pybind11/tests/test_virtual_functions.cpp
Jason Rhinelander 391c75447d Update all remaining tests to new test styles
This udpates all the remaining tests to the new test suite code and
comment styles started in #898.  For the most part, the test coverage
here is unchanged, with a few minor exceptions as noted below.

- test_constants_and_functions: this adds more overload tests with
  overloads with different number of arguments for more comprehensive
  overload_cast testing.  The test style conversion broke the overload
  tests under MSVC 2015, prompting the additional tests while looking
  for a workaround.

- test_eigen: this dropped the unused functions `get_cm_corners` and
  `get_cm_corners_const`--these same tests were duplicates of the same
  things provided (and used) via ReturnTester methods.

- test_opaque_types: this test had a hidden dependence on ExampleMandA
  which is now fixed by using the global UserType which suffices for the
  relevant test.

- test_methods_and_attributes: this required some additions to UserType
  to make it usable as a replacement for the test's previous SimpleType:
  UserType gained a value mutator, and the `value` property is not
  mutable (it was previously readonly).  Some overload tests were also
  added to better test overload_cast (as described above).

- test_numpy_array: removed the untemplated mutate_data/mutate_data_t:
  the templated versions with an empty parameter pack expand to the same
  thing.

- test_stl: this was already mostly in the new style; this just tweaks
  things a bit, localizing a class, and adding some missing
  `// test_whatever` comments.

- test_virtual_functions: like `test_stl`, this was mostly in the new
  test style already, but needed some `// test_whatever` comments.
  This commit also moves the inherited virtual example code to the end
  of the file, after the main set of tests (since it is less important
  than the other tests, and rather length); it also got renamed to
  `test_inherited_virtuals` (from `test_inheriting_repeat`) because it
  tests both inherited virtual approaches, not just the repeat approach.
2017-08-05 18:46:22 -04:00

448 lines
16 KiB
C++

/*
tests/test_virtual_functions.cpp -- overriding virtual functions from Python
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/functional.h>
/* This is an example class that we'll want to be able to extend from Python */
class ExampleVirt {
public:
ExampleVirt(int state) : state(state) { print_created(this, state); }
ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); }
ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; }
~ExampleVirt() { print_destroyed(this); }
virtual int run(int value) {
py::print("Original implementation of "
"ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2()));
return state + value;
}
virtual bool run_bool() = 0;
virtual void pure_virtual() = 0;
// Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a
// bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so
// we have to handle it specially in the trampoline class (see below).
virtual const std::string &get_string1() { return str1; }
virtual const std::string *get_string2() { return &str2; }
private:
int state;
const std::string str1{"default1"}, str2{"default2"};
};
/* This is a wrapper class that must be generated */
class PyExampleVirt : public ExampleVirt {
public:
using ExampleVirt::ExampleVirt; /* Inherit constructors */
int run(int value) override {
/* Generate wrapping code that enables native function overloading */
PYBIND11_OVERLOAD(
int, /* Return type */
ExampleVirt, /* Parent class */
run, /* Name of function */
value /* Argument(s) */
);
}
bool run_bool() override {
PYBIND11_OVERLOAD_PURE(
bool, /* Return type */
ExampleVirt, /* Parent class */
run_bool, /* Name of function */
/* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */
);
}
void pure_virtual() override {
PYBIND11_OVERLOAD_PURE(
void, /* Return type */
ExampleVirt, /* Parent class */
pure_virtual, /* Name of function */
/* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */
);
}
// We can return reference types for compatibility with C++ virtual interfaces that do so, but
// note they have some significant limitations (see the documentation).
const std::string &get_string1() override {
PYBIND11_OVERLOAD(
const std::string &, /* Return type */
ExampleVirt, /* Parent class */
get_string1, /* Name of function */
/* (no arguments) */
);
}
const std::string *get_string2() override {
PYBIND11_OVERLOAD(
const std::string *, /* Return type */
ExampleVirt, /* Parent class */
get_string2, /* Name of function */
/* (no arguments) */
);
}
};
class NonCopyable {
public:
NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); }
NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); }
NonCopyable(const NonCopyable &) = delete;
NonCopyable() = delete;
void operator=(const NonCopyable &) = delete;
void operator=(NonCopyable &&) = delete;
std::string get_value() const {
if (value) return std::to_string(*value); else return "(null)";
}
~NonCopyable() { print_destroyed(this); }
private:
std::unique_ptr<int> value;
};
// This is like the above, but is both copy and movable. In effect this means it should get moved
// when it is not referenced elsewhere, but copied if it is still referenced.
class Movable {
public:
Movable(int a, int b) : value{a+b} { print_created(this, a, b); }
Movable(const Movable &m) { value = m.value; print_copy_created(this); }
Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); }
std::string get_value() const { return std::to_string(value); }
~Movable() { print_destroyed(this); }
private:
int value;
};
class NCVirt {
public:
virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); }
virtual Movable get_movable(int a, int b) = 0;
std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); }
std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); }
};
class NCVirtTrampoline : public NCVirt {
#if !defined(__INTEL_COMPILER)
NonCopyable get_noncopyable(int a, int b) override {
PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b);
}
#endif
Movable get_movable(int a, int b) override {
PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b);
}
};
struct Base {
/* for some reason MSVC2015 can't compile this if the function is pure virtual */
virtual std::string dispatch() const { return {}; };
};
struct DispatchIssue : Base {
virtual std::string dispatch() const {
PYBIND11_OVERLOAD_PURE(std::string, Base, dispatch, /* no arguments */);
}
};
// Forward declaration (so that we can put the main tests here; the inherited virtual approaches are
// rather long).
void initialize_inherited_virtuals(py::module &m);
TEST_SUBMODULE(virtual_functions, m) {
// test_override
py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt")
.def(py::init<int>())
/* Reference original class in function definitions */
.def("run", &ExampleVirt::run)
.def("run_bool", &ExampleVirt::run_bool)
.def("pure_virtual", &ExampleVirt::pure_virtual);
py::class_<NonCopyable>(m, "NonCopyable")
.def(py::init<int, int>());
py::class_<Movable>(m, "Movable")
.def(py::init<int, int>());
// test_move_support
#if !defined(__INTEL_COMPILER)
py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt")
.def(py::init<>())
.def("get_noncopyable", &NCVirt::get_noncopyable)
.def("get_movable", &NCVirt::get_movable)
.def("print_nc", &NCVirt::print_nc)
.def("print_movable", &NCVirt::print_movable);
#endif
m.def("runExampleVirt", [](ExampleVirt *ex, int value) { return ex->run(value); });
m.def("runExampleVirtBool", [](ExampleVirt* ex) { return ex->run_bool(); });
m.def("runExampleVirtVirtual", [](ExampleVirt *ex) { ex->pure_virtual(); });
m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>);
initialize_inherited_virtuals(m);
// test_alias_delay_initialization1
// don't invoke Python dispatch classes by default when instantiating C++ classes
// that were not extended on the Python side
struct A {
virtual ~A() {}
virtual void f() { py::print("A.f()"); }
};
struct PyA : A {
PyA() { py::print("PyA.PyA()"); }
~PyA() { py::print("PyA.~PyA()"); }
void f() override {
py::print("PyA.f()");
PYBIND11_OVERLOAD(void, A, f);
}
};
py::class_<A, PyA>(m, "A")
.def(py::init<>())
.def("f", &A::f);
m.def("call_f", [](A *a) { a->f(); });
// test_alias_delay_initialization2
// ... unless we explicitly request it, as in this example:
struct A2 {
virtual ~A2() {}
virtual void f() { py::print("A2.f()"); }
};
struct PyA2 : A2 {
PyA2() { py::print("PyA2.PyA2()"); }
~PyA2() { py::print("PyA2.~PyA2()"); }
void f() override {
py::print("PyA2.f()");
PYBIND11_OVERLOAD(void, A2, f);
}
};
py::class_<A2, PyA2>(m, "A2")
.def(py::init_alias<>())
.def("f", &A2::f);
m.def("call_f", [](A2 *a2) { a2->f(); });
// test_dispatch_issue
// #159: virtual function dispatch has problems with similar-named functions
py::class_<Base, DispatchIssue>(m, "DispatchIssue")
.def(py::init<>())
.def("dispatch", &Base::dispatch);
m.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); });
// test_override_ref
// #392/397: overridding reference-returning functions
class OverrideTest {
public:
struct A { std::string value = "hi"; };
std::string v;
A a;
explicit OverrideTest(const std::string &v) : v{v} {}
virtual std::string str_value() { return v; }
virtual std::string &str_ref() { return v; }
virtual A A_value() { return a; }
virtual A &A_ref() { return a; }
};
class PyOverrideTest : public OverrideTest {
public:
using OverrideTest::OverrideTest;
std::string str_value() override { PYBIND11_OVERLOAD(std::string, OverrideTest, str_value); }
// Not allowed (uncommenting should hit a static_assert failure): we can't get a reference
// to a python numeric value, since we only copy values in the numeric type caster:
// std::string &str_ref() override { PYBIND11_OVERLOAD(std::string &, OverrideTest, str_ref); }
// But we can work around it like this:
private:
std::string _tmp;
std::string str_ref_helper() { PYBIND11_OVERLOAD(std::string, OverrideTest, str_ref); }
public:
std::string &str_ref() override { return _tmp = str_ref_helper(); }
A A_value() override { PYBIND11_OVERLOAD(A, OverrideTest, A_value); }
A &A_ref() override { PYBIND11_OVERLOAD(A &, OverrideTest, A_ref); }
};
py::class_<OverrideTest::A>(m, "OverrideTest_A")
.def_readwrite("value", &OverrideTest::A::value);
py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest")
.def(py::init<const std::string &>())
.def("str_value", &OverrideTest::str_value)
// .def("str_ref", &OverrideTest::str_ref)
.def("A_value", &OverrideTest::A_value)
.def("A_ref", &OverrideTest::A_ref);
}
// Inheriting virtual methods. We do two versions here: the repeat-everything version and the
// templated trampoline versions mentioned in docs/advanced.rst.
//
// These base classes are exactly the same, but we technically need distinct
// classes for this example code because we need to be able to bind them
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
// multiple python classes).
class A_Repeat {
#define A_METHODS \
public: \
virtual int unlucky_number() = 0; \
virtual std::string say_something(unsigned times) { \
std::string s = ""; \
for (unsigned i = 0; i < times; ++i) \
s += "hi"; \
return s; \
} \
std::string say_everything() { \
return say_something(1) + " " + std::to_string(unlucky_number()); \
}
A_METHODS
};
class B_Repeat : public A_Repeat {
#define B_METHODS \
public: \
int unlucky_number() override { return 13; } \
std::string say_something(unsigned times) override { \
return "B says hi " + std::to_string(times) + " times"; \
} \
virtual double lucky_number() { return 7.0; }
B_METHODS
};
class C_Repeat : public B_Repeat {
#define C_METHODS \
public: \
int unlucky_number() override { return 4444; } \
double lucky_number() override { return 888; }
C_METHODS
};
class D_Repeat : public C_Repeat {
#define D_METHODS // Nothing overridden.
D_METHODS
};
// Base classes for templated inheritance trampolines. Identical to the repeat-everything version:
class A_Tpl { A_METHODS };
class B_Tpl : public A_Tpl { B_METHODS };
class C_Tpl : public B_Tpl { C_METHODS };
class D_Tpl : public C_Tpl { D_METHODS };
// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
class PyA_Repeat : public A_Repeat {
public:
using A_Repeat::A_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); }
};
class PyB_Repeat : public B_Repeat {
public:
using B_Repeat::B_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); }
};
class PyC_Repeat : public C_Repeat {
public:
using C_Repeat::C_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); }
};
class PyD_Repeat : public D_Repeat {
public:
using D_Repeat::D_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); }
};
// Inheritance approach 2: templated trampoline classes.
//
// Advantages:
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
// methods (repeat).
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
// properly inherit constructors.
//
// Disadvantage:
// - the compiler must still generate and compile 14 different methods (more, even, than the 11
// required for the repeat approach) instead of the 6 required for MI. (If there was no pure
// method (or no pure method override), the number would drop down to the same 11 as the repeat
// approach).
template <class Base = A_Tpl>
class PyA_Tpl : public Base {
public:
using Base::Base; // Inherit constructors
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); }
};
template <class Base = B_Tpl>
class PyB_Tpl : public PyA_Tpl<Base> {
public:
using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); }
double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); }
};
// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
/*
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
public:
using PyB_Tpl<Base>::PyB_Tpl;
};
template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
public:
using PyC_Tpl<Base>::PyC_Tpl;
};
*/
void initialize_inherited_virtuals(py::module &m) {
// test_inherited_virtuals
// Method 1: repeat
py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat")
.def(py::init<>())
.def("unlucky_number", &A_Repeat::unlucky_number)
.def("say_something", &A_Repeat::say_something)
.def("say_everything", &A_Repeat::say_everything);
py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat")
.def(py::init<>())
.def("lucky_number", &B_Repeat::lucky_number);
py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat")
.def(py::init<>());
py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat")
.def(py::init<>());
// test_
// Method 2: Templated trampolines
py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl")
.def(py::init<>())
.def("unlucky_number", &A_Tpl::unlucky_number)
.def("say_something", &A_Tpl::say_something)
.def("say_everything", &A_Tpl::say_everything);
py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl")
.def(py::init<>())
.def("lucky_number", &B_Tpl::lucky_number);
py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl")
.def(py::init<>());
py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl")
.def(py::init<>());
};