mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-25 14:45:12 +00:00
234 lines
9.1 KiB
C++
234 lines
9.1 KiB
C++
/*
|
|
tests/test_stl.cpp -- STL type casters
|
|
|
|
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#include "pybind11_tests.h"
|
|
#include <pybind11/stl.h>
|
|
|
|
// Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14
|
|
#if PYBIND11_HAS_VARIANT
|
|
using std::variant;
|
|
#elif defined(PYBIND11_TEST_BOOST) && (!defined(_MSC_VER) || _MSC_VER >= 1910)
|
|
# include <boost/variant.hpp>
|
|
# define PYBIND11_HAS_VARIANT 1
|
|
using boost::variant;
|
|
|
|
namespace pybind11 { namespace detail {
|
|
template <typename... Ts>
|
|
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
|
|
|
|
template <>
|
|
struct visit_helper<boost::variant> {
|
|
template <typename... Args>
|
|
static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
|
|
return boost::apply_visitor(args...);
|
|
}
|
|
};
|
|
}} // namespace pybind11::detail
|
|
#endif
|
|
|
|
/// Issue #528: templated constructor
|
|
struct TplCtorClass {
|
|
template <typename T> TplCtorClass(const T &) { }
|
|
bool operator==(const TplCtorClass &) const { return true; }
|
|
};
|
|
|
|
namespace std {
|
|
template <>
|
|
struct hash<TplCtorClass> { size_t operator()(const TplCtorClass &) const { return 0; } };
|
|
}
|
|
|
|
|
|
TEST_SUBMODULE(stl, m) {
|
|
// test_vector
|
|
m.def("cast_vector", []() { return std::vector<int>{1}; });
|
|
m.def("load_vector", [](const std::vector<int> &v) { return v.at(0) == 1 && v.at(1) == 2; });
|
|
// Unnumbered regression (caused by #936): pointers to stl containers aren't castable
|
|
static std::vector<RValueCaster> lvv{2};
|
|
m.def("cast_ptr_vector", []() { return &lvv; });
|
|
|
|
// test_array
|
|
m.def("cast_array", []() { return std::array<int, 2> {{1 , 2}}; });
|
|
m.def("load_array", [](const std::array<int, 2> &a) { return a[0] == 1 && a[1] == 2; });
|
|
|
|
// test_valarray
|
|
m.def("cast_valarray", []() { return std::valarray<int>{1, 4, 9}; });
|
|
m.def("load_valarray", [](const std::valarray<int>& v) {
|
|
return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9;
|
|
});
|
|
|
|
// test_map
|
|
m.def("cast_map", []() { return std::map<std::string, std::string>{{"key", "value"}}; });
|
|
m.def("load_map", [](const std::map<std::string, std::string> &map) {
|
|
return map.at("key") == "value" && map.at("key2") == "value2";
|
|
});
|
|
|
|
// test_set
|
|
m.def("cast_set", []() { return std::set<std::string>{"key1", "key2"}; });
|
|
m.def("load_set", [](const std::set<std::string> &set) {
|
|
return set.count("key1") && set.count("key2") && set.count("key3");
|
|
});
|
|
|
|
// test_recursive_casting
|
|
m.def("cast_rv_vector", []() { return std::vector<RValueCaster>{2}; });
|
|
m.def("cast_rv_array", []() { return std::array<RValueCaster, 3>(); });
|
|
// NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`),
|
|
// casters don't typically do anything with that, which means they fall to the `const Type &`
|
|
// caster.
|
|
m.def("cast_rv_map", []() { return std::unordered_map<std::string, RValueCaster>{{"a", RValueCaster{}}}; });
|
|
m.def("cast_rv_nested", []() {
|
|
std::vector<std::array<std::list<std::unordered_map<std::string, RValueCaster>>, 2>> v;
|
|
v.emplace_back(); // add an array
|
|
v.back()[0].emplace_back(); // add a map to the array
|
|
v.back()[0].back().emplace("b", RValueCaster{});
|
|
v.back()[0].back().emplace("c", RValueCaster{});
|
|
v.back()[1].emplace_back(); // add a map to the array
|
|
v.back()[1].back().emplace("a", RValueCaster{});
|
|
return v;
|
|
});
|
|
static std::array<RValueCaster, 2> lva;
|
|
static std::unordered_map<std::string, RValueCaster> lvm{{"a", RValueCaster{}}, {"b", RValueCaster{}}};
|
|
static std::unordered_map<std::string, std::vector<std::list<std::array<RValueCaster, 2>>>> lvn;
|
|
lvn["a"].emplace_back(); // add a list
|
|
lvn["a"].back().emplace_back(); // add an array
|
|
lvn["a"].emplace_back(); // another list
|
|
lvn["a"].back().emplace_back(); // add an array
|
|
lvn["b"].emplace_back(); // add a list
|
|
lvn["b"].back().emplace_back(); // add an array
|
|
lvn["b"].back().emplace_back(); // add another array
|
|
m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; });
|
|
m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; });
|
|
m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; });
|
|
m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; });
|
|
// #853:
|
|
m.def("cast_unique_ptr_vector", []() {
|
|
std::vector<std::unique_ptr<UserType>> v;
|
|
v.emplace_back(new UserType{7});
|
|
v.emplace_back(new UserType{42});
|
|
return v;
|
|
});
|
|
|
|
// test_move_out_container
|
|
struct MoveOutContainer {
|
|
struct Value { int value; };
|
|
std::list<Value> move_list() const { return {{0}, {1}, {2}}; }
|
|
};
|
|
py::class_<MoveOutContainer::Value>(m, "MoveOutContainerValue")
|
|
.def_readonly("value", &MoveOutContainer::Value::value);
|
|
py::class_<MoveOutContainer>(m, "MoveOutContainer")
|
|
.def(py::init<>())
|
|
.def_property_readonly("move_list", &MoveOutContainer::move_list);
|
|
|
|
// Class that can be move- and copy-constructed, but not assigned
|
|
struct NoAssign {
|
|
int value;
|
|
|
|
explicit NoAssign(int value = 0) : value(value) { }
|
|
NoAssign(const NoAssign &) = default;
|
|
NoAssign(NoAssign &&) = default;
|
|
|
|
NoAssign &operator=(const NoAssign &) = delete;
|
|
NoAssign &operator=(NoAssign &&) = delete;
|
|
};
|
|
py::class_<NoAssign>(m, "NoAssign", "Class with no C++ assignment operators")
|
|
.def(py::init<>())
|
|
.def(py::init<int>());
|
|
|
|
#ifdef PYBIND11_HAS_OPTIONAL
|
|
// test_optional
|
|
m.attr("has_optional") = true;
|
|
|
|
using opt_int = std::optional<int>;
|
|
using opt_no_assign = std::optional<NoAssign>;
|
|
m.def("double_or_zero", [](const opt_int& x) -> int {
|
|
return x.value_or(0) * 2;
|
|
});
|
|
m.def("half_or_none", [](int x) -> opt_int {
|
|
return x ? opt_int(x / 2) : opt_int();
|
|
});
|
|
m.def("test_nullopt", [](opt_int x) {
|
|
return x.value_or(42);
|
|
}, py::arg_v("x", std::nullopt, "None"));
|
|
m.def("test_no_assign", [](const opt_no_assign &x) {
|
|
return x ? x->value : 42;
|
|
}, py::arg_v("x", std::nullopt, "None"));
|
|
|
|
m.def("nodefer_none_optional", [](std::optional<int>) { return true; });
|
|
m.def("nodefer_none_optional", [](py::none) { return false; });
|
|
#endif
|
|
|
|
#ifdef PYBIND11_HAS_EXP_OPTIONAL
|
|
// test_exp_optional
|
|
m.attr("has_exp_optional") = true;
|
|
|
|
using exp_opt_int = std::experimental::optional<int>;
|
|
using exp_opt_no_assign = std::experimental::optional<NoAssign>;
|
|
m.def("double_or_zero_exp", [](const exp_opt_int& x) -> int {
|
|
return x.value_or(0) * 2;
|
|
});
|
|
m.def("half_or_none_exp", [](int x) -> exp_opt_int {
|
|
return x ? exp_opt_int(x / 2) : exp_opt_int();
|
|
});
|
|
m.def("test_nullopt_exp", [](exp_opt_int x) {
|
|
return x.value_or(42);
|
|
}, py::arg_v("x", std::experimental::nullopt, "None"));
|
|
m.def("test_no_assign_exp", [](const exp_opt_no_assign &x) {
|
|
return x ? x->value : 42;
|
|
}, py::arg_v("x", std::experimental::nullopt, "None"));
|
|
#endif
|
|
|
|
#ifdef PYBIND11_HAS_VARIANT
|
|
static_assert(std::is_same<py::detail::variant_caster_visitor::result_type, py::handle>::value,
|
|
"visitor::result_type is required by boost::variant in C++11 mode");
|
|
|
|
struct visitor {
|
|
using result_type = const char *;
|
|
|
|
result_type operator()(int) { return "int"; }
|
|
result_type operator()(std::string) { return "std::string"; }
|
|
result_type operator()(double) { return "double"; }
|
|
result_type operator()(std::nullptr_t) { return "std::nullptr_t"; }
|
|
};
|
|
|
|
// test_variant
|
|
m.def("load_variant", [](variant<int, std::string, double, std::nullptr_t> v) {
|
|
return py::detail::visit_helper<variant>::call(visitor(), v);
|
|
});
|
|
m.def("load_variant_2pass", [](variant<double, int> v) {
|
|
return py::detail::visit_helper<variant>::call(visitor(), v);
|
|
});
|
|
m.def("cast_variant", []() {
|
|
using V = variant<int, std::string>;
|
|
return py::make_tuple(V(5), V("Hello"));
|
|
});
|
|
#endif
|
|
|
|
// #528: templated constructor
|
|
// (no python tests: the test here is that this compiles)
|
|
m.def("tpl_ctor_vector", [](std::vector<TplCtorClass> &) {});
|
|
m.def("tpl_ctor_map", [](std::unordered_map<TplCtorClass, TplCtorClass> &) {});
|
|
m.def("tpl_ctor_set", [](std::unordered_set<TplCtorClass> &) {});
|
|
#if defined(PYBIND11_HAS_OPTIONAL)
|
|
m.def("tpl_constr_optional", [](std::optional<TplCtorClass> &) {});
|
|
#elif defined(PYBIND11_HAS_EXP_OPTIONAL)
|
|
m.def("tpl_constr_optional", [](std::experimental::optional<TplCtorClass> &) {});
|
|
#endif
|
|
|
|
// test_vec_of_reference_wrapper
|
|
// #171: Can't return STL structures containing reference wrapper
|
|
m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<UserType> p4) {
|
|
static UserType p1{1}, p2{2}, p3{3};
|
|
return std::vector<std::reference_wrapper<UserType>> {
|
|
std::ref(p1), std::ref(p2), std::ref(p3), p4
|
|
};
|
|
});
|
|
|
|
// test_stl_pass_by_pointer
|
|
m.def("stl_pass_by_pointer", [](std::vector<int>* v) { return *v; }, "v"_a=nullptr);
|
|
}
|