pybind11/example/example-sequences-and-iterators.cpp
Jason Rhinelander b3f3d79f4c Rename examples files, as per #288
This renames example files from `exampleN` to `example-description`.

Specifically, the following renaming is applied:

example1 -> example-methods-and-attributes
example2 -> example-python-types
example3 -> example-operator-overloading
example4 -> example-constants-and-functions
example5 -> example-callbacks (*)
example6 -> example-sequence-and-iterators
example7 -> example-buffers
example8 -> example-custom-ref-counting
example9 -> example-modules
example10 -> example-numpy-vectorize
example11 -> example-arg-keywords-and-defaults
example12 -> example-virtual-functions
example13 -> example-keep-alive
example14 -> example-opaque-types
example15 -> example-pickling
example16 -> example-inheritance
example17 -> example-stl-binders
example18 -> example-eval
example19 -> example-custom-exceptions

* the inheritance parts of example5 are moved into example-inheritance
(previously example16), and the remainder is left as example-callbacks.

This commit also renames the internal variables ("Example1",
"Example2", "Example4", etc.) into non-numeric names ("ExampleMandA",
"ExamplePythonTypes", "ExampleWithEnum", etc.) to correspond to the
file renaming.

The order of tests is preserved, but this can easily be changed if
there is some more natural ordering by updating the list in
examples/CMakeLists.txt.
2016-07-18 16:43:18 -04:00

187 lines
6.4 KiB
C++

/*
example/example-sequences-and-iterators.cpp -- supporting Pythons' sequence protocol, iterators,
etc.
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "example.h"
#include <pybind11/operators.h>
#include <pybind11/stl.h>
class Sequence {
public:
Sequence(size_t size) : m_size(size) {
std::cout << "Value constructor: Creating a sequence with " << m_size << " entries" << std::endl;
m_data = new float[size];
memset(m_data, 0, sizeof(float) * size);
}
Sequence(const std::vector<float> &value) : m_size(value.size()) {
std::cout << "Value constructor: Creating a sequence with " << m_size << " entries" << std::endl;
m_data = new float[m_size];
memcpy(m_data, &value[0], sizeof(float) * m_size);
}
Sequence(const Sequence &s) : m_size(s.m_size) {
std::cout << "Copy constructor: Creating a sequence with " << m_size << " entries" << std::endl;
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) {
std::cout << "Move constructor: Creating a sequence with " << m_size << " entries" << std::endl;
s.m_size = 0;
s.m_data = nullptr;
}
~Sequence() {
std::cout << "Freeing a sequence with " << m_size << " entries" << std::endl;
delete[] m_data;
}
Sequence &operator=(const Sequence &s) {
std::cout << "Assignment operator: Creating a sequence with " << s.m_size << " entries" << std::endl;
delete[] m_data;
m_size = s.m_size;
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
return *this;
}
Sequence &operator=(Sequence &&s) {
std::cout << "Move assignment operator: Creating a sequence with " << s.m_size << " entries" << std::endl;
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = s.m_data;
s.m_size = 0;
s.m_data = nullptr;
}
return *this;
}
bool operator==(const Sequence &s) const {
if (m_size != s.size())
return false;
for (size_t i=0; i<m_size; ++i)
if (m_data[i] != s[i])
return false;
return true;
}
bool operator!=(const Sequence &s) const {
return !operator==(s);
}
float operator[](size_t index) const {
return m_data[index];
}
float &operator[](size_t index) {
return m_data[index];
}
bool contains(float v) const {
for (size_t i=0; i<m_size; ++i)
if (v == m_data[i])
return true;
return false;
}
Sequence reversed() const {
Sequence result(m_size);
for (size_t i=0; i<m_size; ++i)
result[m_size-i-1] = m_data[i];
return result;
}
size_t size() const { return m_size; }
const float *begin() const { return m_data; }
const float *end() const { return m_data+m_size; }
private:
size_t m_size;
float *m_data;
};
void init_ex_sequences_and_iterators(py::module &m) {
py::class_<Sequence> seq(m, "Sequence");
seq.def(py::init<size_t>())
.def(py::init<const std::vector<float>&>())
/// Bare bones interface
.def("__getitem__", [](const Sequence &s, size_t i) {
if (i >= s.size())
throw py::index_error();
return s[i];
})
.def("__setitem__", [](Sequence &s, size_t i, float v) {
if (i >= s.size())
throw py::index_error();
s[i] = v;
})
.def("__len__", &Sequence::size)
/// Optional sequence protocol operations
.def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); },
py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */)
.def("__contains__", [](const Sequence &s, float v) { return s.contains(v); })
.def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); })
/// Slicing protocol (optional)
.def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* {
size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
Sequence *seq = new Sequence(slicelength);
for (size_t i=0; i<slicelength; ++i) {
(*seq)[i] = s[start]; start += step;
}
return seq;
})
.def("__setitem__", [](Sequence &s, py::slice slice, const Sequence &value) {
size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
if (slicelength != value.size())
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i=0; i<slicelength; ++i) {
s[start] = value[i]; start += step;
}
})
/// Comparisons
.def(py::self == py::self)
.def(py::self != py::self);
// Could also define py::self + py::self for concatenation, etc.
#if 0
// Obsolete: special data structure for exposing custom iterator types to python
// kept here for illustrative purposes because there might be some use cases which
// are not covered by the much simpler py::make_iterator
struct PySequenceIterator {
PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { }
float next() {
if (index == seq.size())
throw py::stop_iteration();
return seq[index++];
}
const Sequence &seq;
py::object ref; // keep a reference
size_t index = 0;
};
py::class_<PySequenceIterator>(seq, "Iterator")
.def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; })
.def("__next__", &PySequenceIterator::next);
On the actual Sequence object, the iterator would be constructed as follows:
.def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); })
#endif
}