pybind11/docs/advanced/cast/custom.rst
Tim Ohliger 1b7aa0bb66
feat: rework of arg/return type hints to support .noconvert() (#5486)
* Added rework of arg/return typing

* Changed `Path` to `pathlib.Path` for compatibility with pybind11-stubgen

* Removed old arg/return type hint implementation

* Added noconvert support for arg/return type hints

* Added commented failing tests for Literals with special characters

* Added return_descr/arg_descr for correct typing in typing::Callable

* Fixed clang-tidy issues

* Changed io_name to have explicit return type (for C++11 support)

* style: pre-commit fixes

* Added support for nested callables

* Fixed missing include

* Fixed is_return_value constructor call

* Fixed clang-tidy issue

* Uncommented test cases for special characters in literals

* Moved literal tests to correct test case

* Added escaping of special characters in typing::Literal

* Readded mistakenly deleted bracket

* Moved sanitize_string_literal to correct namespace

* Added test for Literal with `!` and changed StringLiteral template param name

* Added test for Literal with multiple and repeated special chars

* Simplified string literal sanitization function

* Added test for `->` in literal

* Added test for `->` with io_name

* Removed unused parameter name to prevent warning

* Added escaping of `-` in literal to prevent processing of `->`

* Fixed wrong computation of sanitized string literal length

* Added cast to prevent error with MSVC

* Simplified special character check

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-01-24 17:01:06 -05:00

136 lines
5.7 KiB
ReStructuredText

Custom type casters
===================
Some applications may prefer custom type casters that convert between existing
Python types and C++ types, similar to the ``list````std::vector``
and ``dict````std::map`` conversions which are built into pybind11.
Implementing custom type casters is fairly advanced usage.
While it is recommended to use the pybind11 API as much as possible, more complex examples may
require familiarity with the intricacies of the Python C API.
You can refer to the `Python/C API Reference Manual <https://docs.python.org/3/c-api/index.html>`_
for more information.
The following snippets demonstrate how this works for a very simple ``Point2D`` type.
We want this type to be convertible to C++ from Python types implementing the
``Sequence`` protocol and having two elements of type ``float``.
When returned from C++ to Python, it should be converted to a Python ``tuple[float, float]``.
For this type we could provide Python bindings for different arithmetic functions implemented
in C++ (here demonstrated by a simple ``negate`` function).
..
PLEASE KEEP THE CODE BLOCKS IN SYNC WITH
tests/test_docs_advanced_cast_custom.cpp
tests/test_docs_advanced_cast_custom.py
Ideally, change the test, run pre-commit (incl. clang-format),
then copy the changed code back here.
Also use TEST_SUBMODULE in tests, but PYBIND11_MODULE in docs.
.. code-block:: cpp
namespace user_space {
struct Point2D {
double x;
double y;
};
Point2D negate(const Point2D &point) { return Point2D{-point.x, -point.y}; }
} // namespace user_space
The following Python snippet demonstrates the intended usage of ``negate`` from the Python side:
.. code-block:: python
from my_math_module import docs_advanced_cast_custom as m
point1 = [1.0, -1.0]
point2 = m.negate(point1)
assert point2 == (-1.0, 1.0)
To register the necessary conversion routines, it is necessary to add an
instantiation of the ``pybind11::detail::type_caster<T>`` template.
Although this is an implementation detail, adding an instantiation of this
type is explicitly allowed.
.. code-block:: cpp
namespace pybind11 {
namespace detail {
template <>
struct type_caster<user_space::Point2D> {
// This macro inserts a lot of boilerplate code and sets the type hint.
// `io_name` is used to specify different type hints for arguments and return values.
// The signature of our negate function would then look like:
// `negate(Sequence[float]) -> tuple[float, float]`
PYBIND11_TYPE_CASTER(user_space::Point2D, io_name("Sequence[float]", "tuple[float, float]"));
// C++ -> Python: convert `Point2D` to `tuple[float, float]`. The second and third arguments
// are used to indicate the return value policy and parent object (for
// return_value_policy::reference_internal) and are often ignored by custom casters.
// The return value should reflect the type hint specified by the second argument of `io_name`.
static handle
cast(const user_space::Point2D &number, return_value_policy /*policy*/, handle /*parent*/) {
return py::make_tuple(number.x, number.y).release();
}
// Python -> C++: convert a `PyObject` into a `Point2D` and return false upon failure. The
// second argument indicates whether implicit conversions should be allowed.
// The accepted types should reflect the type hint specified by the first argument of
// `io_name`.
bool load(handle src, bool /*convert*/) {
// Check if handle is a Sequence
if (!py::isinstance<py::sequence>(src)) {
return false;
}
auto seq = py::reinterpret_borrow<py::sequence>(src);
// Check if exactly two values are in the Sequence
if (seq.size() != 2) {
return false;
}
// Check if each element is either a float or an int
for (auto item : seq) {
if (!py::isinstance<py::float_>(item) && !py::isinstance<py::int_>(item)) {
return false;
}
}
value.x = seq[0].cast<double>();
value.y = seq[1].cast<double>();
return true;
}
};
} // namespace detail
} // namespace pybind11
// Bind the negate function
PYBIND11_MODULE(docs_advanced_cast_custom, m) { m.def("negate", user_space::negate); }
.. note::
A ``type_caster<T>`` defined with ``PYBIND11_TYPE_CASTER(T, ...)`` requires
that ``T`` is default-constructible (``value`` is first default constructed
and then ``load()`` assigns to it).
.. note::
For further information on the ``return_value_policy`` argument of ``cast`` refer to :ref:`return_value_policies`.
To learn about the ``convert`` argument of ``load`` see :ref:`nonconverting_arguments`.
.. warning::
When using custom type casters, it's important to declare them consistently
in every compilation unit of the Python extension module to satisfy the C++ One Definition Rule
(`ODR <https://en.cppreference.com/w/cpp/language/definition>`_). Otherwise,
undefined behavior can ensue.
.. note::
Using the type hint ``Sequence[float]`` signals to static type checkers, that not only tuples may be
passed, but any type implementing the Sequence protocol, e.g., ``list[float]``.
Unfortunately, that loses the length information ``tuple[float, float]`` provides.
One way of still providing some length information in type hints is using ``typing.Annotated``, e.g.,
``Annotated[Sequence[float], 2]``, or further add libraries like
`annotated-types <https://github.com/annotated-types/annotated-types>`_.