/* pybind11/cast.h: Partial template specializations to cast between C++ and Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pytypes.h" #include "detail/typeid.h" #include "detail/descr.h" #include "detail/internals.h" #include #include #include #include #if defined(PYBIND11_CPP17) # if defined(__has_include) # if __has_include() # define PYBIND11_HAS_STRING_VIEW # endif # elif defined(_MSC_VER) # define PYBIND11_HAS_STRING_VIEW # endif #endif #ifdef PYBIND11_HAS_STRING_VIEW #include #endif #if defined(__cpp_lib_char8_t) && __cpp_lib_char8_t >= 201811L # define PYBIND11_HAS_U8STRING #endif NAMESPACE_BEGIN(PYBIND11_NAMESPACE) NAMESPACE_BEGIN(detail) /// A life support system for temporary objects created by `type_caster::load()`. /// Adding a patient will keep it alive up until the enclosing function returns. class loader_life_support { public: /// A new patient frame is created when a function is entered loader_life_support() { get_internals().loader_patient_stack.push_back(nullptr); } /// ... and destroyed after it returns ~loader_life_support() { auto &stack = get_internals().loader_patient_stack; if (stack.empty()) pybind11_fail("loader_life_support: internal error"); auto ptr = stack.back(); stack.pop_back(); Py_CLEAR(ptr); // A heuristic to reduce the stack's capacity (e.g. after long recursive calls) if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2) stack.shrink_to_fit(); } /// This can only be used inside a pybind11-bound function, either by `argument_loader` /// at argument preparation time or by `py::cast()` at execution time. PYBIND11_NOINLINE static void add_patient(handle h) { auto &stack = get_internals().loader_patient_stack; if (stack.empty()) throw cast_error("When called outside a bound function, py::cast() cannot " "do Python -> C++ conversions which require the creation " "of temporary values"); auto &list_ptr = stack.back(); if (list_ptr == nullptr) { list_ptr = PyList_New(1); if (!list_ptr) pybind11_fail("loader_life_support: error allocating list"); PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr()); } else { auto result = PyList_Append(list_ptr, h.ptr()); if (result == -1) pybind11_fail("loader_life_support: error adding patient"); } } }; // Gets the cache entry for the given type, creating it if necessary. The return value is the pair // returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was // just created. inline std::pair all_type_info_get_cache(PyTypeObject *type); // Populates a just-created cache entry. PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector &bases) { std::vector check; for (handle parent : reinterpret_borrow(t->tp_bases)) check.push_back((PyTypeObject *) parent.ptr()); auto const &type_dict = get_internals().registered_types_py; for (size_t i = 0; i < check.size(); i++) { auto type = check[i]; // Ignore Python2 old-style class super type: if (!PyType_Check((PyObject *) type)) continue; // Check `type` in the current set of registered python types: auto it = type_dict.find(type); if (it != type_dict.end()) { // We found a cache entry for it, so it's either pybind-registered or has pre-computed // pybind bases, but we have to make sure we haven't already seen the type(s) before: we // want to follow Python/virtual C++ rules that there should only be one instance of a // common base. for (auto *tinfo : it->second) { // NB: Could use a second set here, rather than doing a linear search, but since // having a large number of immediate pybind11-registered types seems fairly // unlikely, that probably isn't worthwhile. bool found = false; for (auto *known : bases) { if (known == tinfo) { found = true; break; } } if (!found) bases.push_back(tinfo); } } else if (type->tp_bases) { // It's some python type, so keep follow its bases classes to look for one or more // registered types if (i + 1 == check.size()) { // When we're at the end, we can pop off the current element to avoid growing // `check` when adding just one base (which is typical--i.e. when there is no // multiple inheritance) check.pop_back(); i--; } for (handle parent : reinterpret_borrow(type->tp_bases)) check.push_back((PyTypeObject *) parent.ptr()); } } } /** * Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side * derived class that uses single inheritance. Will contain as many types as required for a Python * class that uses multiple inheritance to inherit (directly or indirectly) from multiple * pybind-registered classes. Will be empty if neither the type nor any base classes are * pybind-registered. * * The value is cached for the lifetime of the Python type. */ inline const std::vector &all_type_info(PyTypeObject *type) { auto ins = all_type_info_get_cache(type); if (ins.second) // New cache entry: populate it all_type_info_populate(type, ins.first->second); return ins.first->second; } /** * Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any * ancestors are pybind11-registered. Throws an exception if there are multiple bases--use * `all_type_info` instead if you want to support multiple bases. */ PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) { auto &bases = all_type_info(type); if (bases.size() == 0) return nullptr; if (bases.size() > 1) pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases"); return bases.front(); } inline detail::type_info *get_local_type_info(const std::type_index &tp) { auto &locals = registered_local_types_cpp(); auto it = locals.find(tp); if (it != locals.end()) return it->second; return nullptr; } inline detail::type_info *get_global_type_info(const std::type_index &tp) { auto &types = get_internals().registered_types_cpp; auto it = types.find(tp); if (it != types.end()) return it->second; return nullptr; } /// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr. PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp, bool throw_if_missing = false) { if (auto ltype = get_local_type_info(tp)) return ltype; if (auto gtype = get_global_type_info(tp)) return gtype; if (throw_if_missing) { std::string tname = tp.name(); detail::clean_type_id(tname); pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\""); } return nullptr; } PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) { detail::type_info *type_info = get_type_info(tp, throw_if_missing); return handle(type_info ? ((PyObject *) type_info->type) : nullptr); } struct value_and_holder { instance *inst = nullptr; size_t index = 0u; const detail::type_info *type = nullptr; void **vh = nullptr; // Main constructor for a found value/holder: value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) : inst{i}, index{index}, type{type}, vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]} {} // Default constructor (used to signal a value-and-holder not found by get_value_and_holder()) value_and_holder() {} // Used for past-the-end iterator value_and_holder(size_t index) : index{index} {} template V *&value_ptr() const { return reinterpret_cast(vh[0]); } // True if this `value_and_holder` has a non-null value pointer explicit operator bool() const { return value_ptr(); } template H &holder() const { return reinterpret_cast(vh[1]); } bool holder_constructed() const { return inst->simple_layout ? inst->simple_holder_constructed : inst->nonsimple.status[index] & instance::status_holder_constructed; } void set_holder_constructed(bool v = true) { if (inst->simple_layout) inst->simple_holder_constructed = v; else if (v) inst->nonsimple.status[index] |= instance::status_holder_constructed; else inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed; } bool instance_registered() const { return inst->simple_layout ? inst->simple_instance_registered : inst->nonsimple.status[index] & instance::status_instance_registered; } void set_instance_registered(bool v = true) { if (inst->simple_layout) inst->simple_instance_registered = v; else if (v) inst->nonsimple.status[index] |= instance::status_instance_registered; else inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered; } }; // Container for accessing and iterating over an instance's values/holders struct values_and_holders { private: instance *inst; using type_vec = std::vector; const type_vec &tinfo; public: values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {} struct iterator { private: instance *inst = nullptr; const type_vec *types = nullptr; value_and_holder curr; friend struct values_and_holders; iterator(instance *inst, const type_vec *tinfo) : inst{inst}, types{tinfo}, curr(inst /* instance */, types->empty() ? nullptr : (*types)[0] /* type info */, 0, /* vpos: (non-simple types only): the first vptr comes first */ 0 /* index */) {} // Past-the-end iterator: iterator(size_t end) : curr(end) {} public: bool operator==(const iterator &other) { return curr.index == other.curr.index; } bool operator!=(const iterator &other) { return curr.index != other.curr.index; } iterator &operator++() { if (!inst->simple_layout) curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs; ++curr.index; curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr; return *this; } value_and_holder &operator*() { return curr; } value_and_holder *operator->() { return &curr; } }; iterator begin() { return iterator(inst, &tinfo); } iterator end() { return iterator(tinfo.size()); } iterator find(const type_info *find_type) { auto it = begin(), endit = end(); while (it != endit && it->type != find_type) ++it; return it; } size_t size() { return tinfo.size(); } }; /** * Extracts C++ value and holder pointer references from an instance (which may contain multiple * values/holders for python-side multiple inheritance) that match the given type. Throws an error * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned, * regardless of type (and the resulting .type will be nullptr). * * The returned object should be short-lived: in particular, it must not outlive the called-upon * instance. */ PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) { // Optimize common case: if (!find_type || Py_TYPE(this) == find_type->type) return value_and_holder(this, find_type, 0, 0); detail::values_and_holders vhs(this); auto it = vhs.find(find_type); if (it != vhs.end()) return *it; if (!throw_if_missing) return value_and_holder(); #if defined(NDEBUG) pybind11_fail("pybind11::detail::instance::get_value_and_holder: " "type is not a pybind11 base of the given instance " "(compile in debug mode for type details)"); #else pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" + std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" + std::string(Py_TYPE(this)->tp_name) + "' instance"); #endif } PYBIND11_NOINLINE inline void instance::allocate_layout() { auto &tinfo = all_type_info(Py_TYPE(this)); const size_t n_types = tinfo.size(); if (n_types == 0) pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types"); simple_layout = n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs(); // Simple path: no python-side multiple inheritance, and a small-enough holder if (simple_layout) { simple_value_holder[0] = nullptr; simple_holder_constructed = false; simple_instance_registered = false; } else { // multiple base types or a too-large holder // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer, // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool // values that tracks whether each associated holder has been initialized. Each [block] is // padded, if necessary, to an integer multiple of sizeof(void *). size_t space = 0; for (auto t : tinfo) { space += 1; // value pointer space += t->holder_size_in_ptrs; // holder instance } size_t flags_at = space; space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered) // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values, // in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6 // they default to using pymalloc, which is designed to be efficient for small allocations // like the one we're doing here; in earlier versions (and for larger allocations) they are // just wrappers around malloc. #if PY_VERSION_HEX >= 0x03050000 nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *)); if (!nonsimple.values_and_holders) throw std::bad_alloc(); #else nonsimple.values_and_holders = (void **) PyMem_New(void *, space); if (!nonsimple.values_and_holders) throw std::bad_alloc(); std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *)); #endif nonsimple.status = reinterpret_cast(&nonsimple.values_and_holders[flags_at]); } owned = true; } PYBIND11_NOINLINE inline void instance::deallocate_layout() { if (!simple_layout) PyMem_Free(nonsimple.values_and_holders); } PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) { handle type = detail::get_type_handle(tp, false); if (!type) return false; return isinstance(obj, type); } PYBIND11_NOINLINE inline std::string error_string() { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred"); return "Unknown internal error occurred"; } error_scope scope; // Preserve error state std::string errorString; if (scope.type) { errorString += handle(scope.type).attr("__name__").cast(); errorString += ": "; } if (scope.value) errorString += (std::string) str(scope.value); PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace); #if PY_MAJOR_VERSION >= 3 if (scope.trace != nullptr) PyException_SetTraceback(scope.value, scope.trace); #endif #if !defined(PYPY_VERSION) if (scope.trace) { PyTracebackObject *trace = (PyTracebackObject *) scope.trace; /* Get the deepest trace possible */ while (trace->tb_next) trace = trace->tb_next; PyFrameObject *frame = trace->tb_frame; errorString += "\n\nAt:\n"; while (frame) { int lineno = PyFrame_GetLineNumber(frame); errorString += " " + handle(frame->f_code->co_filename).cast() + "(" + std::to_string(lineno) + "): " + handle(frame->f_code->co_name).cast() + "\n"; frame = frame->f_back; } } #endif return errorString; } PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) { auto &instances = get_internals().registered_instances; auto range = instances.equal_range(ptr); for (auto it = range.first; it != range.second; ++it) { for (auto vh : values_and_holders(it->second)) { if (vh.type == type) return handle((PyObject *) it->second); } } return handle(); } inline PyThreadState *get_thread_state_unchecked() { #if defined(PYPY_VERSION) return PyThreadState_GET(); #elif PY_VERSION_HEX < 0x03000000 return _PyThreadState_Current; #elif PY_VERSION_HEX < 0x03050000 return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current); #elif PY_VERSION_HEX < 0x03050200 return (PyThreadState*) _PyThreadState_Current.value; #else return _PyThreadState_UncheckedGet(); #endif } // Forward declarations inline void keep_alive_impl(handle nurse, handle patient); inline PyObject *make_new_instance(PyTypeObject *type); class type_caster_generic { public: PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info) : typeinfo(get_type_info(type_info)), cpptype(&type_info) { } type_caster_generic(const type_info *typeinfo) : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { } bool load(handle src, bool convert) { return load_impl(src, convert); } PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent, const detail::type_info *tinfo, void *(*copy_constructor)(const void *), void *(*move_constructor)(const void *), const void *existing_holder = nullptr) { if (!tinfo) // no type info: error will be set already return handle(); void *src = const_cast(_src); if (src == nullptr) return none().release(); auto it_instances = get_internals().registered_instances.equal_range(src); for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) { for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) { if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype)) return handle((PyObject *) it_i->second).inc_ref(); } } auto inst = reinterpret_steal(make_new_instance(tinfo->type)); auto wrapper = reinterpret_cast(inst.ptr()); wrapper->owned = false; void *&valueptr = values_and_holders(wrapper).begin()->value_ptr(); switch (policy) { case return_value_policy::automatic: case return_value_policy::take_ownership: valueptr = src; wrapper->owned = true; break; case return_value_policy::automatic_reference: case return_value_policy::reference: valueptr = src; wrapper->owned = false; break; case return_value_policy::copy: if (copy_constructor) valueptr = copy_constructor(src); else { #if defined(NDEBUG) throw cast_error("return_value_policy = copy, but type is " "non-copyable! (compile in debug mode for details)"); #else std::string type_name(tinfo->cpptype->name()); detail::clean_type_id(type_name); throw cast_error("return_value_policy = copy, but type " + type_name + " is non-copyable!"); #endif } wrapper->owned = true; break; case return_value_policy::move: if (move_constructor) valueptr = move_constructor(src); else if (copy_constructor) valueptr = copy_constructor(src); else { #if defined(NDEBUG) throw cast_error("return_value_policy = move, but type is neither " "movable nor copyable! " "(compile in debug mode for details)"); #else std::string type_name(tinfo->cpptype->name()); detail::clean_type_id(type_name); throw cast_error("return_value_policy = move, but type " + type_name + " is neither movable nor copyable!"); #endif } wrapper->owned = true; break; case return_value_policy::reference_internal: valueptr = src; wrapper->owned = false; keep_alive_impl(inst, parent); break; default: throw cast_error("unhandled return_value_policy: should not happen!"); } tinfo->init_instance(wrapper, existing_holder); return inst.release(); } // Base methods for generic caster; there are overridden in copyable_holder_caster void load_value(value_and_holder &&v_h) { auto *&vptr = v_h.value_ptr(); // Lazy allocation for unallocated values: if (vptr == nullptr) { auto *type = v_h.type ? v_h.type : typeinfo; if (type->operator_new) { vptr = type->operator_new(type->type_size); } else { #if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912) if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__) vptr = ::operator new(type->type_size, std::align_val_t(type->type_align)); else #endif vptr = ::operator new(type->type_size); } } value = vptr; } bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { type_caster_generic sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); return true; } } return false; } bool try_direct_conversions(handle src) { for (auto &converter : *typeinfo->direct_conversions) { if (converter(src.ptr(), value)) return true; } return false; } void check_holder_compat() {} PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) { auto caster = type_caster_generic(ti); if (caster.load(src, false)) return caster.value; return nullptr; } /// Try to load with foreign typeinfo, if available. Used when there is no /// native typeinfo, or when the native one wasn't able to produce a value. PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) { constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID; const auto pytype = src.get_type(); if (!hasattr(pytype, local_key)) return false; type_info *foreign_typeinfo = reinterpret_borrow(getattr(pytype, local_key)); // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type if (foreign_typeinfo->module_local_load == &local_load || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype))) return false; if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) { value = result; return true; } return false; } // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant // bits of code between here and copyable_holder_caster where the two classes need different // logic (without having to resort to virtual inheritance). template PYBIND11_NOINLINE bool load_impl(handle src, bool convert) { if (!src) return false; if (!typeinfo) return try_load_foreign_module_local(src); if (src.is_none()) { // Defer accepting None to other overloads (if we aren't in convert mode): if (!convert) return false; value = nullptr; return true; } auto &this_ = static_cast(*this); this_.check_holder_compat(); PyTypeObject *srctype = Py_TYPE(src.ptr()); // Case 1: If src is an exact type match for the target type then we can reinterpret_cast // the instance's value pointer to the target type: if (srctype == typeinfo->type) { this_.load_value(reinterpret_cast(src.ptr())->get_value_and_holder()); return true; } // Case 2: We have a derived class else if (PyType_IsSubtype(srctype, typeinfo->type)) { auto &bases = all_type_info(srctype); bool no_cpp_mi = typeinfo->simple_type; // Case 2a: the python type is a Python-inherited derived class that inherits from just // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of // the right type and we can use reinterpret_cast. // (This is essentially the same as case 2b, but because not using multiple inheritance // is extremely common, we handle it specially to avoid the loop iterator and type // pointer lookup overhead) if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) { this_.load_value(reinterpret_cast(src.ptr())->get_value_and_holder()); return true; } // Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we // can safely reinterpret_cast to the relevant pointer. else if (bases.size() > 1) { for (auto base : bases) { if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) { this_.load_value(reinterpret_cast(src.ptr())->get_value_and_holder(base)); return true; } } } // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match // in the registered bases, above, so try implicit casting (needed for proper C++ casting // when MI is involved). if (this_.try_implicit_casts(src, convert)) return true; } // Perform an implicit conversion if (convert) { for (auto &converter : typeinfo->implicit_conversions) { auto temp = reinterpret_steal(converter(src.ptr(), typeinfo->type)); if (load_impl(temp, false)) { loader_life_support::add_patient(temp); return true; } } if (this_.try_direct_conversions(src)) return true; } // Failed to match local typeinfo. Try again with global. if (typeinfo->module_local) { if (auto gtype = get_global_type_info(*typeinfo->cpptype)) { typeinfo = gtype; return load(src, false); } } // Global typeinfo has precedence over foreign module_local return try_load_foreign_module_local(src); } // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast // isn't needed or can't be used. If the type is unknown, sets the error and returns a pair // with .second = nullptr. (p.first = nullptr is not an error: it becomes None). PYBIND11_NOINLINE static std::pair src_and_type( const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) { if (auto *tpi = get_type_info(cast_type)) return {src, const_cast(tpi)}; // Not found, set error: std::string tname = rtti_type ? rtti_type->name() : cast_type.name(); detail::clean_type_id(tname); std::string msg = "Unregistered type : " + tname; PyErr_SetString(PyExc_TypeError, msg.c_str()); return {nullptr, nullptr}; } const type_info *typeinfo = nullptr; const std::type_info *cpptype = nullptr; void *value = nullptr; }; /** * Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster * needs to provide `operator T*()` and `operator T&()` operators. * * If the type supports moving the value away via an `operator T&&() &&` method, it should use * `movable_cast_op_type` instead. */ template using cast_op_type = conditional_t>::value, typename std::add_pointer>::type, typename std::add_lvalue_reference>::type>; /** * Determine suitable casting operator for a type caster with a movable value. Such a type caster * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be * called in appropriate contexts where the value can be moved rather than copied. * * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro. */ template using movable_cast_op_type = conditional_t::type>::value, typename std::add_pointer>::type, conditional_t::value, typename std::add_rvalue_reference>::type, typename std::add_lvalue_reference>::type>>; // std::is_copy_constructible isn't quite enough: it lets std::vector (and similar) through when // T is non-copyable, but code containing such a copy constructor fails to actually compile. template struct is_copy_constructible : std::is_copy_constructible {}; // Specialization for types that appear to be copy constructible but also look like stl containers // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if // so, copy constructability depends on whether the value_type is copy constructible. template struct is_copy_constructible, std::is_same, // Avoid infinite recursion negation> >::value>> : is_copy_constructible {}; // Likewise for std::pair // (after C++17 it is mandatory that the copy constructor not exist when the two types aren't themselves // copy constructible, but this can not be relied upon when T1 or T2 are themselves containers). template struct is_copy_constructible> : all_of, is_copy_constructible> {}; // The same problems arise with std::is_copy_assignable, so we use the same workaround. template struct is_copy_assignable : std::is_copy_assignable {}; template struct is_copy_assignable, std::is_same >::value>> : is_copy_assignable {}; template struct is_copy_assignable> : all_of, is_copy_assignable> {}; NAMESPACE_END(detail) // polymorphic_type_hook::get(src, tinfo) determines whether the object pointed // to by `src` actually is an instance of some class derived from `itype`. // If so, it sets `tinfo` to point to the std::type_info representing that derived // type, and returns a pointer to the start of the most-derived object of that type // (in which `src` is a subobject; this will be the same address as `src` in most // single inheritance cases). If not, or if `src` is nullptr, it simply returns `src` // and leaves `tinfo` at its default value of nullptr. // // The default polymorphic_type_hook just returns src. A specialization for polymorphic // types determines the runtime type of the passed object and adjusts the this-pointer // appropriately via dynamic_cast. This is what enables a C++ Animal* to appear // to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is // registered with pybind11, and this Animal is in fact a Dog). // // You may specialize polymorphic_type_hook yourself for types that want to appear // polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern // in performance-sensitive applications, used most notably in LLVM.) template struct polymorphic_type_hook { static const void *get(const itype *src, const std::type_info*&) { return src; } }; template struct polymorphic_type_hook::value>> { static const void *get(const itype *src, const std::type_info*& type) { type = src ? &typeid(*src) : nullptr; return dynamic_cast(src); } }; NAMESPACE_BEGIN(detail) /// Generic type caster for objects stored on the heap template class type_caster_base : public type_caster_generic { using itype = intrinsic_t; public: static constexpr auto name = _(); type_caster_base() : type_caster_base(typeid(type)) { } explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { } static handle cast(const itype &src, return_value_policy policy, handle parent) { if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) policy = return_value_policy::copy; return cast(&src, policy, parent); } static handle cast(itype &&src, return_value_policy, handle parent) { return cast(&src, return_value_policy::move, parent); } // Returns a (pointer, type_info) pair taking care of necessary type lookup for a // polymorphic type (using RTTI by default, but can be overridden by specializing // polymorphic_type_hook). If the instance isn't derived, returns the base version. static std::pair src_and_type(const itype *src) { auto &cast_type = typeid(itype); const std::type_info *instance_type = nullptr; const void *vsrc = polymorphic_type_hook::get(src, instance_type); if (instance_type && !same_type(cast_type, *instance_type)) { // This is a base pointer to a derived type. If the derived type is registered // with pybind11, we want to make the full derived object available. // In the typical case where itype is polymorphic, we get the correct // derived pointer (which may be != base pointer) by a dynamic_cast to // most derived type. If itype is not polymorphic, we won't get here // except via a user-provided specialization of polymorphic_type_hook, // and the user has promised that no this-pointer adjustment is // required in that case, so it's OK to use static_cast. if (const auto *tpi = get_type_info(*instance_type)) return {vsrc, tpi}; } // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so // don't do a cast return type_caster_generic::src_and_type(src, cast_type, instance_type); } static handle cast(const itype *src, return_value_policy policy, handle parent) { auto st = src_and_type(src); return type_caster_generic::cast( st.first, policy, parent, st.second, make_copy_constructor(src), make_move_constructor(src)); } static handle cast_holder(const itype *src, const void *holder) { auto st = src_and_type(src); return type_caster_generic::cast( st.first, return_value_policy::take_ownership, {}, st.second, nullptr, nullptr, holder); } template using cast_op_type = detail::cast_op_type; operator itype*() { return (type *) value; } operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); } protected: using Constructor = void *(*)(const void *); /* Only enabled when the types are {copy,move}-constructible *and* when the type does not have a private operator new implementation. */ template ::value>> static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) { return [](const void *arg) -> void * { return new T(*reinterpret_cast(arg)); }; } template ::value>> static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast(x))), Constructor{}) { return [](const void *arg) -> void * { return new T(std::move(*const_cast(reinterpret_cast(arg)))); }; } static Constructor make_copy_constructor(...) { return nullptr; } static Constructor make_move_constructor(...) { return nullptr; } }; template class type_caster : public type_caster_base { }; template using make_caster = type_caster>; // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T template typename make_caster::template cast_op_type cast_op(make_caster &caster) { return caster.operator typename make_caster::template cast_op_type(); } template typename make_caster::template cast_op_type::type> cast_op(make_caster &&caster) { return std::move(caster).operator typename make_caster::template cast_op_type::type>(); } template class type_caster> { private: using caster_t = make_caster; caster_t subcaster; using subcaster_cast_op_type = typename caster_t::template cast_op_type; static_assert(std::is_same::type &, subcaster_cast_op_type>::value, "std::reference_wrapper caster requires T to have a caster with an `T &` operator"); public: bool load(handle src, bool convert) { return subcaster.load(src, convert); } static constexpr auto name = caster_t::name; static handle cast(const std::reference_wrapper &src, return_value_policy policy, handle parent) { // It is definitely wrong to take ownership of this pointer, so mask that rvp if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic) policy = return_value_policy::automatic_reference; return caster_t::cast(&src.get(), policy, parent); } template using cast_op_type = std::reference_wrapper; operator std::reference_wrapper() { return subcaster.operator subcaster_cast_op_type&(); } }; #define PYBIND11_TYPE_CASTER(type, py_name) \ protected: \ type value; \ public: \ static constexpr auto name = py_name; \ template >::value, int> = 0> \ static handle cast(T_ *src, return_value_policy policy, handle parent) { \ if (!src) return none().release(); \ if (policy == return_value_policy::take_ownership) { \ auto h = cast(std::move(*src), policy, parent); delete src; return h; \ } else { \ return cast(*src, policy, parent); \ } \ } \ operator type*() { return &value; } \ operator type&() { return value; } \ operator type&&() && { return std::move(value); } \ template using cast_op_type = pybind11::detail::movable_cast_op_type template using is_std_char_type = any_of< std::is_same, /* std::string */ #if defined(PYBIND11_HAS_U8STRING) std::is_same, /* std::u8string */ #endif std::is_same, /* std::u16string */ std::is_same, /* std::u32string */ std::is_same /* std::wstring */ >; template struct type_caster::value && !is_std_char_type::value>> { using _py_type_0 = conditional_t; using _py_type_1 = conditional_t::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; using py_type = conditional_t::value, double, _py_type_1>; public: bool load(handle src, bool convert) { py_type py_value; if (!src) return false; if (std::is_floating_point::value) { if (convert || PyFloat_Check(src.ptr())) py_value = (py_type) PyFloat_AsDouble(src.ptr()); else return false; } else if (PyFloat_Check(src.ptr())) { return false; } else if (std::is_unsigned::value) { py_value = as_unsigned(src.ptr()); } else { // signed integer: py_value = sizeof(T) <= sizeof(long) ? (py_type) PyLong_AsLong(src.ptr()) : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr()); } bool py_err = py_value == (py_type) -1 && PyErr_Occurred(); // Protect std::numeric_limits::min/max with parentheses if (py_err || (std::is_integral::value && sizeof(py_type) != sizeof(T) && (py_value < (py_type) (std::numeric_limits::min)() || py_value > (py_type) (std::numeric_limits::max)()))) { bool type_error = py_err && PyErr_ExceptionMatches( #if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION) PyExc_SystemError #else PyExc_TypeError #endif ); PyErr_Clear(); if (type_error && convert && PyNumber_Check(src.ptr())) { auto tmp = reinterpret_steal(std::is_floating_point::value ? PyNumber_Float(src.ptr()) : PyNumber_Long(src.ptr())); PyErr_Clear(); return load(tmp, false); } return false; } value = (T) py_value; return true; } template static typename std::enable_if::value, handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyFloat_FromDouble((double) src); } template static typename std::enable_if::value && std::is_signed::value && (sizeof(U) <= sizeof(long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PYBIND11_LONG_FROM_SIGNED((long) src); } template static typename std::enable_if::value && std::is_unsigned::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src); } template static typename std::enable_if::value && std::is_signed::value && (sizeof(U) > sizeof(long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromLongLong((long long) src); } template static typename std::enable_if::value && std::is_unsigned::value && (sizeof(U) > sizeof(unsigned long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromUnsignedLongLong((unsigned long long) src); } PYBIND11_TYPE_CASTER(T, _::value>("int", "float")); }; template struct void_caster { public: bool load(handle src, bool) { if (src && src.is_none()) return true; return false; } static handle cast(T, return_value_policy /* policy */, handle /* parent */) { return none().inc_ref(); } PYBIND11_TYPE_CASTER(T, _("None")); }; template <> class type_caster : public void_caster {}; template <> class type_caster : public type_caster { public: using type_caster::cast; bool load(handle h, bool) { if (!h) { return false; } else if (h.is_none()) { value = nullptr; return true; } /* Check if this is a capsule */ if (isinstance(h)) { value = reinterpret_borrow(h); return true; } /* Check if this is a C++ type */ auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr()); if (bases.size() == 1) { // Only allowing loading from a single-value type value = values_and_holders(reinterpret_cast(h.ptr())).begin()->value_ptr(); return true; } /* Fail */ return false; } static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { if (ptr) return capsule(ptr).release(); else return none().inc_ref(); } template using cast_op_type = void*&; operator void *&() { return value; } static constexpr auto name = _("capsule"); private: void *value = nullptr; }; template <> class type_caster : public void_caster { }; template <> class type_caster { public: bool load(handle src, bool convert) { if (!src) return false; else if (src.ptr() == Py_True) { value = true; return true; } else if (src.ptr() == Py_False) { value = false; return true; } else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) { // (allow non-implicit conversion for numpy booleans) Py_ssize_t res = -1; if (src.is_none()) { res = 0; // None is implicitly converted to False } #if defined(PYPY_VERSION) // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists else if (hasattr(src, PYBIND11_BOOL_ATTR)) { res = PyObject_IsTrue(src.ptr()); } #else // Alternate approach for CPython: this does the same as the above, but optimized // using the CPython API so as to avoid an unneeded attribute lookup. else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) { if (PYBIND11_NB_BOOL(tp_as_number)) { res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr()); } } #endif if (res == 0 || res == 1) { value = (bool) res; return true; } else { PyErr_Clear(); } } return false; } static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { return handle(src ? Py_True : Py_False).inc_ref(); } PYBIND11_TYPE_CASTER(bool, _("bool")); }; // Helper class for UTF-{8,16,32} C++ stl strings: template struct string_caster { using CharT = typename StringType::value_type; // Simplify life by being able to assume standard char sizes (the standard only guarantees // minimums, but Python requires exact sizes) static_assert(!std::is_same::value || sizeof(CharT) == 1, "Unsupported char size != 1"); #if defined(PYBIND11_HAS_U8STRING) static_assert(!std::is_same::value || sizeof(CharT) == 1, "Unsupported char8_t size != 1"); #endif static_assert(!std::is_same::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); static_assert(!std::is_same::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); // wchar_t can be either 16 bits (Windows) or 32 (everywhere else) static_assert(!std::is_same::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, "Unsupported wchar_t size != 2/4"); static constexpr size_t UTF_N = 8 * sizeof(CharT); bool load(handle src, bool) { #if PY_MAJOR_VERSION < 3 object temp; #endif handle load_src = src; if (!src) { return false; } else if (!PyUnicode_Check(load_src.ptr())) { #if PY_MAJOR_VERSION >= 3 return load_bytes(load_src); #else if (std::is_same::value) { return load_bytes(load_src); } // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false if (!PYBIND11_BYTES_CHECK(load_src.ptr())) return false; temp = reinterpret_steal(PyUnicode_FromObject(load_src.ptr())); if (!temp) { PyErr_Clear(); return false; } load_src = temp; #endif } object utfNbytes = reinterpret_steal(PyUnicode_AsEncodedString( load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); if (!utfNbytes) { PyErr_Clear(); return false; } const CharT *buffer = reinterpret_cast(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32 value = StringType(buffer, length); // If we're loading a string_view we need to keep the encoded Python object alive: if (IsView) loader_life_support::add_patient(utfNbytes); return true; } static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { const char *buffer = reinterpret_cast(src.data()); ssize_t nbytes = ssize_t(src.size() * sizeof(CharT)); handle s = decode_utfN(buffer, nbytes); if (!s) throw error_already_set(); return s; } PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME)); private: static handle decode_utfN(const char *buffer, ssize_t nbytes) { #if !defined(PYPY_VERSION) return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); #else // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a // non-const char * arguments, which is also a nuisance, so bypass the whole thing by just // passing the encoding as a string value, which works properly: return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); #endif } // When loading into a std::string or char*, accept a bytes object as-is (i.e. // without any encoding/decoding attempt). For other C++ char sizes this is a no-op. // which supports loading a unicode from a str, doesn't take this path. template bool load_bytes(enable_if_t::value, handle> src) { if (PYBIND11_BYTES_CHECK(src.ptr())) { // We were passed a Python 3 raw bytes; accept it into a std::string or char* // without any encoding attempt. const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr()); if (bytes) { value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr())); return true; } } return false; } template bool load_bytes(enable_if_t::value, handle>) { return false; } }; template struct type_caster, enable_if_t::value>> : string_caster> {}; #ifdef PYBIND11_HAS_STRING_VIEW template struct type_caster, enable_if_t::value>> : string_caster, true> {}; #endif // Type caster for C-style strings. We basically use a std::string type caster, but also add the // ability to use None as a nullptr char* (which the string caster doesn't allow). template struct type_caster::value>> { using StringType = std::basic_string; using StringCaster = type_caster; StringCaster str_caster; bool none = false; CharT one_char = 0; public: bool load(handle src, bool convert) { if (!src) return false; if (src.is_none()) { // Defer accepting None to other overloads (if we aren't in convert mode): if (!convert) return false; none = true; return true; } return str_caster.load(src, convert); } static handle cast(const CharT *src, return_value_policy policy, handle parent) { if (src == nullptr) return pybind11::none().inc_ref(); return StringCaster::cast(StringType(src), policy, parent); } static handle cast(CharT src, return_value_policy policy, handle parent) { if (std::is_same::value) { handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); if (!s) throw error_already_set(); return s; } return StringCaster::cast(StringType(1, src), policy, parent); } operator CharT*() { return none ? nullptr : const_cast(static_cast(str_caster).c_str()); } operator CharT&() { if (none) throw value_error("Cannot convert None to a character"); auto &value = static_cast(str_caster); size_t str_len = value.size(); if (str_len == 0) throw value_error("Cannot convert empty string to a character"); // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that // is too high, and one for multiple unicode characters (caught later), so we need to figure // out how long the first encoded character is in bytes to distinguish between these two // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those // can fit into a single char value. if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) { unsigned char v0 = static_cast(value[0]); size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127 (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence 4; // 0b11110xxx - start of 4-byte sequence if (char0_bytes == str_len) { // If we have a 128-255 value, we can decode it into a single char: if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx one_char = static_cast(((v0 & 3) << 6) + (static_cast(value[1]) & 0x3F)); return one_char; } // Otherwise we have a single character, but it's > U+00FF throw value_error("Character code point not in range(0x100)"); } } // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a // surrogate pair with total length 2 instantly indicates a range error (but not a "your // string was too long" error). else if (StringCaster::UTF_N == 16 && str_len == 2) { one_char = static_cast(value[0]); if (one_char >= 0xD800 && one_char < 0xE000) throw value_error("Character code point not in range(0x10000)"); } if (str_len != 1) throw value_error("Expected a character, but multi-character string found"); one_char = value[0]; return one_char; } static constexpr auto name = _(PYBIND11_STRING_NAME); template using cast_op_type = pybind11::detail::cast_op_type<_T>; }; // Base implementation for std::tuple and std::pair template class Tuple, typename... Ts> class tuple_caster { using type = Tuple; static constexpr auto size = sizeof...(Ts); using indices = make_index_sequence; public: bool load(handle src, bool convert) { if (!isinstance(src)) return false; const auto seq = reinterpret_borrow(src); if (seq.size() != size) return false; return load_impl(seq, convert, indices{}); } template static handle cast(T &&src, return_value_policy policy, handle parent) { return cast_impl(std::forward(src), policy, parent, indices{}); } static constexpr auto name = _("Tuple[") + concat(make_caster::name...) + _("]"); template using cast_op_type = type; operator type() & { return implicit_cast(indices{}); } operator type() && { return std::move(*this).implicit_cast(indices{}); } protected: template type implicit_cast(index_sequence) & { return type(cast_op(std::get(subcasters))...); } template type implicit_cast(index_sequence) && { return type(cast_op(std::move(std::get(subcasters)))...); } static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } template bool load_impl(const sequence &seq, bool convert, index_sequence) { #ifdef __cpp_fold_expressions if ((... || !std::get(subcasters).load(seq[Is], convert))) return false; #else for (bool r : {std::get(subcasters).load(seq[Is], convert)...}) if (!r) return false; #endif return true; } /* Implementation: Convert a C++ tuple into a Python tuple */ template static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence) { std::array entries{{ reinterpret_steal(make_caster::cast(std::get(std::forward(src)), policy, parent))... }}; for (const auto &entry: entries) if (!entry) return handle(); tuple result(size); int counter = 0; for (auto & entry: entries) PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); return result.release(); } Tuple...> subcasters; }; template class type_caster> : public tuple_caster {}; template class type_caster> : public tuple_caster {}; /// Helper class which abstracts away certain actions. Users can provide specializations for /// custom holders, but it's only necessary if the type has a non-standard interface. template struct holder_helper { static auto get(const T &p) -> decltype(p.get()) { return p.get(); } }; /// Type caster for holder types like std::shared_ptr, etc. template struct copyable_holder_caster : public type_caster_base { public: using base = type_caster_base; static_assert(std::is_base_of>::value, "Holder classes are only supported for custom types"); using base::base; using base::cast; using base::typeinfo; using base::value; bool load(handle src, bool convert) { return base::template load_impl>(src, convert); } explicit operator type*() { return this->value; } explicit operator type&() { return *(this->value); } explicit operator holder_type*() { return std::addressof(holder); } // Workaround for Intel compiler bug // see pybind11 issue 94 #if defined(__ICC) || defined(__INTEL_COMPILER) operator holder_type&() { return holder; } #else explicit operator holder_type&() { return holder; } #endif static handle cast(const holder_type &src, return_value_policy, handle) { const auto *ptr = holder_helper::get(src); return type_caster_base::cast_holder(ptr, &src); } protected: friend class type_caster_generic; void check_holder_compat() { if (typeinfo->default_holder) throw cast_error("Unable to load a custom holder type from a default-holder instance"); } bool load_value(value_and_holder &&v_h) { if (v_h.holder_constructed()) { value = v_h.value_ptr(); holder = v_h.template holder(); return true; } else { throw cast_error("Unable to cast from non-held to held instance (T& to Holder) " #if defined(NDEBUG) "(compile in debug mode for type information)"); #else "of type '" + type_id() + "''"); #endif } } template ::value, int> = 0> bool try_implicit_casts(handle, bool) { return false; } template ::value, int> = 0> bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { copyable_holder_caster sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); holder = holder_type(sub_caster.holder, (type *) value); return true; } } return false; } static bool try_direct_conversions(handle) { return false; } holder_type holder; }; /// Specialize for the common std::shared_ptr, so users don't need to template class type_caster> : public copyable_holder_caster> { }; template struct move_only_holder_caster { static_assert(std::is_base_of, type_caster>::value, "Holder classes are only supported for custom types"); static handle cast(holder_type &&src, return_value_policy, handle) { auto *ptr = holder_helper::get(src); return type_caster_base::cast_holder(ptr, std::addressof(src)); } static constexpr auto name = type_caster_base::name; }; template class type_caster> : public move_only_holder_caster> { }; template using type_caster_holder = conditional_t::value, copyable_holder_caster, move_only_holder_caster>; template struct always_construct_holder { static constexpr bool value = Value; }; /// Create a specialization for custom holder types (silently ignores std::shared_ptr) #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ namespace pybind11 { namespace detail { \ template \ struct always_construct_holder : always_construct_holder { }; \ template \ class type_caster::value>> \ : public type_caster_holder { }; \ }} // PYBIND11_DECLARE_HOLDER_TYPE holder types: template struct is_holder_type : std::is_base_of, detail::type_caster> {}; // Specialization for always-supported unique_ptr holders: template struct is_holder_type> : std::true_type {}; template struct handle_type_name { static constexpr auto name = _(); }; template <> struct handle_type_name { static constexpr auto name = _(PYBIND11_BYTES_NAME); }; template <> struct handle_type_name { static constexpr auto name = _("*args"); }; template <> struct handle_type_name { static constexpr auto name = _("**kwargs"); }; template struct pyobject_caster { template ::value, int> = 0> bool load(handle src, bool /* convert */) { value = src; return static_cast(value); } template ::value, int> = 0> bool load(handle src, bool /* convert */) { if (!isinstance(src)) return false; value = reinterpret_borrow(src); return true; } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name); }; template class type_caster::value>> : public pyobject_caster { }; // Our conditions for enabling moving are quite restrictive: // At compile time: // - T needs to be a non-const, non-pointer, non-reference type // - type_caster::operator T&() must exist // - the type must be move constructible (obviously) // At run-time: // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it // must have ref_count() == 1)h // If any of the above are not satisfied, we fall back to copying. template using move_is_plain_type = satisfies_none_of; template struct move_always : std::false_type {}; template struct move_always, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template struct move_if_unreferenced : std::false_type {}; template struct move_if_unreferenced, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template using move_never = none_of, move_if_unreferenced>; // Detect whether returning a `type` from a cast on type's type_caster is going to result in a // reference or pointer to a local variable of the type_caster. Basically, only // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; // everything else returns a reference/pointer to a local variable. template using cast_is_temporary_value_reference = bool_constant< (std::is_reference::value || std::is_pointer::value) && !std::is_base_of>::value && !std::is_same, void>::value >; // When a value returned from a C++ function is being cast back to Python, we almost always want to // force `policy = move`, regardless of the return value policy the function/method was declared // with. template struct return_value_policy_override { static return_value_policy policy(return_value_policy p) { return p; } }; template struct return_value_policy_override>::value, void>> { static return_value_policy policy(return_value_policy p) { return !std::is_lvalue_reference::value && !std::is_pointer::value ? return_value_policy::move : p; } }; // Basic python -> C++ casting; throws if casting fails template type_caster &load_type(type_caster &conv, const handle &handle) { if (!conv.load(handle, true)) { #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); #else throw cast_error("Unable to cast Python instance of type " + (std::string) str(handle.get_type()) + " to C++ type '" + type_id() + "'"); #endif } return conv; } // Wrapper around the above that also constructs and returns a type_caster template make_caster load_type(const handle &handle) { make_caster conv; load_type(conv, handle); return conv; } NAMESPACE_END(detail) // pytype -> C++ type template ::value, int> = 0> T cast(const handle &handle) { using namespace detail; static_assert(!cast_is_temporary_value_reference::value, "Unable to cast type to reference: value is local to type caster"); return cast_op(load_type(handle)); } // pytype -> pytype (calls converting constructor) template ::value, int> = 0> T cast(const handle &handle) { return T(reinterpret_borrow(handle)); } // C++ type -> py::object template ::value, int> = 0> object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = handle()) { if (policy == return_value_policy::automatic) policy = std::is_pointer::value ? return_value_policy::take_ownership : return_value_policy::copy; else if (policy == return_value_policy::automatic_reference) policy = std::is_pointer::value ? return_value_policy::reference : return_value_policy::copy; return reinterpret_steal(detail::make_caster::cast(value, policy, parent)); } template T handle::cast() const { return pybind11::cast(*this); } template <> inline void handle::cast() const { return; } template detail::enable_if_t::value, T> move(object &&obj) { if (obj.ref_count() > 1) #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" " (compile in debug mode for details)"); #else throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) + " instance to C++ " + type_id() + " instance: instance has multiple references"); #endif // Move into a temporary and return that, because the reference may be a local value of `conv` T ret = std::move(detail::load_type(obj).operator T&()); return ret; } // Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does: // - If we have to move (because T has no copy constructor), do it. This will fail if the moved // object has multiple references, but trying to copy will fail to compile. // - If both movable and copyable, check ref count: if 1, move; otherwise copy // - Otherwise (not movable), copy. template detail::enable_if_t::value, T> cast(object &&object) { return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { if (object.ref_count() > 1) return cast(object); else return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { return cast(object); } template T object::cast() const & { return pybind11::cast(*this); } template T object::cast() && { return pybind11::cast(std::move(*this)); } template <> inline void object::cast() const & { return; } template <> inline void object::cast() && { return; } NAMESPACE_BEGIN(detail) // Declared in pytypes.h: template ::value, int>> object object_or_cast(T &&o) { return pybind11::cast(std::forward(o)); } struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro template using overload_caster_t = conditional_t< cast_is_temporary_value_reference::value, make_caster, overload_unused>; // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then // store the result in the given variable. For other types, this is a no-op. template enable_if_t::value, T> cast_ref(object &&o, make_caster &caster) { return cast_op(load_type(caster, o)); } template enable_if_t::value, T> cast_ref(object &&, overload_unused &) { pybind11_fail("Internal error: cast_ref fallback invoked"); } // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in // cases where pybind11::cast is valid. template enable_if_t::value, T> cast_safe(object &&o) { return pybind11::cast(std::move(o)); } template enable_if_t::value, T> cast_safe(object &&) { pybind11_fail("Internal error: cast_safe fallback invoked"); } template <> inline void cast_safe(object &&) {} NAMESPACE_END(detail) template tuple make_tuple() { return tuple(0); } template tuple make_tuple(Args&&... args_) { constexpr size_t size = sizeof...(Args); std::array args { { reinterpret_steal(detail::make_caster::cast( std::forward(args_), policy, nullptr))... } }; for (size_t i = 0; i < args.size(); i++) { if (!args[i]) { #if defined(NDEBUG) throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)"); #else std::array argtypes { {type_id()...} }; throw cast_error("make_tuple(): unable to convert argument of type '" + argtypes[i] + "' to Python object"); #endif } } tuple result(size); int counter = 0; for (auto &arg_value : args) PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); return result; } /// \ingroup annotations /// Annotation for arguments struct arg { /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument. constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { } /// Assign a value to this argument template arg_v operator=(T &&value) const; /// Indicate that the type should not be converted in the type caster arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; } /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args) arg &none(bool flag = true) { flag_none = flag; return *this; } const char *name; ///< If non-null, this is a named kwargs argument bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!) bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument }; /// \ingroup annotations /// Annotation for arguments with values struct arg_v : arg { private: template arg_v(arg &&base, T &&x, const char *descr = nullptr) : arg(base), value(reinterpret_steal( detail::make_caster::cast(x, return_value_policy::automatic, {}) )), descr(descr) #if !defined(NDEBUG) , type(type_id()) #endif { } public: /// Direct construction with name, default, and description template arg_v(const char *name, T &&x, const char *descr = nullptr) : arg_v(arg(name), std::forward(x), descr) { } /// Called internally when invoking `py::arg("a") = value` template arg_v(const arg &base, T &&x, const char *descr = nullptr) : arg_v(arg(base), std::forward(x), descr) { } /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg& arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; } /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg& arg_v &none(bool flag = true) { arg::none(flag); return *this; } /// The default value object value; /// The (optional) description of the default value const char *descr; #if !defined(NDEBUG) /// The C++ type name of the default value (only available when compiled in debug mode) std::string type; #endif }; template arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward(value)}; } /// Alias for backward compatibility -- to be removed in version 2.0 template using arg_t = arg_v; inline namespace literals { /** \rst String literal version of `arg` \endrst */ constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } } NAMESPACE_BEGIN(detail) // forward declaration (definition in attr.h) struct function_record; /// Internal data associated with a single function call struct function_call { function_call(const function_record &f, handle p); // Implementation in attr.h /// The function data: const function_record &func; /// Arguments passed to the function: std::vector args; /// The `convert` value the arguments should be loaded with std::vector args_convert; /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if /// present, are also in `args` but without a reference). object args_ref, kwargs_ref; /// The parent, if any handle parent; /// If this is a call to an initializer, this argument contains `self` handle init_self; }; /// Helper class which loads arguments for C++ functions called from Python template class argument_loader { using indices = make_index_sequence; template using argument_is_args = std::is_same, args>; template using argument_is_kwargs = std::is_same, kwargs>; // Get args/kwargs argument positions relative to the end of the argument list: static constexpr auto args_pos = constexpr_first() - (int) sizeof...(Args), kwargs_pos = constexpr_first() - (int) sizeof...(Args); static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1; static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function"); public: static constexpr bool has_kwargs = kwargs_pos < 0; static constexpr bool has_args = args_pos < 0; static constexpr auto arg_names = concat(type_descr(make_caster::name)...); bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); } template enable_if_t::value, Return> call(Func &&f) && { return std::move(*this).template call_impl(std::forward(f), indices{}, Guard{}); } template enable_if_t::value, void_type> call(Func &&f) && { std::move(*this).template call_impl(std::forward(f), indices{}, Guard{}); return void_type(); } private: static bool load_impl_sequence(function_call &, index_sequence<>) { return true; } template bool load_impl_sequence(function_call &call, index_sequence) { #ifdef __cpp_fold_expressions if ((... || !std::get(argcasters).load(call.args[Is], call.args_convert[Is]))) return false; #else for (bool r : {std::get(argcasters).load(call.args[Is], call.args_convert[Is])...}) if (!r) return false; #endif return true; } template Return call_impl(Func &&f, index_sequence, Guard &&) { return std::forward(f)(cast_op(std::move(std::get(argcasters)))...); } std::tuple...> argcasters; }; /// Helper class which collects only positional arguments for a Python function call. /// A fancier version below can collect any argument, but this one is optimal for simple calls. template class simple_collector { public: template explicit simple_collector(Ts &&...values) : m_args(pybind11::make_tuple(std::forward(values)...)) { } const tuple &args() const & { return m_args; } dict kwargs() const { return {}; } tuple args() && { return std::move(m_args); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } private: tuple m_args; }; /// Helper class which collects positional, keyword, * and ** arguments for a Python function call template class unpacking_collector { public: template explicit unpacking_collector(Ts &&...values) { // Tuples aren't (easily) resizable so a list is needed for collection, // but the actual function call strictly requires a tuple. auto args_list = list(); int _[] = { 0, (process(args_list, std::forward(values)), 0)... }; ignore_unused(_); m_args = std::move(args_list); } const tuple &args() const & { return m_args; } const dict &kwargs() const & { return m_kwargs; } tuple args() && { return std::move(m_args); } dict kwargs() && { return std::move(m_kwargs); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } private: template void process(list &args_list, T &&x) { auto o = reinterpret_steal(detail::make_caster::cast(std::forward(x), policy, {})); if (!o) { #if defined(NDEBUG) argument_cast_error(); #else argument_cast_error(std::to_string(args_list.size()), type_id()); #endif } args_list.append(o); } void process(list &args_list, detail::args_proxy ap) { for (const auto &a : ap) args_list.append(a); } void process(list &/*args_list*/, arg_v a) { if (!a.name) #if defined(NDEBUG) nameless_argument_error(); #else nameless_argument_error(a.type); #endif if (m_kwargs.contains(a.name)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(a.name); #endif } if (!a.value) { #if defined(NDEBUG) argument_cast_error(); #else argument_cast_error(a.name, a.type); #endif } m_kwargs[a.name] = a.value; } void process(list &/*args_list*/, detail::kwargs_proxy kp) { if (!kp) return; for (const auto &k : reinterpret_borrow(kp)) { if (m_kwargs.contains(k.first)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(str(k.first)); #endif } m_kwargs[k.first] = k.second; } } [[noreturn]] static void nameless_argument_error() { throw type_error("Got kwargs without a name; only named arguments " "may be passed via py::arg() to a python function call. " "(compile in debug mode for details)"); } [[noreturn]] static void nameless_argument_error(std::string type) { throw type_error("Got kwargs without a name of type '" + type + "'; only named " "arguments may be passed via py::arg() to a python function call. "); } [[noreturn]] static void multiple_values_error() { throw type_error("Got multiple values for keyword argument " "(compile in debug mode for details)"); } [[noreturn]] static void multiple_values_error(std::string name) { throw type_error("Got multiple values for keyword argument '" + name + "'"); } [[noreturn]] static void argument_cast_error() { throw cast_error("Unable to convert call argument to Python object " "(compile in debug mode for details)"); } [[noreturn]] static void argument_cast_error(std::string name, std::string type) { throw cast_error("Unable to convert call argument '" + name + "' of type '" + type + "' to Python object"); } private: tuple m_args; dict m_kwargs; }; /// Collect only positional arguments for a Python function call template ...>::value>> simple_collector collect_arguments(Args &&...args) { return simple_collector(std::forward(args)...); } /// Collect all arguments, including keywords and unpacking (only instantiated when needed) template ...>::value>> unpacking_collector collect_arguments(Args &&...args) { // Following argument order rules for generalized unpacking according to PEP 448 static_assert( constexpr_last() < constexpr_first() && constexpr_last() < constexpr_first(), "Invalid function call: positional args must precede keywords and ** unpacking; " "* unpacking must precede ** unpacking" ); return unpacking_collector(std::forward(args)...); } template template object object_api::operator()(Args &&...args) const { return detail::collect_arguments(std::forward(args)...).call(derived().ptr()); } template template object object_api::call(Args &&...args) const { return operator()(std::forward(args)...); } NAMESPACE_END(detail) #define PYBIND11_MAKE_OPAQUE(...) \ namespace pybind11 { namespace detail { \ template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \ }} /// Lets you pass a type containing a `,` through a macro parameter without needing a separate /// typedef, e.g.: `PYBIND11_OVERLOAD(PYBIND11_TYPE(ReturnType), PYBIND11_TYPE(Parent), f, arg)` #define PYBIND11_TYPE(...) __VA_ARGS__ NAMESPACE_END(PYBIND11_NAMESPACE)