pybind11/tests/test_callbacks.cpp
Lunderberg c7fcde7c76 Fixed compilation error when binding function accepting some forms of std::function (#689)
* Fixed compilation error when defining function accepting some forms of std::function.

The compilation error happens only when the functional.h header is
present, and the build is done in debug mode, with NDEBUG being
undefined.  In addition, the std::function must accept an abstract
base class by reference.

The compilation error occurred in cast.h, when trying to construct a
std::tuple<AbstractBase>, rather than a std::tuple<AbstractBase&>.
This was caused by functional.h using std::move rather than
std::forward, changing the signature of the function being used.

This commit contains the fix, along with a test that exhibits the
issue when compiled in debug mode without the fix applied.

* Moved new std::function tests into test_callbacks, added callback_with_movable test.
2017-02-22 20:00:59 +01:00

182 lines
5.5 KiB
C++

/*
tests/test_callbacks.cpp -- callbacks
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/functional.h>
py::object test_callback1(py::object func) {
return func();
}
py::tuple test_callback2(py::object func) {
return func("Hello", 'x', true, 5);
}
std::string test_callback3(const std::function<int(int)> &func) {
return "func(43) = " + std::to_string(func(43));
}
std::function<int(int)> test_callback4() {
return [](int i) { return i+1; };
}
py::cpp_function test_callback5() {
return py::cpp_function([](int i) { return i+1; },
py::arg("number"));
}
int dummy_function(int i) { return i + 1; }
int dummy_function2(int i, int j) { return i + j; }
std::function<int(int)> roundtrip(std::function<int(int)> f, bool expect_none = false) {
if (expect_none && f) {
throw std::runtime_error("Expected None to be converted to empty std::function");
}
return f;
}
std::string test_dummy_function(const std::function<int(int)> &f) {
using fn_type = int (*)(int);
auto result = f.target<fn_type>();
if (!result) {
auto r = f(1);
return "can't convert to function pointer: eval(1) = " + std::to_string(r);
} else if (*result == dummy_function) {
auto r = (*result)(1);
return "matches dummy_function: eval(1) = " + std::to_string(r);
} else {
return "argument does NOT match dummy_function. This should never happen!";
}
}
struct Payload {
Payload() {
print_default_created(this);
}
~Payload() {
print_destroyed(this);
}
Payload(const Payload &) {
print_copy_created(this);
}
Payload(Payload &&) {
print_move_created(this);
}
};
/// Something to trigger a conversion error
struct Unregistered {};
class AbstractBase {
public:
virtual unsigned int func() = 0;
};
void func_accepting_func_accepting_base(std::function<double(AbstractBase&)>) { }
struct MovableObject {
bool valid = true;
MovableObject() = default;
MovableObject(const MovableObject &) = default;
MovableObject &operator=(const MovableObject &) = default;
MovableObject(MovableObject &&o) : valid(o.valid) { o.valid = false; }
MovableObject &operator=(MovableObject &&o) {
valid = o.valid;
o.valid = false;
return *this;
}
};
test_initializer callbacks([](py::module &m) {
m.def("test_callback1", &test_callback1);
m.def("test_callback2", &test_callback2);
m.def("test_callback3", &test_callback3);
m.def("test_callback4", &test_callback4);
m.def("test_callback5", &test_callback5);
// Test keyword args and generalized unpacking
m.def("test_tuple_unpacking", [](py::function f) {
auto t1 = py::make_tuple(2, 3);
auto t2 = py::make_tuple(5, 6);
return f("positional", 1, *t1, 4, *t2);
});
m.def("test_dict_unpacking", [](py::function f) {
auto d1 = py::dict("key"_a="value", "a"_a=1);
auto d2 = py::dict();
auto d3 = py::dict("b"_a=2);
return f("positional", 1, **d1, **d2, **d3);
});
m.def("test_keyword_args", [](py::function f) {
return f("x"_a=10, "y"_a=20);
});
m.def("test_unpacking_and_keywords1", [](py::function f) {
auto args = py::make_tuple(2);
auto kwargs = py::dict("d"_a=4);
return f(1, *args, "c"_a=3, **kwargs);
});
m.def("test_unpacking_and_keywords2", [](py::function f) {
auto kwargs1 = py::dict("a"_a=1);
auto kwargs2 = py::dict("c"_a=3, "d"_a=4);
return f("positional", *py::make_tuple(1), 2, *py::make_tuple(3, 4), 5,
"key"_a="value", **kwargs1, "b"_a=2, **kwargs2, "e"_a=5);
});
m.def("test_unpacking_error1", [](py::function f) {
auto kwargs = py::dict("x"_a=3);
return f("x"_a=1, "y"_a=2, **kwargs); // duplicate ** after keyword
});
m.def("test_unpacking_error2", [](py::function f) {
auto kwargs = py::dict("x"_a=3);
return f(**kwargs, "x"_a=1); // duplicate keyword after **
});
m.def("test_arg_conversion_error1", [](py::function f) {
f(234, Unregistered(), "kw"_a=567);
});
m.def("test_arg_conversion_error2", [](py::function f) {
f(234, "expected_name"_a=Unregistered(), "kw"_a=567);
});
/* Test cleanup of lambda closure */
m.def("test_cleanup", []() -> std::function<void(void)> {
Payload p;
return [p]() {
/* p should be cleaned up when the returned function is garbage collected */
};
});
/* Test if passing a function pointer from C++ -> Python -> C++ yields the original pointer */
m.def("dummy_function", &dummy_function);
m.def("dummy_function2", &dummy_function2);
m.def("roundtrip", &roundtrip, py::arg("f"), py::arg("expect_none")=false);
m.def("test_dummy_function", &test_dummy_function);
// Export the payload constructor statistics for testing purposes:
m.def("payload_cstats", &ConstructorStats::get<Payload>);
m.def("func_accepting_func_accepting_base",
func_accepting_func_accepting_base);
py::class_<MovableObject>(m, "MovableObject");
m.def("callback_with_movable", [](std::function<void(MovableObject &)> f) {
auto x = MovableObject();
f(x); // lvalue reference shouldn't move out object
return x.valid; // must still return `true`
});
});