pybind11/docs/faq.rst
2016-03-09 21:31:21 +01:00

54 lines
1.7 KiB
ReStructuredText

Frequently asked questions
##########################
(under construction)
Limitations involving reference arguments
=========================================
In C++, it's fairly common to pass arguments using mutable references or
mutable pointers, which allows both read and write access to the value
supplied by the caller. This is sometimes done for efficiency reasons, or to
realize functions that have multiple return values. Here are two very basic
examples:
.. code-block:: cpp
void increment(int &i) { i++; }
void increment_ptr(int *i) { (*i)++; }
In Python, all arguments are passed by reference, so there is no general
issue in binding such code from Python.
However, certain basic Python types (like ``str``, ``int``, ``bool``,
``float``, etc.) are **immutable**. This means that the following attempt
to port the function to Python doesn't have the same effect on the value
provided by the caller -- in fact, it does nothing at all.
.. code-block:: python
def increment(i):
i += 1 # nope..
pybind11 is also affected by such language-level conventions, which means that
binding ``increment`` or ``increment_ptr`` will also create Python functions
that don't modify their arguments.
Although inconvenient, one workaround is to encapsulate the immutable types in
a custom type that does allow modifications.
An other alternative involves binding a small wrapper lambda function that
returns a tuple with all output arguments (see the remainder of the
documentation for examples on binding lambda functions). An example:
.. code-block:: cpp
int foo(int &i) { i++; return 123; }
and the binding code
.. code-block:: cpp
m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });