mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-14 01:23:53 +00:00
f3ce00eaed
This extends py::vectorize to automatically pass through non-vectorizable arguments. This removes the need for the documented "explicitly exclude an argument" workaround. Vectorization now applies to arithmetic, std::complex, and POD types, passed as plain value or by const lvalue reference (previously only pass-by-value types were supported). Non-const lvalue references and any other types are passed through as-is. Functions with rvalue reference arguments (whether vectorizable or not) are explicitly prohibited: an rvalue reference is inherently not something that can be passed multiple times and is thus unsuitable to being in a vectorized function. The vectorize returned value is also now more sensitive to inputs: previously it would return by value when all inputs are of size 1; this is now amended to having all inputs of size 1 *and* 0 dimensions. Thus if you pass in, for example, [[1]], you get back a 1x1, 2D array, while previously you got back just the resulting single value. Vectorization of member function specializations is now also supported via `py::vectorize(&Class::method)`; this required passthrough support for the initial object pointer on the wrapping function pointer.
204 lines
8.7 KiB
Python
204 lines
8.7 KiB
Python
import pytest
|
|
|
|
pytestmark = pytest.requires_numpy
|
|
|
|
with pytest.suppress(ImportError):
|
|
import numpy as np
|
|
|
|
|
|
def test_vectorize(capture):
|
|
from pybind11_tests import vectorized_func, vectorized_func2, vectorized_func3
|
|
|
|
assert np.isclose(vectorized_func3(np.array(3 + 7j)), [6 + 14j])
|
|
|
|
for f in [vectorized_func, vectorized_func2]:
|
|
with capture:
|
|
assert np.isclose(f(1, 2, 3), 6)
|
|
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
|
|
with capture:
|
|
assert np.isclose(f(np.array(1), np.array(2), 3), 6)
|
|
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
|
|
with capture:
|
|
assert np.allclose(f(np.array([1, 3]), np.array([2, 4]), 3), [6, 36])
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=3)
|
|
my_func(x:int=3, y:float=4, z:float=3)
|
|
"""
|
|
with capture:
|
|
a = np.array([[1, 2], [3, 4]], order='F')
|
|
b = np.array([[10, 20], [30, 40]], order='F')
|
|
c = 3
|
|
result = f(a, b, c)
|
|
assert np.allclose(result, a * b * c)
|
|
assert result.flags.f_contiguous
|
|
# All inputs are F order and full or singletons, so we the result is in col-major order:
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=10, z:float=3)
|
|
my_func(x:int=3, y:float=30, z:float=3)
|
|
my_func(x:int=2, y:float=20, z:float=3)
|
|
my_func(x:int=4, y:float=40, z:float=3)
|
|
"""
|
|
with capture:
|
|
a, b, c = np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=3)
|
|
my_func(x:int=3, y:float=4, z:float=3)
|
|
my_func(x:int=5, y:float=6, z:float=3)
|
|
my_func(x:int=7, y:float=8, z:float=3)
|
|
my_func(x:int=9, y:float=10, z:float=3)
|
|
my_func(x:int=11, y:float=12, z:float=3)
|
|
"""
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=2, y:float=3, z:float=2)
|
|
my_func(x:int=3, y:float=4, z:float=2)
|
|
my_func(x:int=4, y:float=2, z:float=2)
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=4, z:float=2)
|
|
"""
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=2, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F'), np.array([[2], [3]]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=2, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]])[::, ::2], np.array([[2], [3]]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F')[::, ::2], np.array([[2], [3]]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert capture == """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
|
|
|
|
def test_type_selection():
|
|
from pybind11_tests import selective_func
|
|
|
|
assert selective_func(np.array([1], dtype=np.int32)) == "Int branch taken."
|
|
assert selective_func(np.array([1.0], dtype=np.float32)) == "Float branch taken."
|
|
assert selective_func(np.array([1.0j], dtype=np.complex64)) == "Complex float branch taken."
|
|
|
|
|
|
def test_docs(doc):
|
|
from pybind11_tests import vectorized_func
|
|
|
|
assert doc(vectorized_func) == """
|
|
vectorized_func(arg0: numpy.ndarray[int32], arg1: numpy.ndarray[float32], arg2: numpy.ndarray[float64]) -> object
|
|
""" # noqa: E501 line too long
|
|
|
|
|
|
def test_trivial_broadcasting():
|
|
from pybind11_tests import vectorized_is_trivial, trivial, vectorized_func
|
|
|
|
assert vectorized_is_trivial(1, 2, 3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(np.array(1), np.array(2), 3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(np.array([1, 3]), np.array([2, 4]), 3) == trivial.c_trivial
|
|
assert trivial.c_trivial == vectorized_is_trivial(
|
|
np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3)
|
|
assert vectorized_is_trivial(
|
|
np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2) == trivial.non_trivial
|
|
assert vectorized_is_trivial(
|
|
np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2) == trivial.non_trivial
|
|
z1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype='int32')
|
|
z2 = np.array(z1, dtype='float32')
|
|
z3 = np.array(z1, dtype='float64')
|
|
assert vectorized_is_trivial(z1, z2, z3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(1, z2, z3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(z1, 1, z3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(z1, z2, 1) == trivial.c_trivial
|
|
assert vectorized_is_trivial(z1[::2, ::2], 1, 1) == trivial.non_trivial
|
|
assert vectorized_is_trivial(1, 1, z1[::2, ::2]) == trivial.c_trivial
|
|
assert vectorized_is_trivial(1, 1, z3[::2, ::2]) == trivial.non_trivial
|
|
assert vectorized_is_trivial(z1, 1, z3[1::4, 1::4]) == trivial.c_trivial
|
|
|
|
y1 = np.array(z1, order='F')
|
|
y2 = np.array(y1)
|
|
y3 = np.array(y1)
|
|
assert vectorized_is_trivial(y1, y2, y3) == trivial.f_trivial
|
|
assert vectorized_is_trivial(y1, 1, 1) == trivial.f_trivial
|
|
assert vectorized_is_trivial(1, y2, 1) == trivial.f_trivial
|
|
assert vectorized_is_trivial(1, 1, y3) == trivial.f_trivial
|
|
assert vectorized_is_trivial(y1, z2, 1) == trivial.non_trivial
|
|
assert vectorized_is_trivial(z1[1::4, 1::4], y2, 1) == trivial.f_trivial
|
|
assert vectorized_is_trivial(y1[1::4, 1::4], z2, 1) == trivial.c_trivial
|
|
|
|
assert vectorized_func(z1, z2, z3).flags.c_contiguous
|
|
assert vectorized_func(y1, y2, y3).flags.f_contiguous
|
|
assert vectorized_func(z1, 1, 1).flags.c_contiguous
|
|
assert vectorized_func(1, y2, 1).flags.f_contiguous
|
|
assert vectorized_func(z1[1::4, 1::4], y2, 1).flags.f_contiguous
|
|
assert vectorized_func(y1[1::4, 1::4], z2, 1).flags.c_contiguous
|
|
|
|
|
|
def test_passthrough_arguments(doc):
|
|
from pybind11_tests import vec_passthrough, NonPODClass
|
|
|
|
assert doc(vec_passthrough) == (
|
|
"vec_passthrough("
|
|
"arg0: float, arg1: numpy.ndarray[float64], arg2: numpy.ndarray[float64], "
|
|
"arg3: numpy.ndarray[int32], arg4: int, arg5: m.NonPODClass, arg6: numpy.ndarray[float64]"
|
|
") -> object")
|
|
|
|
b = np.array([[10, 20, 30]], dtype='float64')
|
|
c = np.array([100, 200]) # NOT a vectorized argument
|
|
d = np.array([[1000], [2000], [3000]], dtype='int')
|
|
g = np.array([[1000000, 2000000, 3000000]], dtype='int') # requires casting
|
|
assert np.all(
|
|
vec_passthrough(1, b, c, d, 10000, NonPODClass(100000), g) ==
|
|
np.array([[1111111, 2111121, 3111131],
|
|
[1112111, 2112121, 3112131],
|
|
[1113111, 2113121, 3113131]]))
|
|
|
|
|
|
def test_method_vectorization():
|
|
from pybind11_tests import VectorizeTestClass
|
|
|
|
o = VectorizeTestClass(3)
|
|
x = np.array([1, 2], dtype='int')
|
|
y = np.array([[10], [20]], dtype='float32')
|
|
assert np.all(o.method(x, y) == [[14, 15], [24, 25]])
|
|
|
|
|
|
def test_array_collapse():
|
|
from pybind11_tests import vectorized_func
|
|
|
|
assert not isinstance(vectorized_func(1, 2, 3), np.ndarray)
|
|
assert not isinstance(vectorized_func(np.array(1), 2, 3), np.ndarray)
|
|
z = vectorized_func([1], 2, 3)
|
|
assert isinstance(z, np.ndarray)
|
|
assert z.shape == (1, )
|
|
z = vectorized_func(1, [[[2]]], 3)
|
|
assert isinstance(z, np.ndarray)
|
|
assert z.shape == (1, 1, 1)
|