pybind11/tests/test_class.cpp
Ralf W. Grosse-Kunstleve 9be8d84b1c [smart_holder] Introduce PYBIND11_SMART_HOLDER_DISABLE option. (#5348)
* Step 1: Establish new `PYBIND11_SMART_HOLDER_ENABLED` macro, but only under include/pybind11/

At the stage `PYBIND11_HAS_INTERNALS_WITH_SMART_HOLDER_SUPPORT` and `PYBIND11_SMART_HOLDER_ENABLED` are still equivalent.

* Systematically replace all `PYBIND11_HAS_INTERNALS_WITH_SMART_HOLDER_SUPPORT` with `PYBIND11_SMART_HOLDER_ENABLED` under tests/ and ubench/

As at the previous stage, `PYBIND11_HAS_INTERNALS_WITH_SMART_HOLDER_SUPPORT` and `PYBIND11_SMART_HOLDER_ENABLED` are still equivalent.

* Introduce `PYBIND11_SMART_HOLDER_DISABLE` option.

* `#ifdef` out entire `wrap()` function to avoid `unused-parameter` warning-as-error under macos-13

```
/Users/runner/work/pybind11/pybind11/tests/test_class_sh_trampoline_basic.cpp:67:23: error: unused parameter 'm' [-Werror,-Wunused-parameter]
void wrap(py::module_ m, const char *py_class_name) {
                      ^
/Users/runner/work/pybind11/pybind11/tests/test_class_sh_trampoline_basic.cpp:67:38: error: unused parameter 'py_class_name' [-Werror,-Wunused-parameter]
void wrap(py::module_ m, const char *py_class_name) {
                                     ^
2 errors generated.
```
2024-09-01 18:29:55 -07:00

670 lines
25 KiB
C++

/*
tests/test_class.cpp -- test py::class_ definitions and basic functionality
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#if defined(__INTEL_COMPILER) && __cplusplus >= 201703L
// Intel compiler requires a separate header file to support aligned new operators
// and does not set the __cpp_aligned_new feature macro.
// This header needs to be included before pybind11.
# include <aligned_new>
#endif
#include <pybind11/stl.h>
#include "constructor_stats.h"
#include "local_bindings.h"
#include "pybind11_tests.h"
#include <utility>
PYBIND11_WARNING_DISABLE_MSVC(4324)
// warning C4324: structure was padded due to alignment specifier
// test_brace_initialization
struct NoBraceInitialization {
explicit NoBraceInitialization(std::vector<int> v) : vec{std::move(v)} {}
template <typename T>
NoBraceInitialization(std::initializer_list<T> l) : vec(l) {}
std::vector<int> vec;
};
namespace test_class {
namespace pr4220_tripped_over_this { // PR #4227
template <int>
struct SoEmpty {};
template <typename T>
std::string get_msg(const T &) {
return "This is really only meant to exercise successful compilation.";
}
using Empty0 = SoEmpty<0x0>;
void bind_empty0(py::module_ &m) {
py::class_<Empty0>(m, "Empty0").def(py::init<>()).def("get_msg", get_msg<Empty0>);
}
} // namespace pr4220_tripped_over_this
} // namespace test_class
TEST_SUBMODULE(class_, m) {
m.def("obj_class_name", [](py::handle obj) { return py::detail::obj_class_name(obj.ptr()); });
// test_instance
struct NoConstructor {
NoConstructor() = default;
NoConstructor(const NoConstructor &) = default;
NoConstructor(NoConstructor &&) = default;
static NoConstructor *new_instance() {
auto *ptr = new NoConstructor();
print_created(ptr, "via new_instance");
return ptr;
}
~NoConstructor() { print_destroyed(this); }
};
struct NoConstructorNew {
NoConstructorNew() = default;
NoConstructorNew(const NoConstructorNew &) = default;
NoConstructorNew(NoConstructorNew &&) = default;
static NoConstructorNew *new_instance() {
auto *ptr = new NoConstructorNew();
print_created(ptr, "via new_instance");
return ptr;
}
~NoConstructorNew() { print_destroyed(this); }
};
py::class_<NoConstructor>(m, "NoConstructor")
.def_static("new_instance", &NoConstructor::new_instance, "Return an instance");
py::class_<NoConstructorNew>(m, "NoConstructorNew")
.def(py::init([]() { return nullptr; })) // Need a NOOP __init__
.def_static("__new__",
[](const py::object &) { return NoConstructorNew::new_instance(); });
// test_pass_unique_ptr
struct ToBeHeldByUniquePtr {};
py::class_<ToBeHeldByUniquePtr, std::unique_ptr<ToBeHeldByUniquePtr>>(m, "ToBeHeldByUniquePtr")
.def(py::init<>());
#ifdef PYBIND11_SMART_HOLDER_ENABLED
m.def("pass_unique_ptr", [](std::unique_ptr<ToBeHeldByUniquePtr> &&) {});
#else
m.attr("pass_unique_ptr") = py::none();
#endif
// test_inheritance
class Pet {
public:
Pet(const std::string &name, const std::string &species)
: m_name(name), m_species(species) {}
std::string name() const { return m_name; }
std::string species() const { return m_species; }
private:
std::string m_name;
std::string m_species;
};
class Dog : public Pet {
public:
explicit Dog(const std::string &name) : Pet(name, "dog") {}
std::string bark() const { return "Woof!"; }
};
class Rabbit : public Pet {
public:
explicit Rabbit(const std::string &name) : Pet(name, "parrot") {}
};
class Hamster : public Pet {
public:
explicit Hamster(const std::string &name) : Pet(name, "rodent") {}
};
class Chimera : public Pet {
Chimera() : Pet("Kimmy", "chimera") {}
};
py::class_<Pet> pet_class(m, "Pet");
pet_class.def(py::init<std::string, std::string>())
.def("name", &Pet::name)
.def("species", &Pet::species);
/* One way of declaring a subclass relationship: reference parent's class_ object */
py::class_<Dog>(m, "Dog", pet_class).def(py::init<std::string>());
/* Another way of declaring a subclass relationship: reference parent's C++ type */
py::class_<Rabbit, Pet>(m, "Rabbit").def(py::init<std::string>());
/* And another: list parent in class template arguments */
py::class_<Hamster, Pet>(m, "Hamster").def(py::init<std::string>());
/* Constructors are not inherited by default */
py::class_<Chimera, Pet>(m, "Chimera");
m.def("pet_name_species",
[](const Pet &pet) { return pet.name() + " is a " + pet.species(); });
m.def("dog_bark", [](const Dog &dog) { return dog.bark(); });
// test_automatic_upcasting
struct BaseClass {
BaseClass() = default;
BaseClass(const BaseClass &) = default;
BaseClass(BaseClass &&) = default;
virtual ~BaseClass() = default;
};
struct DerivedClass1 : BaseClass {};
struct DerivedClass2 : BaseClass {};
py::class_<BaseClass>(m, "BaseClass").def(py::init<>());
py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>());
py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>());
m.def("return_class_1", []() -> BaseClass * { return new DerivedClass1(); });
m.def("return_class_2", []() -> BaseClass * { return new DerivedClass2(); });
m.def("return_class_n", [](int n) -> BaseClass * {
if (n == 1) {
return new DerivedClass1();
}
if (n == 2) {
return new DerivedClass2();
}
return new BaseClass();
});
m.def("return_none", []() -> BaseClass * { return nullptr; });
// test_isinstance
m.def("check_instances", [](const py::list &l) {
return py::make_tuple(py::isinstance<py::tuple>(l[0]),
py::isinstance<py::dict>(l[1]),
py::isinstance<Pet>(l[2]),
py::isinstance<Pet>(l[3]),
py::isinstance<Dog>(l[4]),
py::isinstance<Rabbit>(l[5]),
py::isinstance<UnregisteredType>(l[6]));
});
struct Invalid {};
// test_type
m.def("check_type", [](int category) {
// Currently not supported (via a fail at compile time)
// See https://github.com/pybind/pybind11/issues/2486
// if (category == 2)
// return py::type::of<int>();
if (category == 1) {
return py::type::of<DerivedClass1>();
}
return py::type::of<Invalid>();
});
m.def("get_type_of", [](py::object ob) { return py::type::of(std::move(ob)); });
m.def("get_type_classic", [](py::handle h) { return h.get_type(); });
m.def("as_type", [](const py::object &ob) { return py::type(ob); });
// test_mismatched_holder
struct MismatchBase1 {};
struct MismatchDerived1 : MismatchBase1 {};
struct MismatchBase2 {};
struct MismatchDerived2 : MismatchBase2 {};
m.def("mismatched_holder_1", []() {
auto mod = py::module_::import("__main__");
py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1");
py::class_<MismatchDerived1, std::unique_ptr<MismatchDerived1>, MismatchBase1>(
mod, "MismatchDerived1");
});
m.def("mismatched_holder_2", []() {
auto mod = py::module_::import("__main__");
py::class_<MismatchBase2, std::unique_ptr<MismatchBase2>>(mod, "MismatchBase2");
py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>, MismatchBase2>(
mod, "MismatchDerived2");
});
// test_override_static
// #511: problem with inheritance + overwritten def_static
struct MyBase {
static std::unique_ptr<MyBase> make() { return std::unique_ptr<MyBase>(new MyBase()); }
};
struct MyDerived : MyBase {
static std::unique_ptr<MyDerived> make() {
return std::unique_ptr<MyDerived>(new MyDerived());
}
};
py::class_<MyBase>(m, "MyBase").def_static("make", &MyBase::make);
py::class_<MyDerived, MyBase>(m, "MyDerived")
.def_static("make", &MyDerived::make)
.def_static("make2", &MyDerived::make);
// test_implicit_conversion_life_support
struct ConvertibleFromUserType {
int i;
explicit ConvertibleFromUserType(UserType u) : i(u.value()) {}
};
py::class_<ConvertibleFromUserType>(m, "AcceptsUserType").def(py::init<UserType>());
py::implicitly_convertible<UserType, ConvertibleFromUserType>();
m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; });
m.def("implicitly_convert_variable", [](const py::object &o) {
// `o` is `UserType` and `r` is a reference to a temporary created by implicit
// conversion. This is valid when called inside a bound function because the temp
// object is attached to the same life support system as the arguments.
const auto &r = o.cast<const ConvertibleFromUserType &>();
return r.i;
});
m.add_object("implicitly_convert_variable_fail", [&] {
auto f = [](PyObject *, PyObject *args) -> PyObject * {
auto o = py::reinterpret_borrow<py::tuple>(args)[0];
try { // It should fail here because there is no life support.
o.cast<const ConvertibleFromUserType &>();
} catch (const py::cast_error &e) {
return py::str(e.what()).release().ptr();
}
return py::str().release().ptr();
};
auto *def = new PyMethodDef{"f", f, METH_VARARGS, nullptr};
py::capsule def_capsule(def,
[](void *ptr) { delete reinterpret_cast<PyMethodDef *>(ptr); });
return py::reinterpret_steal<py::object>(
PyCFunction_NewEx(def, def_capsule.ptr(), m.ptr()));
}());
// test_operator_new_delete
struct HasOpNewDel {
std::uint64_t i;
static void *operator new(size_t s) {
py::print("A new", s);
return ::operator new(s);
}
static void *operator new(size_t s, void *ptr) {
py::print("A placement-new", s);
return ptr;
}
static void operator delete(void *p) {
py::print("A delete");
return ::operator delete(p);
}
};
struct HasOpNewDelSize {
std::uint32_t i;
static void *operator new(size_t s) {
py::print("B new", s);
return ::operator new(s);
}
static void *operator new(size_t s, void *ptr) {
py::print("B placement-new", s);
return ptr;
}
static void operator delete(void *p, size_t s) {
py::print("B delete", s);
return ::operator delete(p);
}
};
struct AliasedHasOpNewDelSize {
std::uint64_t i;
static void *operator new(size_t s) {
py::print("C new", s);
return ::operator new(s);
}
static void *operator new(size_t s, void *ptr) {
py::print("C placement-new", s);
return ptr;
}
static void operator delete(void *p, size_t s) {
py::print("C delete", s);
return ::operator delete(p);
}
virtual ~AliasedHasOpNewDelSize() = default;
AliasedHasOpNewDelSize() = default;
AliasedHasOpNewDelSize(const AliasedHasOpNewDelSize &) = delete;
};
struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize {
PyAliasedHasOpNewDelSize() = default;
explicit PyAliasedHasOpNewDelSize(int) {}
std::uint64_t j;
};
struct HasOpNewDelBoth {
std::uint32_t i[8];
static void *operator new(size_t s) {
py::print("D new", s);
return ::operator new(s);
}
static void *operator new(size_t s, void *ptr) {
py::print("D placement-new", s);
return ptr;
}
static void operator delete(void *p) {
py::print("D delete");
return ::operator delete(p);
}
static void operator delete(void *p, size_t s) {
py::print("D wrong delete", s);
return ::operator delete(p);
}
};
py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>());
py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>());
py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>());
py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m,
"AliasedHasOpNewDelSize");
aliased.def(py::init<>());
aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize));
aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize));
// This test is actually part of test_local_bindings (test_duplicate_local), but we need a
// definition in a different compilation unit within the same module:
bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local());
// test_bind_protected_functions
class ProtectedA {
protected:
int foo() const { return value; }
private:
int value = 42;
};
class PublicistA : public ProtectedA {
public:
using ProtectedA::foo;
};
py::class_<ProtectedA>(m, "ProtectedA").def(py::init<>()).def("foo", &PublicistA::foo);
class ProtectedB {
public:
virtual ~ProtectedB() = default;
ProtectedB() = default;
ProtectedB(const ProtectedB &) = delete;
protected:
virtual int foo() const { return value; }
virtual void *void_foo() { return static_cast<void *>(&value); }
virtual void *get_self() { return static_cast<void *>(this); }
private:
int value = 42;
};
class TrampolineB : public ProtectedB {
public:
int foo() const override { PYBIND11_OVERRIDE(int, ProtectedB, foo, ); }
void *void_foo() override { PYBIND11_OVERRIDE(void *, ProtectedB, void_foo, ); }
void *get_self() override { PYBIND11_OVERRIDE(void *, ProtectedB, get_self, ); }
};
class PublicistB : public ProtectedB {
public:
// [workaround(intel)] = default does not work here
// Removing or defaulting this destructor results in linking errors with the Intel compiler
// (in Debug builds only, tested with icpc (ICC) 2021.1 Beta 20200827)
~PublicistB() override {}; // NOLINT(modernize-use-equals-default)
using ProtectedB::foo;
using ProtectedB::get_self;
using ProtectedB::void_foo;
};
m.def("read_foo", [](const void *original) {
const int *ptr = reinterpret_cast<const int *>(original);
return *ptr;
});
m.def("pointers_equal",
[](const void *original, const void *comparison) { return original == comparison; });
py::class_<ProtectedB, TrampolineB>(m, "ProtectedB")
.def(py::init<>())
.def("foo", &PublicistB::foo)
.def("void_foo", &PublicistB::void_foo)
.def("get_self", &PublicistB::get_self);
// test_brace_initialization
struct BraceInitialization {
int field1;
std::string field2;
};
py::class_<BraceInitialization>(m, "BraceInitialization")
.def(py::init<int, const std::string &>())
.def_readwrite("field1", &BraceInitialization::field1)
.def_readwrite("field2", &BraceInitialization::field2);
// We *don't* want to construct using braces when the given constructor argument maps to a
// constructor, because brace initialization could go to the wrong place (in particular when
// there is also an `initializer_list<T>`-accept constructor):
py::class_<NoBraceInitialization>(m, "NoBraceInitialization")
.def(py::init<std::vector<int>>())
.def_readonly("vec", &NoBraceInitialization::vec);
// test_reentrant_implicit_conversion_failure
// #1035: issue with runaway reentrant implicit conversion
struct BogusImplicitConversion {
BogusImplicitConversion(const BogusImplicitConversion &) = default;
};
py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion")
.def(py::init<const BogusImplicitConversion &>());
py::implicitly_convertible<int, BogusImplicitConversion>();
// test_qualname
// #1166: nested class docstring doesn't show nested name
// Also related: tests that __qualname__ is set properly
struct NestBase {};
struct Nested {};
py::class_<NestBase> base(m, "NestBase");
base.def(py::init<>());
py::class_<Nested>(base, "Nested")
.def(py::init<>())
.def("fn", [](Nested &, int, NestBase &, Nested &) {})
.def("fa", [](Nested &, int, NestBase &, Nested &) {}, "a"_a, "b"_a, "c"_a);
base.def("g", [](NestBase &, Nested &) {});
base.def("h", []() { return NestBase(); });
// test_error_after_conversion
// The second-pass path through dispatcher() previously didn't
// remember which overload was used, and would crash trying to
// generate a useful error message
struct NotRegistered {};
struct StringWrapper {
std::string str;
};
m.def("test_error_after_conversions", [](int) {});
m.def("test_error_after_conversions",
[](const StringWrapper &) -> NotRegistered { return {}; });
py::class_<StringWrapper>(m, "StringWrapper").def(py::init<std::string>());
py::implicitly_convertible<std::string, StringWrapper>();
#if defined(PYBIND11_CPP17)
struct alignas(1024) Aligned {
std::uintptr_t ptr() const { return (uintptr_t) this; }
};
py::class_<Aligned>(m, "Aligned").def(py::init<>()).def("ptr", &Aligned::ptr);
#endif
// test_final
struct IsFinal final {};
py::class_<IsFinal>(m, "IsFinal", py::is_final());
// test_non_final_final
struct IsNonFinalFinal {};
py::class_<IsNonFinalFinal>(m, "IsNonFinalFinal", py::is_final());
// test_exception_rvalue_abort
struct PyPrintDestructor {
PyPrintDestructor() = default;
~PyPrintDestructor() { py::print("Print from destructor"); }
void throw_something() { throw std::runtime_error("error"); }
};
py::class_<PyPrintDestructor>(m, "PyPrintDestructor")
.def(py::init<>())
.def("throw_something", &PyPrintDestructor::throw_something);
// test_multiple_instances_with_same_pointer
struct SamePointer {};
static SamePointer samePointer;
py::class_<SamePointer, std::unique_ptr<SamePointer, py::nodelete>>(m, "SamePointer")
.def(py::init([]() { return &samePointer; }));
struct Empty {};
py::class_<Empty>(m, "Empty").def(py::init<>());
// test_base_and_derived_nested_scope
struct BaseWithNested {
struct Nested {};
};
struct DerivedWithNested : BaseWithNested {
struct Nested {};
};
py::class_<BaseWithNested> baseWithNested_class(m, "BaseWithNested");
py::class_<DerivedWithNested, BaseWithNested> derivedWithNested_class(m, "DerivedWithNested");
py::class_<BaseWithNested::Nested>(baseWithNested_class, "Nested")
.def_static("get_name", []() { return "BaseWithNested::Nested"; });
py::class_<DerivedWithNested::Nested>(derivedWithNested_class, "Nested")
.def_static("get_name", []() { return "DerivedWithNested::Nested"; });
// test_register_duplicate_class
struct Duplicate {};
struct OtherDuplicate {};
struct DuplicateNested {};
struct OtherDuplicateNested {};
m.def("register_duplicate_class_name", [](const py::module_ &m) {
py::class_<Duplicate>(m, "Duplicate");
py::class_<OtherDuplicate>(m, "Duplicate");
});
m.def("register_duplicate_class_type", [](const py::module_ &m) {
py::class_<OtherDuplicate>(m, "OtherDuplicate");
py::class_<OtherDuplicate>(m, "YetAnotherDuplicate");
});
m.def("register_duplicate_nested_class_name", [](const py::object &gt) {
py::class_<DuplicateNested>(gt, "DuplicateNested");
py::class_<OtherDuplicateNested>(gt, "DuplicateNested");
});
m.def("register_duplicate_nested_class_type", [](const py::object &gt) {
py::class_<OtherDuplicateNested>(gt, "OtherDuplicateNested");
py::class_<OtherDuplicateNested>(gt, "YetAnotherDuplicateNested");
});
test_class::pr4220_tripped_over_this::bind_empty0(m);
}
template <int N>
class BreaksBase {
public:
virtual ~BreaksBase() = default;
BreaksBase() = default;
BreaksBase(const BreaksBase &) = delete;
};
template <int N>
class BreaksTramp : public BreaksBase<N> {};
// These should all compile just fine:
using DoesntBreak1 = py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>>;
using DoesntBreak2 = py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>>;
using DoesntBreak3 = py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>>;
using DoesntBreak4 = py::class_<BreaksBase<4>, BreaksTramp<4>>;
using DoesntBreak5 = py::class_<BreaksBase<5>>;
using DoesntBreak6 = py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>>;
using DoesntBreak7 = py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>>;
using DoesntBreak8 = py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>>;
#define CHECK_BASE(N) \
static_assert(std::is_same<typename DoesntBreak##N::type, BreaksBase<(N)>>::value, \
"DoesntBreak" #N " has wrong type!")
CHECK_BASE(1);
CHECK_BASE(2);
CHECK_BASE(3);
CHECK_BASE(4);
CHECK_BASE(5);
CHECK_BASE(6);
CHECK_BASE(7);
CHECK_BASE(8);
#define CHECK_ALIAS(N) \
static_assert( \
DoesntBreak##N::has_alias \
&& std::is_same<typename DoesntBreak##N::type_alias, BreaksTramp<(N)>>::value, \
"DoesntBreak" #N " has wrong type_alias!")
#define CHECK_NOALIAS(N) \
static_assert(!DoesntBreak##N::has_alias \
&& std::is_void<typename DoesntBreak##N::type_alias>::value, \
"DoesntBreak" #N " has type alias, but shouldn't!")
CHECK_ALIAS(1);
CHECK_ALIAS(2);
CHECK_NOALIAS(3);
CHECK_ALIAS(4);
CHECK_NOALIAS(5);
CHECK_ALIAS(6);
CHECK_ALIAS(7);
CHECK_NOALIAS(8);
#define CHECK_HOLDER(N, TYPE) \
static_assert(std::is_same<typename DoesntBreak##N::holder_type, \
std::TYPE##_ptr<BreaksBase<(N)>>>::value, \
"DoesntBreak" #N " has wrong holder_type!")
CHECK_HOLDER(1, unique);
CHECK_HOLDER(2, unique);
CHECK_HOLDER(3, unique);
#ifndef PYBIND11_ACTUALLY_USING_SMART_HOLDER_AS_DEFAULT
CHECK_HOLDER(4, unique);
CHECK_HOLDER(5, unique);
#endif
CHECK_HOLDER(6, shared);
CHECK_HOLDER(7, shared);
CHECK_HOLDER(8, shared);
// There's no nice way to test that these fail because they fail to compile; leave them here,
// though, so that they can be manually tested by uncommenting them (and seeing that compilation
// failures occurs).
// We have to actually look into the type: the typedef alone isn't enough to instantiate the type:
#define CHECK_BROKEN(N) \
static_assert(std::is_same<typename Breaks##N::type, BreaksBase<-(N)>>::value, \
"Breaks1 has wrong type!");
#ifdef PYBIND11_NEVER_DEFINED_EVER
// Two holder classes:
typedef py::
class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>>
Breaks1;
CHECK_BROKEN(1);
// Two aliases:
typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2;
CHECK_BROKEN(2);
// Holder + 2 aliases
typedef py::
class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>>
Breaks3;
CHECK_BROKEN(3);
// Alias + 2 holders
typedef py::class_<BreaksBase<-4>,
std::unique_ptr<BreaksBase<-4>>,
BreaksTramp<-4>,
std::shared_ptr<BreaksBase<-4>>>
Breaks4;
CHECK_BROKEN(4);
// Invalid option (not a subclass or holder)
typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5;
CHECK_BROKEN(5);
// Invalid option: multiple inheritance not supported:
template <>
struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {};
typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8;
CHECK_BROKEN(8);
#endif