pybind11/ubench/holder_comparison.py
Ralf W. Grosse-Kunstleve e955753c1b Fix pre-commit mypy error:
```
mypy.....................................................................Failed
- hook id: mypy
- exit code: 1

ubench/holder_comparison.py:12: error: Unused "type: ignore" comment, use narrower [import-not-found] instead of [import] code  [unused-ignore]
```
2023-10-26 22:48:43 -07:00

145 lines
5.3 KiB
Python

"""Simple comparison of holder performances, relative to unique_ptr holder."""
# ruff: noqa
# This code has no unit tests.
# ruff cleanup deferred until the next time this code is actually used.
import collections
import sys
import time
from typing import Any, Callable, Dict, List
import pybind11_ubench_holder_comparison as m # type: ignore[import-not-found]
number_bucket_pc = None
def pflush(*args: Any, **kwargs: Any) -> None:
print(*args, **kwargs)
# Using "file" here because it is the name of the built-in keyword argument.
file = kwargs.get("file", sys.stdout) # pylint: disable=redefined-builtin
file.flush() # file object must have a flush method.
def run(args: List[str]) -> None:
if not args:
size_exponent_min = 0
size_exponent_max = 16
size_exponent_step = 4
call_repetitions_first_pass = 100
call_repetitions_target_elapsed_secs = 0.1
num_samples = 10
selected_holder_type = "all"
else:
assert len(args) == 7, (
"size_exponent_min size_exponent_max size_exponent_step"
" call_repetitions_first_pass call_repetitions_target_elapsed_secs"
" num_samples selected_holder_type"
)
size_exponent_min = int(args[0])
size_exponent_max = int(args[1])
size_exponent_step = int(args[2])
call_repetitions_first_pass = int(args[3])
call_repetitions_target_elapsed_secs = float(args[4])
num_samples = int(args[5])
selected_holder_type = args[6]
pflush(
"command-line arguments:",
size_exponent_min,
size_exponent_max,
size_exponent_step,
call_repetitions_first_pass,
"%.3f" % call_repetitions_target_elapsed_secs,
num_samples,
selected_holder_type,
)
pflush("sizeof_smart_holder:", m.sizeof_smart_holder())
def find_call_repetitions(
callable: Callable[[int], float],
time_delta_floor: float = 1.0e-6,
target_elapsed_secs_multiplier: float = 1.05, # Empirical.
target_elapsed_secs_tolerance: float = 0.05,
max_iterations: int = 100,
) -> int:
td_target = (
call_repetitions_target_elapsed_secs * target_elapsed_secs_multiplier
)
crd = call_repetitions_first_pass
for _ in range(max_iterations):
td = callable(crd)
crd = max(1, int(td_target * crd / max(td, time_delta_floor)))
if abs(td - td_target) / td_target < target_elapsed_secs_tolerance:
return crd
raise RuntimeError("find_call_repetitions failure: max_iterations exceeded.")
for size_exponent in range(
size_exponent_min, size_exponent_max + 1, size_exponent_step
):
data_size = 2**size_exponent
pflush(data_size, "data_size")
ratios: Dict[str, List[float]] = collections.defaultdict(list)
call_repetitions = None
for _ in range(num_samples):
row_0 = None
for nb_label, nb_type in [
("up", m.number_bucket_up),
("sp", m.number_bucket_sp),
("pu", m.number_bucket_pu),
("sh", m.number_bucket_sh),
("pc", number_bucket_pc),
]:
if nb_label == "pc" and nb_type is None:
continue
if selected_holder_type != "all" and nb_label != selected_holder_type:
continue
nb1 = nb_type(data_size) # type: ignore[misc]
nb2 = nb_type(data_size) # type: ignore[misc]
def many_sum(call_repetitions: int) -> float:
assert int(round(nb1.sum())) == data_size
t0 = time.time()
for _ in range(call_repetitions):
nb1.sum()
return time.time() - t0
def many_add(call_repetitions: int) -> float:
assert nb1.add(nb2) == data_size
t0 = time.time()
for _ in range(call_repetitions):
nb1.add(nb2)
return time.time() - t0
if call_repetitions is None:
call_repetitions = find_call_repetitions(many_sum)
pflush(call_repetitions, "call_repetitions")
td_sum = many_sum(call_repetitions)
td_add = many_add(call_repetitions)
row = [td_sum, td_add]
if row_0 is None:
pflush(" Sum Add ratS ratA")
row_0 = row
else:
for curr, prev in zip(row, row_0): # type: ignore[unreachable]
if prev:
rat = curr / prev
else:
rat = -1
row.append(curr / prev)
ratios[nb_label + "_ratS"].append(row[-2])
ratios[nb_label + "_ratA"].append(row[-1])
pflush(nb_label, " ".join(["%.3f" % v for v in row]))
pflush(" Min Mean Max")
for key, rat in ratios.items():
print(
key,
"{:5.3f} {:5.3f} {:5.3f}".format(
min(rat), sum(rat) / len(rat), max(rat)
),
)
if __name__ == "__main__":
run(args=sys.argv[1:])