mirror of
https://github.com/pybind/pybind11.git
synced 2024-12-02 01:47:12 +00:00
479e9a50f3
When converting an array to an Eigen matrix, ignore the strides if any dimension size is 0. If the array is empty, the strides aren't relevant, and especially numpy ≥ 1.23 explicitly sets the strides to 0 in this case. (See numpy commit dd5ab7b11520.) Update tests to verify that this works, and continues to work.
709 lines
31 KiB
C++
709 lines
31 KiB
C++
/*
|
|
pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
/* HINT: To suppress warnings originating from the Eigen headers, use -isystem.
|
|
See also:
|
|
https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir
|
|
https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler
|
|
*/
|
|
|
|
#include "numpy.h"
|
|
|
|
// The C4127 suppression was introduced for Eigen 3.4.0. In theory we could
|
|
// make it version specific, or even remove it later, but considering that
|
|
// 1. C4127 is generally far more distracting than useful for modern template code, and
|
|
// 2. we definitely want to ignore any MSVC warnings originating from Eigen code,
|
|
// it is probably best to keep this around indefinitely.
|
|
#if defined(_MSC_VER)
|
|
# pragma warning(push)
|
|
# pragma warning(disable : 4127) // C4127: conditional expression is constant
|
|
# pragma warning(disable : 5054) // https://github.com/pybind/pybind11/pull/3741
|
|
// C5054: operator '&': deprecated between enumerations of different types
|
|
#endif
|
|
|
|
#include <Eigen/Core>
|
|
#include <Eigen/SparseCore>
|
|
|
|
#if defined(_MSC_VER)
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
|
|
// move constructors that break things. We could detect this an explicitly copy, but an extra copy
|
|
// of matrices seems highly undesirable.
|
|
static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7),
|
|
"Eigen support in pybind11 requires Eigen >= 3.2.7");
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
|
|
|
// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
|
|
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
|
|
template <typename MatrixType>
|
|
using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
|
|
template <typename MatrixType>
|
|
using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(detail)
|
|
|
|
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
|
|
using EigenIndex = Eigen::Index;
|
|
template <typename Scalar, int Flags, typename StorageIndex>
|
|
using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>;
|
|
#else
|
|
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
|
|
template <typename Scalar, int Flags, typename StorageIndex>
|
|
using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>;
|
|
#endif
|
|
|
|
// Matches Eigen::Map, Eigen::Ref, blocks, etc:
|
|
template <typename T>
|
|
using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>,
|
|
std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
|
|
template <typename T>
|
|
using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
|
|
template <typename T>
|
|
using is_eigen_dense_plain
|
|
= all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
|
|
template <typename T>
|
|
using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
|
|
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
|
|
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
|
|
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
|
|
// SelfAdjointView fall into this category.
|
|
template <typename T>
|
|
using is_eigen_other
|
|
= all_of<is_template_base_of<Eigen::EigenBase, T>,
|
|
negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>;
|
|
|
|
// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
|
|
template <bool EigenRowMajor>
|
|
struct EigenConformable {
|
|
bool conformable = false;
|
|
EigenIndex rows = 0, cols = 0;
|
|
EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
|
|
bool negativestrides = false; // If true, do not use stride!
|
|
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
EigenConformable(bool fits = false) : conformable{fits} {}
|
|
// Matrix type:
|
|
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
|
|
: conformable{true}, rows{r}, cols{c},
|
|
// TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity.
|
|
// http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
|
|
stride{EigenRowMajor ? (rstride > 0 ? rstride : 0)
|
|
: (cstride > 0 ? cstride : 0) /* outer stride */,
|
|
EigenRowMajor ? (cstride > 0 ? cstride : 0)
|
|
: (rstride > 0 ? rstride : 0) /* inner stride */},
|
|
negativestrides{rstride < 0 || cstride < 0} {}
|
|
// Vector type:
|
|
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
|
|
: EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {}
|
|
|
|
template <typename props>
|
|
bool stride_compatible() const {
|
|
// To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
|
|
// matching strides, or a dimension size of 1 (in which case the stride value is
|
|
// irrelevant). Alternatively, if any dimension size is 0, the strides are not relevant
|
|
// (and numpy ≥ 1.23 sets the strides to 0 in that case, so we need to check explicitly).
|
|
if (negativestrides) {
|
|
return false;
|
|
}
|
|
if (rows == 0 || cols == 0) {
|
|
return true;
|
|
}
|
|
return (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner()
|
|
|| (EigenRowMajor ? cols : rows) == 1)
|
|
&& (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer()
|
|
|| (EigenRowMajor ? rows : cols) == 1);
|
|
}
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
operator bool() const { return conformable; }
|
|
};
|
|
|
|
template <typename Type>
|
|
struct eigen_extract_stride {
|
|
using type = Type;
|
|
};
|
|
template <typename PlainObjectType, int MapOptions, typename StrideType>
|
|
struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> {
|
|
using type = StrideType;
|
|
};
|
|
template <typename PlainObjectType, int Options, typename StrideType>
|
|
struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> {
|
|
using type = StrideType;
|
|
};
|
|
|
|
// Helper struct for extracting information from an Eigen type
|
|
template <typename Type_>
|
|
struct EigenProps {
|
|
using Type = Type_;
|
|
using Scalar = typename Type::Scalar;
|
|
using StrideType = typename eigen_extract_stride<Type>::type;
|
|
static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime,
|
|
size = Type::SizeAtCompileTime;
|
|
static constexpr bool row_major = Type::IsRowMajor,
|
|
vector
|
|
= Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
|
|
fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic,
|
|
fixed = size != Eigen::Dynamic, // Fully-fixed size
|
|
dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
|
|
|
|
template <EigenIndex i, EigenIndex ifzero>
|
|
using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
|
|
static constexpr EigenIndex inner_stride
|
|
= if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
|
|
outer_stride = if_zero < StrideType::OuterStrideAtCompileTime,
|
|
vector ? size
|
|
: row_major ? cols
|
|
: rows > ::value;
|
|
static constexpr bool dynamic_stride
|
|
= inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
|
|
static constexpr bool requires_row_major
|
|
= !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
|
|
static constexpr bool requires_col_major
|
|
= !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
|
|
|
|
// Takes an input array and determines whether we can make it fit into the Eigen type. If
|
|
// the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
|
|
// (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
|
|
static EigenConformable<row_major> conformable(const array &a) {
|
|
const auto dims = a.ndim();
|
|
if (dims < 1 || dims > 2) {
|
|
return false;
|
|
}
|
|
|
|
if (dims == 2) { // Matrix type: require exact match (or dynamic)
|
|
|
|
EigenIndex np_rows = a.shape(0), np_cols = a.shape(1),
|
|
np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
|
|
np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
|
|
if ((PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && np_rows != rows)
|
|
|| (PYBIND11_SILENCE_MSVC_C4127(fixed_cols) && np_cols != cols)) {
|
|
return false;
|
|
}
|
|
|
|
return {np_rows, np_cols, np_rstride, np_cstride};
|
|
}
|
|
|
|
// Otherwise we're storing an n-vector. Only one of the strides will be used, but
|
|
// whichever is used, we want the (single) numpy stride value.
|
|
const EigenIndex n = a.shape(0),
|
|
stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
|
|
|
|
if (vector) { // Eigen type is a compile-time vector
|
|
if (PYBIND11_SILENCE_MSVC_C4127(fixed) && size != n) {
|
|
return false; // Vector size mismatch
|
|
}
|
|
return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
|
|
}
|
|
if (fixed) {
|
|
// The type has a fixed size, but is not a vector: abort
|
|
return false;
|
|
}
|
|
if (fixed_cols) {
|
|
// Since this isn't a vector, cols must be != 1. We allow this only if it exactly
|
|
// equals the number of elements (rows is Dynamic, and so 1 row is allowed).
|
|
if (cols != n) {
|
|
return false;
|
|
}
|
|
return {1, n, stride};
|
|
} // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
|
|
if (PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && rows != n) {
|
|
return false;
|
|
}
|
|
return {n, 1, stride};
|
|
}
|
|
|
|
static constexpr bool show_writeable
|
|
= is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
|
|
static constexpr bool show_order = is_eigen_dense_map<Type>::value;
|
|
static constexpr bool show_c_contiguous = show_order && requires_row_major;
|
|
static constexpr bool show_f_contiguous
|
|
= !show_c_contiguous && show_order && requires_col_major;
|
|
|
|
static constexpr auto descriptor
|
|
= const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
|
|
+ const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
|
|
+ const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
|
|
+
|
|
// For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
|
|
// be satisfied: writeable=True (for a mutable reference), and, depending on the map's
|
|
// stride options, possibly f_contiguous or c_contiguous. We include them in the
|
|
// descriptor output to provide some hint as to why a TypeError is occurring (otherwise
|
|
// it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
|
|
// an error message that you *gave* a numpy.ndarray of the right type and dimensions.
|
|
const_name<show_writeable>(", flags.writeable", "")
|
|
+ const_name<show_c_contiguous>(", flags.c_contiguous", "")
|
|
+ const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
|
|
};
|
|
|
|
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
|
|
// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
|
|
template <typename props>
|
|
handle
|
|
eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
|
|
constexpr ssize_t elem_size = sizeof(typename props::Scalar);
|
|
array a;
|
|
if (props::vector) {
|
|
a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base);
|
|
} else {
|
|
a = array({src.rows(), src.cols()},
|
|
{elem_size * src.rowStride(), elem_size * src.colStride()},
|
|
src.data(),
|
|
base);
|
|
}
|
|
|
|
if (!writeable) {
|
|
array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
|
|
}
|
|
|
|
return a.release();
|
|
}
|
|
|
|
// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
|
|
// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
|
|
// the base will be set to None, and lifetime management is up to the caller). The numpy array is
|
|
// non-writeable if the given type is const.
|
|
template <typename props, typename Type>
|
|
handle eigen_ref_array(Type &src, handle parent = none()) {
|
|
// none here is to get past array's should-we-copy detection, which currently always
|
|
// copies when there is no base. Setting the base to None should be harmless.
|
|
return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
|
|
}
|
|
|
|
// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a
|
|
// numpy array that references the encapsulated data with a python-side reference to the capsule to
|
|
// tie its destruction to that of any dependent python objects. Const-ness is determined by
|
|
// whether or not the Type of the pointer given is const.
|
|
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
|
|
handle eigen_encapsulate(Type *src) {
|
|
capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
|
|
return eigen_ref_array<props>(*src, base);
|
|
}
|
|
|
|
// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
|
|
// types.
|
|
template <typename Type>
|
|
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
|
|
using Scalar = typename Type::Scalar;
|
|
using props = EigenProps<Type>;
|
|
|
|
bool load(handle src, bool convert) {
|
|
// If we're in no-convert mode, only load if given an array of the correct type
|
|
if (!convert && !isinstance<array_t<Scalar>>(src)) {
|
|
return false;
|
|
}
|
|
|
|
// Coerce into an array, but don't do type conversion yet; the copy below handles it.
|
|
auto buf = array::ensure(src);
|
|
|
|
if (!buf) {
|
|
return false;
|
|
}
|
|
|
|
auto dims = buf.ndim();
|
|
if (dims < 1 || dims > 2) {
|
|
return false;
|
|
}
|
|
|
|
auto fits = props::conformable(buf);
|
|
if (!fits) {
|
|
return false;
|
|
}
|
|
|
|
// Allocate the new type, then build a numpy reference into it
|
|
value = Type(fits.rows, fits.cols);
|
|
auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
|
|
if (dims == 1) {
|
|
ref = ref.squeeze();
|
|
} else if (ref.ndim() == 1) {
|
|
buf = buf.squeeze();
|
|
}
|
|
|
|
int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
|
|
|
|
if (result < 0) { // Copy failed!
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// Cast implementation
|
|
template <typename CType>
|
|
static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
|
|
switch (policy) {
|
|
case return_value_policy::take_ownership:
|
|
case return_value_policy::automatic:
|
|
return eigen_encapsulate<props>(src);
|
|
case return_value_policy::move:
|
|
return eigen_encapsulate<props>(new CType(std::move(*src)));
|
|
case return_value_policy::copy:
|
|
return eigen_array_cast<props>(*src);
|
|
case return_value_policy::reference:
|
|
case return_value_policy::automatic_reference:
|
|
return eigen_ref_array<props>(*src);
|
|
case return_value_policy::reference_internal:
|
|
return eigen_ref_array<props>(*src, parent);
|
|
default:
|
|
throw cast_error("unhandled return_value_policy: should not happen!");
|
|
};
|
|
}
|
|
|
|
public:
|
|
// Normal returned non-reference, non-const value:
|
|
static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
|
|
return cast_impl(&src, return_value_policy::move, parent);
|
|
}
|
|
// If you return a non-reference const, we mark the numpy array readonly:
|
|
static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
|
|
return cast_impl(&src, return_value_policy::move, parent);
|
|
}
|
|
// lvalue reference return; default (automatic) becomes copy
|
|
static handle cast(Type &src, return_value_policy policy, handle parent) {
|
|
if (policy == return_value_policy::automatic
|
|
|| policy == return_value_policy::automatic_reference) {
|
|
policy = return_value_policy::copy;
|
|
}
|
|
return cast_impl(&src, policy, parent);
|
|
}
|
|
// const lvalue reference return; default (automatic) becomes copy
|
|
static handle cast(const Type &src, return_value_policy policy, handle parent) {
|
|
if (policy == return_value_policy::automatic
|
|
|| policy == return_value_policy::automatic_reference) {
|
|
policy = return_value_policy::copy;
|
|
}
|
|
return cast(&src, policy, parent);
|
|
}
|
|
// non-const pointer return
|
|
static handle cast(Type *src, return_value_policy policy, handle parent) {
|
|
return cast_impl(src, policy, parent);
|
|
}
|
|
// const pointer return
|
|
static handle cast(const Type *src, return_value_policy policy, handle parent) {
|
|
return cast_impl(src, policy, parent);
|
|
}
|
|
|
|
static constexpr auto name = props::descriptor;
|
|
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
operator Type *() { return &value; }
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
operator Type &() { return value; }
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
operator Type &&() && { return std::move(value); }
|
|
template <typename T>
|
|
using cast_op_type = movable_cast_op_type<T>;
|
|
|
|
private:
|
|
Type value;
|
|
};
|
|
|
|
// Base class for casting reference/map/block/etc. objects back to python.
|
|
template <typename MapType>
|
|
struct eigen_map_caster {
|
|
private:
|
|
using props = EigenProps<MapType>;
|
|
|
|
public:
|
|
// Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
|
|
// to stay around), but we'll allow it under the assumption that you know what you're doing
|
|
// (and have an appropriate keep_alive in place). We return a numpy array pointing directly at
|
|
// the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.)
|
|
// Note that this means you need to ensure you don't destroy the object in some other way (e.g.
|
|
// with an appropriate keep_alive, or with a reference to a statically allocated matrix).
|
|
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
|
|
switch (policy) {
|
|
case return_value_policy::copy:
|
|
return eigen_array_cast<props>(src);
|
|
case return_value_policy::reference_internal:
|
|
return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
|
|
case return_value_policy::reference:
|
|
case return_value_policy::automatic:
|
|
case return_value_policy::automatic_reference:
|
|
return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
|
|
default:
|
|
// move, take_ownership don't make any sense for a ref/map:
|
|
pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
|
|
}
|
|
}
|
|
|
|
static constexpr auto name = props::descriptor;
|
|
|
|
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
|
|
// types but not bound arguments). We still provide them (with an explicitly delete) so that
|
|
// you end up here if you try anyway.
|
|
bool load(handle, bool) = delete;
|
|
operator MapType() = delete;
|
|
template <typename>
|
|
using cast_op_type = MapType;
|
|
};
|
|
|
|
// We can return any map-like object (but can only load Refs, specialized next):
|
|
template <typename Type>
|
|
struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {};
|
|
|
|
// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
|
|
// copying (it requires some extra effort in many cases).
|
|
template <typename PlainObjectType, typename StrideType>
|
|
struct type_caster<
|
|
Eigen::Ref<PlainObjectType, 0, StrideType>,
|
|
enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>>
|
|
: public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
|
|
private:
|
|
using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
|
|
using props = EigenProps<Type>;
|
|
using Scalar = typename props::Scalar;
|
|
using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
|
|
using Array
|
|
= array_t<Scalar,
|
|
array::forcecast
|
|
| ((props::row_major ? props::inner_stride : props::outer_stride) == 1
|
|
? array::c_style
|
|
: (props::row_major ? props::outer_stride : props::inner_stride) == 1
|
|
? array::f_style
|
|
: 0)>;
|
|
static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
|
|
// Delay construction (these have no default constructor)
|
|
std::unique_ptr<MapType> map;
|
|
std::unique_ptr<Type> ref;
|
|
// Our array. When possible, this is just a numpy array pointing to the source data, but
|
|
// sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an
|
|
// incompatible layout, or is an array of a type that needs to be converted). Using a numpy
|
|
// temporary (rather than an Eigen temporary) saves an extra copy when we need both type
|
|
// conversion and storage order conversion. (Note that we refuse to use this temporary copy
|
|
// when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference).
|
|
Array copy_or_ref;
|
|
|
|
public:
|
|
bool load(handle src, bool convert) {
|
|
// First check whether what we have is already an array of the right type. If not, we
|
|
// can't avoid a copy (because the copy is also going to do type conversion).
|
|
bool need_copy = !isinstance<Array>(src);
|
|
|
|
EigenConformable<props::row_major> fits;
|
|
if (!need_copy) {
|
|
// We don't need a converting copy, but we also need to check whether the strides are
|
|
// compatible with the Ref's stride requirements
|
|
auto aref = reinterpret_borrow<Array>(src);
|
|
|
|
if (aref && (!need_writeable || aref.writeable())) {
|
|
fits = props::conformable(aref);
|
|
if (!fits) {
|
|
return false; // Incompatible dimensions
|
|
}
|
|
if (!fits.template stride_compatible<props>()) {
|
|
need_copy = true;
|
|
} else {
|
|
copy_or_ref = std::move(aref);
|
|
}
|
|
} else {
|
|
need_copy = true;
|
|
}
|
|
}
|
|
|
|
if (need_copy) {
|
|
// We need to copy: If we need a mutable reference, or we're not supposed to convert
|
|
// (either because we're in the no-convert overload pass, or because we're explicitly
|
|
// instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
|
|
if (!convert || need_writeable) {
|
|
return false;
|
|
}
|
|
|
|
Array copy = Array::ensure(src);
|
|
if (!copy) {
|
|
return false;
|
|
}
|
|
fits = props::conformable(copy);
|
|
if (!fits || !fits.template stride_compatible<props>()) {
|
|
return false;
|
|
}
|
|
copy_or_ref = std::move(copy);
|
|
loader_life_support::add_patient(copy_or_ref);
|
|
}
|
|
|
|
ref.reset();
|
|
map.reset(new MapType(data(copy_or_ref),
|
|
fits.rows,
|
|
fits.cols,
|
|
make_stride(fits.stride.outer(), fits.stride.inner())));
|
|
ref.reset(new Type(*map));
|
|
|
|
return true;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
operator Type *() { return ref.get(); }
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
operator Type &() { return *ref; }
|
|
template <typename _T>
|
|
using cast_op_type = pybind11::detail::cast_op_type<_T>;
|
|
|
|
private:
|
|
template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
|
|
Scalar *data(Array &a) {
|
|
return a.mutable_data();
|
|
}
|
|
|
|
template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
|
|
const Scalar *data(Array &a) {
|
|
return a.data();
|
|
}
|
|
|
|
// Attempt to figure out a constructor of `Stride` that will work.
|
|
// If both strides are fixed, use a default constructor:
|
|
template <typename S>
|
|
using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic
|
|
&& S::OuterStrideAtCompileTime != Eigen::Dynamic
|
|
&& std::is_default_constructible<S>::value>;
|
|
// Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
|
|
// Eigen::Stride, and use it:
|
|
template <typename S>
|
|
using stride_ctor_dual
|
|
= bool_constant<!stride_ctor_default<S>::value
|
|
&& std::is_constructible<S, EigenIndex, EigenIndex>::value>;
|
|
// Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
|
|
// it (passing whichever stride is dynamic).
|
|
template <typename S>
|
|
using stride_ctor_outer
|
|
= bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
|
|
&& S::OuterStrideAtCompileTime == Eigen::Dynamic
|
|
&& S::InnerStrideAtCompileTime != Eigen::Dynamic
|
|
&& std::is_constructible<S, EigenIndex>::value>;
|
|
template <typename S>
|
|
using stride_ctor_inner
|
|
= bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
|
|
&& S::InnerStrideAtCompileTime == Eigen::Dynamic
|
|
&& S::OuterStrideAtCompileTime != Eigen::Dynamic
|
|
&& std::is_constructible<S, EigenIndex>::value>;
|
|
|
|
template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
|
|
static S make_stride(EigenIndex, EigenIndex) {
|
|
return S();
|
|
}
|
|
template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
|
|
static S make_stride(EigenIndex outer, EigenIndex inner) {
|
|
return S(outer, inner);
|
|
}
|
|
template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
|
|
static S make_stride(EigenIndex outer, EigenIndex) {
|
|
return S(outer);
|
|
}
|
|
template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
|
|
static S make_stride(EigenIndex, EigenIndex inner) {
|
|
return S(inner);
|
|
}
|
|
};
|
|
|
|
// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
|
|
// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
|
|
// load() is not supported, but we can cast them into the python domain by first copying to a
|
|
// regular Eigen::Matrix, then casting that.
|
|
template <typename Type>
|
|
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
|
|
protected:
|
|
using Matrix
|
|
= Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
|
|
using props = EigenProps<Matrix>;
|
|
|
|
public:
|
|
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
|
|
handle h = eigen_encapsulate<props>(new Matrix(src));
|
|
return h;
|
|
}
|
|
static handle cast(const Type *src, return_value_policy policy, handle parent) {
|
|
return cast(*src, policy, parent);
|
|
}
|
|
|
|
static constexpr auto name = props::descriptor;
|
|
|
|
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
|
|
// types but not bound arguments). We still provide them (with an explicitly delete) so that
|
|
// you end up here if you try anyway.
|
|
bool load(handle, bool) = delete;
|
|
operator Type() = delete;
|
|
template <typename>
|
|
using cast_op_type = Type;
|
|
};
|
|
|
|
template <typename Type>
|
|
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
|
|
using Scalar = typename Type::Scalar;
|
|
using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
|
|
using Index = typename Type::Index;
|
|
static constexpr bool rowMajor = Type::IsRowMajor;
|
|
|
|
bool load(handle src, bool) {
|
|
if (!src) {
|
|
return false;
|
|
}
|
|
|
|
auto obj = reinterpret_borrow<object>(src);
|
|
object sparse_module = module_::import("scipy.sparse");
|
|
object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix");
|
|
|
|
if (!type::handle_of(obj).is(matrix_type)) {
|
|
try {
|
|
obj = matrix_type(obj);
|
|
} catch (const error_already_set &) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
auto values = array_t<Scalar>((object) obj.attr("data"));
|
|
auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
|
|
auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
|
|
auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
|
|
auto nnz = obj.attr("nnz").cast<Index>();
|
|
|
|
if (!values || !innerIndices || !outerIndices) {
|
|
return false;
|
|
}
|
|
|
|
value = EigenMapSparseMatrix<Scalar,
|
|
Type::Flags &(Eigen::RowMajor | Eigen::ColMajor),
|
|
StorageIndex>(shape[0].cast<Index>(),
|
|
shape[1].cast<Index>(),
|
|
std::move(nnz),
|
|
outerIndices.mutable_data(),
|
|
innerIndices.mutable_data(),
|
|
values.mutable_data());
|
|
|
|
return true;
|
|
}
|
|
|
|
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
|
|
const_cast<Type &>(src).makeCompressed();
|
|
|
|
object matrix_type
|
|
= module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix");
|
|
|
|
array data(src.nonZeros(), src.valuePtr());
|
|
array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
|
|
array innerIndices(src.nonZeros(), src.innerIndexPtr());
|
|
|
|
return matrix_type(std::make_tuple(
|
|
std::move(data), std::move(innerIndices), std::move(outerIndices)),
|
|
std::make_pair(src.rows(), src.cols()))
|
|
.release();
|
|
}
|
|
|
|
PYBIND11_TYPE_CASTER(Type,
|
|
const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[",
|
|
"scipy.sparse.csc_matrix[")
|
|
+ npy_format_descriptor<Scalar>::name + const_name("]"));
|
|
};
|
|
|
|
PYBIND11_NAMESPACE_END(detail)
|
|
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|