.. _classes: Object-oriented code #################### Creating bindings for a custom type =================================== Let's now look at a more complex example where we'll create bindings for a custom C++ data structure named ``Pet``. Its definition is given below: .. code-block:: cpp struct Pet { Pet(const std::string &name) : name(name) { } void setName(const std::string &name_) { name = name_; } const std::string &getName() const { return name; } std::string name; }; The binding code for ``Pet`` looks as follows: .. code-block:: cpp #include namespace py = pybind11; PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::class_(m, "Pet") .def(py::init()) .def("setName", &Pet::setName) .def("getName", &Pet::getName); return m.ptr(); } :class:`class_` creates bindings for a C++ `class` or `struct`-style data structure. :func:`init` is a convenience function that takes the types of a constructor's parameters as template arguments and wraps the corresponding constructor (see the :ref:`custom_constructors` section for details). An interactive Python session demonstrating this example is shown below: .. code-block:: python % python >>> import example >>> p = example.Pet('Molly') >>> print(p) >>> p.getName() u'Molly' >>> p.setName('Charly') >>> p.getName() u'Charly' Keyword and default arguments ============================= It is possible to specify keyword and default arguments using the syntax discussed in the previous chapter. Refer to the sections :ref:`keyword_args` and :ref:`default_args` for details. Binding lambda functions ======================== Note how ``print(p)`` produced a rather useless summary of our data structure in the example above: .. code-block:: python >>> print(p) To address this, we could bind an utility function that returns a human-readable summary to the special method slot named ``__repr__``. Unfortunately, there is no suitable functionality in the ``Pet`` data structure, and it would be nice if we did not have to change it. This can easily be accomplished by binding a Lambda function instead: .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def("setName", &Pet::setName) .def("getName", &Pet::getName) .def("__repr__", [](const Pet &a) { return ""; } ); Both stateless [#f1]_ and stateful lambda closures are supported by pybind11. With the above change, the same Python code now produces the following output: .. code-block:: python >>> print(p) Instance and static fields ========================== We can also directly expose the ``name`` field using the :func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly` method also exists for ``const`` fields. .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def_readwrite("name", &Pet::name) // ... remainder ... This makes it possible to write .. code-block:: python >>> p = example.Pet('Molly') >>> p.name u'Molly' >>> p.name = 'Charly' >>> p.name u'Charly' Now suppose that ``Pet::name`` was a private internal variable that can only be accessed via setters and getters. .. code-block:: cpp class Pet { public: Pet(const std::string &name) : name(name) { } void setName(const std::string &name_) { name = name_; } const std::string &getName() const { return name; } private: std::string name; }; In this case, the method :func:`class_::def_property` (:func:`class_::def_property_readonly` for read-only data) can be used to provide a field-like interface within Python that will transparently call the setter and getter functions: .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def_property("name", &Pet::getName, &Pet::setName) // ... remainder ... .. seealso:: Similar functions :func:`class_::def_readwrite_static`, :func:`class_::def_readonly_static` :func:`class_::def_property_static`, and :func:`class_::def_property_readonly_static` are provided for binding static variables and properties. .. _inheritance: Inheritance =========== Suppose now that the example consists of two data structures with an inheritance relationship: .. code-block:: cpp struct Pet { Pet(const std::string &name) : name(name) { } std::string name; }; struct Dog : Pet { Dog(const std::string &name) : Pet(name) { } std::string bark() const { return "woof!"; } }; There are two different ways of indicating a hierarchical relationship to pybind11: the first is by specifying the C++ base class explicitly during construction using the ``base`` attribute: .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def_readwrite("name", &Pet::name); py::class_(m, "Dog", py::base() /* <- specify C++ parent type */) .def(py::init()) .def("bark", &Dog::bark); Alternatively, we can also assign a name to the previously bound ``Pet`` :class:`class_` object and reference it when binding the ``Dog`` class: .. code-block:: cpp py::class_ pet(m, "Pet"); pet.def(py::init()) .def_readwrite("name", &Pet::name); py::class_(m, "Dog", pet /* <- specify Python parent type */) .def(py::init()) .def("bark", &Dog::bark); Functionality-wise, both approaches are completely equivalent. Afterwards, instances will expose fields and methods of both types: .. code-block:: python >>> p = example.Dog('Molly') >>> p.name u'Molly' >>> p.bark() u'woof!' Overloaded methods ================== Sometimes there are several overloaded C++ methods with the same name taking different kinds of input arguments: .. code-block:: cpp struct Pet { Pet(const std::string &name, int age) : name(name), age(age) { } void set(int age) { age = age; } void set(const std::string &name) { name = name; } std::string name; int age; }; Attempting to bind ``Pet::set`` will cause an error since the compiler does not know which method the user intended to select. We can disambiguate by casting them to function pointers. Binding multiple functions to the same Python name automatically creates a chain of function overloads that will be tried in sequence. .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age") .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name"); The overload signatures are also visible in the method's docstring: .. code-block:: python >>> help(example.Pet) class Pet(__builtin__.object) | Methods defined here: | | __init__(...) | Signature : (Pet, str, int) -> NoneType | | set(...) | 1. Signature : (Pet, int) -> NoneType | | Set the pet's age | | 2. Signature : (Pet, str) -> NoneType | | Set the pet's name .. note:: To define multiple overloaded constructors, simply declare one after the other using the ``.def(py::init<...>())`` syntax. The existing machinery for specifying keyword and default arguments also works. Enumerations and internal types =============================== Let's now suppose that the example class contains an internal enumeration type, e.g.: .. code-block:: cpp struct Pet { enum Kind { Dog = 0, Cat }; Pet(const std::string &name, Kind type) : name(name), type(type) { } std::string name; Kind type; }; The binding code for this example looks as follows: .. code-block:: cpp py::class_ pet(m, "Pet"); pet.def(py::init()) .def_readwrite("name", &Pet::name) .def_readwrite("type", &Pet::type); py::enum_(pet, "Kind") .value("Dog", Pet::Kind::Dog) .value("Cat", Pet::Kind::Cat) .export_values(); To ensure that the ``Kind`` type is created within the scope of ``Pet``, the ``pet`` :class:`class_` instance must be supplied to the :class:`enum_`. constructor. The :func:`enum_::export_values` function exports the enum entries into the parent scope, which should be skipped for newer C++11-style strongly typed enums. .. code-block:: python >>> p = Pet('Lucy', Pet.Cat) >>> p.type Kind.Cat >>> int(p.type) 1L .. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.