/* tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators, etc. Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include #include #include #include #ifdef PYBIND11_HAS_OPTIONAL #include #endif // PYBIND11_HAS_OPTIONAL template class NonZeroIterator { const T* ptr_; public: explicit NonZeroIterator(const T *ptr) : ptr_(ptr) {} const T& operator*() const { return *ptr_; } NonZeroIterator& operator++() { ++ptr_; return *this; } }; class NonZeroSentinel {}; template bool operator==(const NonZeroIterator>& it, const NonZeroSentinel&) { return !(*it).first || !(*it).second; } template py::list test_random_access_iterator(PythonType x) { if (x.size() < 5) throw py::value_error("Please provide at least 5 elements for testing."); auto checks = py::list(); auto assert_equal = [&checks](py::handle a, py::handle b) { auto result = PyObject_RichCompareBool(a.ptr(), b.ptr(), Py_EQ); if (result == -1) { throw py::error_already_set(); } checks.append(result != 0); }; auto it = x.begin(); assert_equal(x[0], *it); assert_equal(x[0], it[0]); assert_equal(x[1], it[1]); assert_equal(x[1], *(++it)); assert_equal(x[1], *(it++)); assert_equal(x[2], *it); assert_equal(x[3], *(it += 1)); assert_equal(x[2], *(--it)); assert_equal(x[2], *(it--)); assert_equal(x[1], *it); assert_equal(x[0], *(it -= 1)); assert_equal(it->attr("real"), x[0].attr("real")); assert_equal((it + 1)->attr("real"), x[1].attr("real")); assert_equal(x[1], *(it + 1)); assert_equal(x[1], *(1 + it)); it += 3; assert_equal(x[1], *(it - 2)); checks.append(static_cast(x.end() - x.begin()) == x.size()); checks.append((x.begin() + static_cast(x.size())) == x.end()); checks.append(x.begin() < x.end()); return checks; } TEST_SUBMODULE(sequences_and_iterators, m) { // test_sliceable class Sliceable{ public: explicit Sliceable(int n) : size(n) {} int start, stop, step; int size; }; py::class_(m, "Sliceable") .def(py::init()) .def("__getitem__", [](const Sliceable &s, const py::slice &slice) { py::ssize_t start = 0, stop = 0, step = 0, slicelength = 0; if (!slice.compute(s.size, &start, &stop, &step, &slicelength)) throw py::error_already_set(); int istart = static_cast(start); int istop = static_cast(stop); int istep = static_cast(step); return std::make_tuple(istart, istop, istep); }); m.def("make_forward_slice_size_t", []() { return py::slice(0, -1, 1); }); m.def("make_reversed_slice_object", []() { return py::slice(py::none(), py::none(), py::int_(-1)); }); #ifdef PYBIND11_HAS_OPTIONAL m.attr("has_optional") = true; m.def("make_reversed_slice_size_t_optional_verbose", []() { return py::slice(std::nullopt, std::nullopt, -1); }); // Warning: The following spelling may still compile if optional<> is not present and give wrong answers. // Please use with caution. m.def("make_reversed_slice_size_t_optional", []() { return py::slice({}, {}, -1); }); #else m.attr("has_optional") = false; #endif // test_sequence class Sequence { public: explicit Sequence(size_t size) : m_size(size) { print_created(this, "of size", m_size); m_data = new float[size]; memset(m_data, 0, sizeof(float) * size); } explicit Sequence(const std::vector &value) : m_size(value.size()) { print_created(this, "of size", m_size, "from std::vector"); m_data = new float[m_size]; memcpy(m_data, &value[0], sizeof(float) * m_size); } Sequence(const Sequence &s) : m_size(s.m_size) { print_copy_created(this); m_data = new float[m_size]; memcpy(m_data, s.m_data, sizeof(float)*m_size); } Sequence(Sequence &&s) noexcept : m_size(s.m_size), m_data(s.m_data) { print_move_created(this); s.m_size = 0; s.m_data = nullptr; } ~Sequence() { print_destroyed(this); delete[] m_data; } Sequence &operator=(const Sequence &s) { if (&s != this) { delete[] m_data; m_size = s.m_size; m_data = new float[m_size]; memcpy(m_data, s.m_data, sizeof(float)*m_size); } print_copy_assigned(this); return *this; } Sequence &operator=(Sequence &&s) noexcept { if (&s != this) { delete[] m_data; m_size = s.m_size; m_data = s.m_data; s.m_size = 0; s.m_data = nullptr; } print_move_assigned(this); return *this; } bool operator==(const Sequence &s) const { if (m_size != s.size()) return false; for (size_t i = 0; i < m_size; ++i) if (m_data[i] != s[i]) return false; return true; } bool operator!=(const Sequence &s) const { return !operator==(s); } float operator[](size_t index) const { return m_data[index]; } float &operator[](size_t index) { return m_data[index]; } bool contains(float v) const { for (size_t i = 0; i < m_size; ++i) if (v == m_data[i]) return true; return false; } Sequence reversed() const { Sequence result(m_size); for (size_t i = 0; i < m_size; ++i) result[m_size - i - 1] = m_data[i]; return result; } size_t size() const { return m_size; } const float *begin() const { return m_data; } const float *end() const { return m_data+m_size; } private: size_t m_size; float *m_data; }; py::class_(m, "Sequence") .def(py::init()) .def(py::init &>()) /// Bare bones interface .def("__getitem__", [](const Sequence &s, size_t i) { if (i >= s.size()) throw py::index_error(); return s[i]; }) .def("__setitem__", [](Sequence &s, size_t i, float v) { if (i >= s.size()) throw py::index_error(); s[i] = v; }) .def("__len__", &Sequence::size) /// Optional sequence protocol operations .def( "__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); }, py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */) .def("__contains__", [](const Sequence &s, float v) { return s.contains(v); }) .def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); }) /// Slicing protocol (optional) .def("__getitem__", [](const Sequence &s, const py::slice &slice) -> Sequence * { size_t start = 0, stop = 0, step = 0, slicelength = 0; if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) throw py::error_already_set(); auto *seq = new Sequence(slicelength); for (size_t i = 0; i < slicelength; ++i) { (*seq)[i] = s[start]; start += step; } return seq; }) .def("__setitem__", [](Sequence &s, const py::slice &slice, const Sequence &value) { size_t start = 0, stop = 0, step = 0, slicelength = 0; if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) throw py::error_already_set(); if (slicelength != value.size()) throw std::runtime_error( "Left and right hand size of slice assignment have different sizes!"); for (size_t i = 0; i < slicelength; ++i) { s[start] = value[i]; start += step; } }) /// Comparisons .def(py::self == py::self) .def(py::self != py::self) // Could also define py::self + py::self for concatenation, etc. ; // test_map_iterator // Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic // map-like functionality. class StringMap { public: StringMap() = default; explicit StringMap(std::unordered_map init) : map(std::move(init)) {} void set(const std::string &key, std::string val) { map[key] = std::move(val); } std::string get(const std::string &key) const { return map.at(key); } size_t size() const { return map.size(); } private: std::unordered_map map; public: decltype(map.cbegin()) begin() const { return map.cbegin(); } decltype(map.cend()) end() const { return map.cend(); } }; py::class_(m, "StringMap") .def(py::init<>()) .def(py::init>()) .def("__getitem__", [](const StringMap &map, const std::string &key) { try { return map.get(key); } catch (const std::out_of_range &) { throw py::key_error("key '" + key + "' does not exist"); } }) .def("__setitem__", &StringMap::set) .def("__len__", &StringMap::size) .def( "__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); }, py::keep_alive<0, 1>()) .def( "items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); }, py::keep_alive<0, 1>()); // test_generalized_iterators class IntPairs { public: explicit IntPairs(std::vector> data) : data_(std::move(data)) {} const std::pair* begin() const { return data_.data(); } // .end() only required for py::make_iterator(self) overload const std::pair* end() const { return data_.data() + data_.size(); } private: std::vector> data_; }; py::class_(m, "IntPairs") .def(py::init>>()) .def("nonzero", [](const IntPairs& s) { return py::make_iterator(NonZeroIterator>(s.begin()), NonZeroSentinel()); }, py::keep_alive<0, 1>()) .def("nonzero_keys", [](const IntPairs& s) { return py::make_key_iterator(NonZeroIterator>(s.begin()), NonZeroSentinel()); }, py::keep_alive<0, 1>()) .def("simple_iterator", [](IntPairs& self) { return py::make_iterator(self); }, py::keep_alive<0, 1>()) .def("simple_keys", [](IntPairs& self) { return py::make_key_iterator(self); }, py::keep_alive<0, 1>()) // test iterator with keep_alive (doesn't work so not used at runtime, but tests compile) .def("make_iterator_keep_alive", [](IntPairs& self) { return py::make_iterator(self, py::keep_alive<0, 1>()); }, py::keep_alive<0, 1>()) ; #if 0 // Obsolete: special data structure for exposing custom iterator types to python // kept here for illustrative purposes because there might be some use cases which // are not covered by the much simpler py::make_iterator struct PySequenceIterator { PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { } float next() { if (index == seq.size()) throw py::stop_iteration(); return seq[index++]; } const Sequence &seq; py::object ref; // keep a reference size_t index = 0; }; py::class_(seq, "Iterator") .def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; }) .def("__next__", &PySequenceIterator::next); On the actual Sequence object, the iterator would be constructed as follows: .def("__iter__", [](py::object s) { return PySequenceIterator(s.cast(), s); }) #endif // test_python_iterator_in_cpp m.def("object_to_list", [](const py::object &o) { auto l = py::list(); for (auto item : o) { l.append(item); } return l; }); m.def("iterator_to_list", [](py::iterator it) { auto l = py::list(); while (it != py::iterator::sentinel()) { l.append(*it); ++it; } return l; }); // test_sequence_length: check that Python sequences can be converted to py::sequence. m.def("sequence_length", [](const py::sequence &seq) { return seq.size(); }); // Make sure that py::iterator works with std algorithms m.def("count_none", [](const py::object &o) { return std::count_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); }); }); m.def("find_none", [](const py::object &o) { auto it = std::find_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); }); return it->is_none(); }); m.def("count_nonzeros", [](const py::dict &d) { return std::count_if(d.begin(), d.end(), [](std::pair p) { return p.second.cast() != 0; }); }); m.def("tuple_iterator", &test_random_access_iterator); m.def("list_iterator", &test_random_access_iterator); m.def("sequence_iterator", &test_random_access_iterator); // test_iterator_passthrough // #181: iterator passthrough did not compile m.def("iterator_passthrough", [](py::iterator s) -> py::iterator { return py::make_iterator(std::begin(s), std::end(s)); }); // test_iterator_rvp // #388: Can't make iterators via make_iterator() with different r/v policies static std::vector list = { 1, 2, 3 }; m.def("make_iterator_1", []() { return py::make_iterator(list); }); m.def("make_iterator_2", []() { return py::make_iterator(list); }); }