/* tests/test_stl.cpp -- STL type casters Copyright (c) 2017 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include // Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14 #if PYBIND11_HAS_VARIANT using std::variant; #elif PYBIND11_TEST_BOOST # include # define PYBIND11_HAS_VARIANT 1 using boost::variant; namespace pybind11 { namespace detail { template struct type_caster> : variant_caster> {}; template <> struct visit_helper { template static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) { return boost::apply_visitor(args...); } }; }} // namespace pybind11::detail #endif /// Issue #528: templated constructor struct TplCtorClass { template TplCtorClass(const T &) { } bool operator==(const TplCtorClass &) const { return true; } }; namespace std { template <> struct hash { size_t operator()(const TplCtorClass &) const { return 0; } }; } TEST_SUBMODULE(stl, m) { // test_vector m.def("cast_vector", []() { return std::vector{1}; }); m.def("load_vector", [](const std::vector &v) { return v.at(0) == 1 && v.at(1) == 2; }); // Unnumbered regression (caused by #936): pointers to stl containers aren't castable static std::vector lvv{2}; m.def("cast_ptr_vector", []() { return &lvv; }); // test_array m.def("cast_array", []() { return std::array {{1 , 2}}; }); m.def("load_array", [](const std::array &a) { return a[0] == 1 && a[1] == 2; }); // test_valarray m.def("cast_valarray", []() { return std::valarray{1, 4, 9}; }); m.def("load_valarray", [](const std::valarray& v) { return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9; }); // test_map m.def("cast_map", []() { return std::map{{"key", "value"}}; }); m.def("load_map", [](const std::map &map) { return map.at("key") == "value" && map.at("key2") == "value2"; }); // test_set m.def("cast_set", []() { return std::set{"key1", "key2"}; }); m.def("load_set", [](const std::set &set) { return set.count("key1") && set.count("key2") && set.count("key3"); }); // test_recursive_casting m.def("cast_rv_vector", []() { return std::vector{2}; }); m.def("cast_rv_array", []() { return std::array(); }); // NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`), // casters don't typically do anything with that, which means they fall to the `const Type &` // caster. m.def("cast_rv_map", []() { return std::unordered_map{{"a", RValueCaster{}}}; }); m.def("cast_rv_nested", []() { std::vector>, 2>> v; v.emplace_back(); // add an array v.back()[0].emplace_back(); // add a map to the array v.back()[0].back().emplace("b", RValueCaster{}); v.back()[0].back().emplace("c", RValueCaster{}); v.back()[1].emplace_back(); // add a map to the array v.back()[1].back().emplace("a", RValueCaster{}); return v; }); static std::array lva; static std::unordered_map lvm{{"a", RValueCaster{}}, {"b", RValueCaster{}}}; static std::unordered_map>>> lvn; lvn["a"].emplace_back(); // add a list lvn["a"].back().emplace_back(); // add an array lvn["a"].emplace_back(); // another list lvn["a"].back().emplace_back(); // add an array lvn["b"].emplace_back(); // add a list lvn["b"].back().emplace_back(); // add an array lvn["b"].back().emplace_back(); // add another array m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; }); m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; }); m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; }); m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; }); // #853: m.def("cast_unique_ptr_vector", []() { std::vector> v; v.emplace_back(new UserType{7}); v.emplace_back(new UserType{42}); return v; }); // test_move_out_container struct MoveOutContainer { struct Value { int value; }; std::list move_list() const { return {{0}, {1}, {2}}; } }; py::class_(m, "MoveOutContainerValue") .def_readonly("value", &MoveOutContainer::Value::value); py::class_(m, "MoveOutContainer") .def(py::init<>()) .def_property_readonly("move_list", &MoveOutContainer::move_list); // Class that can be move- and copy-constructed, but not assigned struct NoAssign { int value; explicit NoAssign(int value = 0) : value(value) { } NoAssign(const NoAssign &) = default; NoAssign(NoAssign &&) = default; NoAssign &operator=(const NoAssign &) = delete; NoAssign &operator=(NoAssign &&) = delete; }; py::class_(m, "NoAssign", "Class with no C++ assignment operators") .def(py::init<>()) .def(py::init()); #ifdef PYBIND11_HAS_OPTIONAL // test_optional m.attr("has_optional") = true; using opt_int = std::optional; using opt_no_assign = std::optional; m.def("double_or_zero", [](const opt_int& x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none", [](int x) -> opt_int { return x ? opt_int(x / 2) : opt_int(); }); m.def("test_nullopt", [](opt_int x) { return x.value_or(42); }, py::arg_v("x", std::nullopt, "None")); m.def("test_no_assign", [](const opt_no_assign &x) { return x ? x->value : 42; }, py::arg_v("x", std::nullopt, "None")); m.def("nodefer_none_optional", [](std::optional) { return true; }); m.def("nodefer_none_optional", [](py::none) { return false; }); #endif #ifdef PYBIND11_HAS_EXP_OPTIONAL // test_exp_optional m.attr("has_exp_optional") = true; using exp_opt_int = std::experimental::optional; using exp_opt_no_assign = std::experimental::optional; m.def("double_or_zero_exp", [](const exp_opt_int& x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none_exp", [](int x) -> exp_opt_int { return x ? exp_opt_int(x / 2) : exp_opt_int(); }); m.def("test_nullopt_exp", [](exp_opt_int x) { return x.value_or(42); }, py::arg_v("x", std::experimental::nullopt, "None")); m.def("test_no_assign_exp", [](const exp_opt_no_assign &x) { return x ? x->value : 42; }, py::arg_v("x", std::experimental::nullopt, "None")); #endif #ifdef PYBIND11_HAS_VARIANT static_assert(std::is_same::value, "visitor::result_type is required by boost::variant in C++11 mode"); struct visitor { using result_type = const char *; result_type operator()(int) { return "int"; } result_type operator()(std::string) { return "std::string"; } result_type operator()(double) { return "double"; } result_type operator()(std::nullptr_t) { return "std::nullptr_t"; } }; // test_variant m.def("load_variant", [](variant v) { return py::detail::visit_helper::call(visitor(), v); }); m.def("load_variant_2pass", [](variant v) { return py::detail::visit_helper::call(visitor(), v); }); m.def("cast_variant", []() { using V = variant; return py::make_tuple(V(5), V("Hello")); }); #endif // #528: templated constructor // (no python tests: the test here is that this compiles) m.def("tpl_ctor_vector", [](std::vector &) {}); m.def("tpl_ctor_map", [](std::unordered_map &) {}); m.def("tpl_ctor_set", [](std::unordered_set &) {}); #if defined(PYBIND11_HAS_OPTIONAL) m.def("tpl_constr_optional", [](std::optional &) {}); #elif defined(PYBIND11_HAS_EXP_OPTIONAL) m.def("tpl_constr_optional", [](std::experimental::optional &) {}); #endif // test_vec_of_reference_wrapper // #171: Can't return STL structures containing reference wrapper m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper p4) { static UserType p1{1}, p2{2}, p3{3}; return std::vector> { std::ref(p1), std::ref(p2), std::ref(p3), p4 }; }); // test_stl_pass_by_pointer m.def("stl_pass_by_pointer", [](std::vector* v) { return *v; }, "v"_a=nullptr); }