/* example/example6.cpp -- supporting Pythons' sequence protocol, iterators, etc. Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "example.h" #include #include class Sequence { public: Sequence(size_t size) : m_size(size) { std::cout << "Value constructor: Creating a sequence with " << m_size << " entries" << std::endl; m_data = new float[size]; memset(m_data, 0, sizeof(float) * size); } Sequence(const std::vector &value) : m_size(value.size()) { std::cout << "Value constructor: Creating a sequence with " << m_size << " entries" << std::endl; m_data = new float[m_size]; memcpy(m_data, &value[0], sizeof(float) * m_size); } Sequence(const Sequence &s) : m_size(s.m_size) { std::cout << "Copy constructor: Creating a sequence with " << m_size << " entries" << std::endl; m_data = new float[m_size]; memcpy(m_data, s.m_data, sizeof(float)*m_size); } Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) { std::cout << "Move constructor: Creating a sequence with " << m_size << " entries" << std::endl; s.m_size = 0; s.m_data = nullptr; } ~Sequence() { std::cout << "Freeing a sequence with " << m_size << " entries" << std::endl; delete[] m_data; } Sequence &operator=(const Sequence &s) { std::cout << "Assignment operator: Creating a sequence with " << s.m_size << " entries" << std::endl; delete[] m_data; m_size = s.m_size; m_data = new float[m_size]; memcpy(m_data, s.m_data, sizeof(float)*m_size); return *this; } Sequence &operator=(Sequence &&s) { std::cout << "Move assignment operator: Creating a sequence with " << s.m_size << " entries" << std::endl; if (&s != this) { delete[] m_data; m_size = s.m_size; m_data = s.m_data; s.m_size = 0; s.m_data = nullptr; } return *this; } bool operator==(const Sequence &s) const { if (m_size != s.size()) return false; for (size_t i=0; i seq(m, "Sequence"); seq.def(py::init()) .def(py::init&>()) /// Bare bones interface .def("__getitem__", [](const Sequence &s, size_t i) { if (i >= s.size()) throw py::index_error(); return s[i]; }) .def("__setitem__", [](Sequence &s, size_t i, float v) { if (i >= s.size()) throw py::index_error(); s[i] = v; }) .def("__len__", &Sequence::size) /// Optional sequence protocol operations .def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); }, py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */) .def("__contains__", [](const Sequence &s, float v) { return s.contains(v); }) .def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); }) /// Slicing protocol (optional) .def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* { size_t start, stop, step, slicelength; if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) throw py::error_already_set(); Sequence *seq = new Sequence(slicelength); for (size_t i=0; i(seq, "Iterator") .def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; }) .def("__next__", &PySequenceIterator::next); On the actual Sequence object, the iterator would be constructed as follows: .def("__iter__", [](py::object s) { return PySequenceIterator(s.cast(), s); }) #endif }