mirror of
https://github.com/pybind/pybind11.git
synced 2024-12-01 01:17:10 +00:00
391c75447d
This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
90 lines
3.6 KiB
C++
90 lines
3.6 KiB
C++
/*
|
|
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
|
|
arguments
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#include "pybind11_tests.h"
|
|
#include <pybind11/numpy.h>
|
|
|
|
double my_func(int x, float y, double z) {
|
|
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
|
|
return (float) x*y*z;
|
|
}
|
|
|
|
TEST_SUBMODULE(numpy_vectorize, m) {
|
|
try { py::module::import("numpy"); }
|
|
catch (...) { return; }
|
|
|
|
// test_vectorize, test_docs, test_array_collapse
|
|
// Vectorize all arguments of a function (though non-vector arguments are also allowed)
|
|
m.def("vectorized_func", py::vectorize(my_func));
|
|
|
|
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
|
|
m.def("vectorized_func2",
|
|
[](py::array_t<int> x, py::array_t<float> y, float z) {
|
|
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
|
|
}
|
|
);
|
|
|
|
// Vectorize a complex-valued function
|
|
m.def("vectorized_func3", py::vectorize(
|
|
[](std::complex<double> c) { return c * std::complex<double>(2.f); }
|
|
));
|
|
|
|
// test_type_selection
|
|
// Numpy function which only accepts specific data types
|
|
m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
|
|
m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
|
|
m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
|
|
|
|
|
|
// test_passthrough_arguments
|
|
// Passthrough test: references and non-pod types should be automatically passed through (in the
|
|
// function definition below, only `b`, `d`, and `g` are vectorized):
|
|
struct NonPODClass {
|
|
NonPODClass(int v) : value{v} {}
|
|
int value;
|
|
};
|
|
py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>());
|
|
m.def("vec_passthrough", py::vectorize(
|
|
[](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
|
|
return *a + b + c.at(0) + d + e + f.value + g;
|
|
}
|
|
));
|
|
|
|
// test_method_vectorization
|
|
struct VectorizeTestClass {
|
|
VectorizeTestClass(int v) : value{v} {};
|
|
float method(int x, float y) { return y + (float) (x + value); }
|
|
int value = 0;
|
|
};
|
|
py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
|
|
vtc .def(py::init<int>())
|
|
.def_readwrite("value", &VectorizeTestClass::value);
|
|
|
|
// Automatic vectorizing of methods
|
|
vtc.def("method", py::vectorize(&VectorizeTestClass::method));
|
|
|
|
// test_trivial_broadcasting
|
|
// Internal optimization test for whether the input is trivially broadcastable:
|
|
py::enum_<py::detail::broadcast_trivial>(m, "trivial")
|
|
.value("f_trivial", py::detail::broadcast_trivial::f_trivial)
|
|
.value("c_trivial", py::detail::broadcast_trivial::c_trivial)
|
|
.value("non_trivial", py::detail::broadcast_trivial::non_trivial);
|
|
m.def("vectorized_is_trivial", [](
|
|
py::array_t<int, py::array::forcecast> arg1,
|
|
py::array_t<float, py::array::forcecast> arg2,
|
|
py::array_t<double, py::array::forcecast> arg3
|
|
) {
|
|
ssize_t ndim;
|
|
std::vector<ssize_t> shape;
|
|
std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
|
|
return py::detail::broadcast(buffers, ndim, shape);
|
|
});
|
|
}
|