"""Simple comparison of holder performances, relative to unique_ptr holder.""" # ruff: noqa # This code has no unit tests. # ruff cleanup deferred until the next time this code is actually used. import collections import sys import time from typing import Any, Callable, Dict, List import pybind11_ubench_holder_comparison as m # type: ignore[import-not-found] number_bucket_pc = None def pflush(*args: Any, **kwargs: Any) -> None: print(*args, **kwargs) # Using "file" here because it is the name of the built-in keyword argument. file = kwargs.get("file", sys.stdout) # pylint: disable=redefined-builtin file.flush() # file object must have a flush method. def run(args: List[str]) -> None: if not args: size_exponent_min = 0 size_exponent_max = 16 size_exponent_step = 4 call_repetitions_first_pass = 100 call_repetitions_target_elapsed_secs = 0.1 num_samples = 10 selected_holder_type = "all" else: assert len(args) == 7, ( "size_exponent_min size_exponent_max size_exponent_step" " call_repetitions_first_pass call_repetitions_target_elapsed_secs" " num_samples selected_holder_type" ) size_exponent_min = int(args[0]) size_exponent_max = int(args[1]) size_exponent_step = int(args[2]) call_repetitions_first_pass = int(args[3]) call_repetitions_target_elapsed_secs = float(args[4]) num_samples = int(args[5]) selected_holder_type = args[6] pflush( "command-line arguments:", size_exponent_min, size_exponent_max, size_exponent_step, call_repetitions_first_pass, "%.3f" % call_repetitions_target_elapsed_secs, num_samples, selected_holder_type, ) pflush("sizeof_smart_holder:", m.sizeof_smart_holder()) def find_call_repetitions( callable: Callable[[int], float], time_delta_floor: float = 1.0e-6, target_elapsed_secs_multiplier: float = 1.05, # Empirical. target_elapsed_secs_tolerance: float = 0.05, max_iterations: int = 100, ) -> int: td_target = ( call_repetitions_target_elapsed_secs * target_elapsed_secs_multiplier ) crd = call_repetitions_first_pass for _ in range(max_iterations): td = callable(crd) crd = max(1, int(td_target * crd / max(td, time_delta_floor))) if abs(td - td_target) / td_target < target_elapsed_secs_tolerance: return crd raise RuntimeError("find_call_repetitions failure: max_iterations exceeded.") for size_exponent in range( size_exponent_min, size_exponent_max + 1, size_exponent_step ): data_size = 2**size_exponent pflush(data_size, "data_size") ratios: Dict[str, List[float]] = collections.defaultdict(list) call_repetitions = None for _ in range(num_samples): row_0 = None for nb_label, nb_type in [ ("up", m.number_bucket_up), ("sp", m.number_bucket_sp), ("pu", m.number_bucket_pu), ("sh", m.number_bucket_sh), ("pc", number_bucket_pc), ]: if nb_label == "pc" and nb_type is None: continue if selected_holder_type != "all" and nb_label != selected_holder_type: continue nb1 = nb_type(data_size) # type: ignore[misc] nb2 = nb_type(data_size) # type: ignore[misc] def many_sum(call_repetitions: int) -> float: assert int(round(nb1.sum())) == data_size t0 = time.time() for _ in range(call_repetitions): nb1.sum() return time.time() - t0 def many_add(call_repetitions: int) -> float: assert nb1.add(nb2) == data_size t0 = time.time() for _ in range(call_repetitions): nb1.add(nb2) return time.time() - t0 if call_repetitions is None: call_repetitions = find_call_repetitions(many_sum) pflush(call_repetitions, "call_repetitions") td_sum = many_sum(call_repetitions) td_add = many_add(call_repetitions) row = [td_sum, td_add] if row_0 is None: pflush(" Sum Add ratS ratA") row_0 = row else: for curr, prev in zip(row, row_0): # type: ignore[unreachable] if prev: rat = curr / prev else: rat = -1 row.append(curr / prev) ratios[nb_label + "_ratS"].append(row[-2]) ratios[nb_label + "_ratA"].append(row[-1]) pflush(nb_label, " ".join(["%.3f" % v for v in row])) pflush(" Min Mean Max") for key, rat in ratios.items(): print( key, "{:5.3f} {:5.3f} {:5.3f}".format( min(rat), sum(rat) / len(rat), max(rat) ), ) if __name__ == "__main__": run(args=sys.argv[1:])