { return std::make_shared(i); })) // <-- invalid alias factory .def("get", &TestFactory7::get) .def("has_alias", &TestFactory7::has_alias) .def_static("get_cstats", &ConstructorStats::get, py::return_value_policy::reference) .def_static("get_alias_cstats", &ConstructorStats::get, py::return_value_policy::reference) ; // test_placement_new_alternative // Class with a custom new operator but *without* a placement new operator (issue #948) class NoPlacementNew { public: NoPlacementNew(int i) : i(i) { } static void *operator new(std::size_t s) { auto *p = ::operator new(s); py::print("operator new called, returning", reinterpret_cast(p)); return p; } static void operator delete(void *p) { py::print("operator delete called on", reinterpret_cast(p)); ::operator delete(p); } int i; }; // As of 2.2, `py::init` no longer requires placement new py::class_(m, "NoPlacementNew") .def(py::init()) .def(py::init([]() { return new NoPlacementNew(100); })) .def_readwrite("i", &NoPlacementNew::i) ; // test_reallocations // Class that has verbose operator_new/operator_delete calls struct NoisyAlloc { NoisyAlloc(const NoisyAlloc &) = default; NoisyAlloc(int i) { py::print(py::str("NoisyAlloc(int {})").format(i)); } NoisyAlloc(double d) { py::print(py::str("NoisyAlloc(double {})").format(d)); } ~NoisyAlloc() { py::print("~NoisyAlloc()"); } static void *operator new(size_t s) { py::print("noisy new"); return ::operator new(s); } static void *operator new(size_t, void *p) { py::print("noisy placement new"); return p; } static void operator delete(void *p, size_t) { py::print("noisy delete"); ::operator delete(p); } static void operator delete(void *, void *) { py::print("noisy placement delete"); } #if defined(_MSC_VER) && _MSC_VER < 1910 // MSVC 2015 bug: the above "noisy delete" isn't invoked (fixed in MSVC 2017) static void operator delete(void *p) { py::print("noisy delete"); ::operator delete(p); } #endif }; py::class_(m, "NoisyAlloc") // Since these overloads have the same number of arguments, the dispatcher will try each of // them until the arguments convert. Thus we can get a pre-allocation here when passing a // single non-integer: .def("__init__", [](NoisyAlloc *a, int i) { new (a) NoisyAlloc(i); }) // Regular constructor, runs first, requires preallocation .def(py::init([](double d) { return new NoisyAlloc(d); })) // The two-argument version: first the factory pointer overload. .def(py::init([](int i, int) { return new NoisyAlloc(i); })) // Return-by-value: .def(py::init([](double d, int) { return NoisyAlloc(d); })) // Old-style placement new init; requires preallocation .def("__init__", [](NoisyAlloc &a, double d, double) { new (&a) NoisyAlloc(d); }) // Requires deallocation of previous overload preallocated value: .def(py::init([](int i, double) { return new NoisyAlloc(i); })) // Regular again: requires yet another preallocation .def("__init__", [](NoisyAlloc &a, int i, std::string) { new (&a) NoisyAlloc(i); }) ; // static_assert testing (the following def's should all fail with appropriate compilation errors): #if 0 struct BadF1Base {}; struct BadF1 : BadF1Base {}; struct PyBadF1 : BadF1 {}; py::class_> bf1(m, "BadF1"); // wrapped factory function must return a compatible pointer, holder, or value bf1.def(py::init([]() { return 3; })); // incompatible factory function pointer return type bf1.def(py::init([]() { static int three = 3; return &three; })); // incompatible factory function std::shared_ptr return type: cannot convert shared_ptr to holder // (non-polymorphic base) bf1.def(py::init([]() { return std::shared_ptr(new BadF1()); })); #endif }