mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-30 08:57:11 +00:00
f1a2e03d19
* Change Python version guard: PYTHON < 3.7 IS UNSUPPORTED.
* Replace or remove Python 3.6 jobs.
* Move appveyor to Python 3.8
* Change `[tool.pylint]` `master.py-version` from `3.6` to `3.8`
* Change `[tool.pylint]` `master.py-version` to `3.7`
* Remove `centos:7` job; Change almalinux:8 job to use Python 3.8
* Try 🐍 3.8 • ubuntu-20.04 • x64 without `-DCMAKE_CXX_FLAGS="-D_=1"`
* Update setup.cfg as suggested by @henryiii
* Try running `cmake --build . --target cpptest` on all platforms (`standard` job).
* Disable deadsnakes jobs entirely.
* Apply PR #5179: Add Python 3.10, 3.11, 3.12 to win32 job matrix.
* Add back `-DCMAKE_CXX_FLAGS="-D_=1"` but do not install boost in that case.
* PY_VERSION_HEX < 3.7 cleanup pass: include/pybind11
* WITH_THREAD cleanup pass: include/pybind11
* Undo incorrect change.
* Revert "Disable deadsnakes jobs entirely."
This reverts commit bbcd0087b2
.
* WITH_THREAD cleanup pass: tests/
* Change Python version guard in pybind11/__init__.py: pybind11 does not support Python < 3.7.
* Misc cleanup pass
* chore: use future imports
Signed-off-by: Henry Schreiner <henryschreineriii@gmail.com>
* Update tests/test_numpy_array.py
* Update test_numpy_array.py
---------
Signed-off-by: Henry Schreiner <henryschreineriii@gmail.com>
Co-authored-by: Henry Schreiner <henryschreineriii@gmail.com>
269 lines
9.5 KiB
Python
269 lines
9.5 KiB
Python
from __future__ import annotations
|
|
|
|
import pytest
|
|
|
|
from pybind11_tests import numpy_vectorize as m
|
|
|
|
np = pytest.importorskip("numpy")
|
|
|
|
|
|
def test_vectorize(capture):
|
|
assert np.isclose(m.vectorized_func3(np.array(3 + 7j)), [6 + 14j])
|
|
|
|
for f in [m.vectorized_func, m.vectorized_func2]:
|
|
with capture:
|
|
assert np.isclose(f(1, 2, 3), 6)
|
|
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
|
|
with capture:
|
|
assert np.isclose(f(np.array(1), np.array(2), 3), 6)
|
|
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
|
|
with capture:
|
|
assert np.allclose(f(np.array([1, 3]), np.array([2, 4]), 3), [6, 36])
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=3)
|
|
my_func(x:int=3, y:float=4, z:float=3)
|
|
"""
|
|
)
|
|
with capture:
|
|
a = np.array([[1, 2], [3, 4]], order="F")
|
|
b = np.array([[10, 20], [30, 40]], order="F")
|
|
c = 3
|
|
result = f(a, b, c)
|
|
assert np.allclose(result, a * b * c)
|
|
assert result.flags.f_contiguous
|
|
# All inputs are F order and full or singletons, so we the result is in col-major order:
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=10, z:float=3)
|
|
my_func(x:int=3, y:float=30, z:float=3)
|
|
my_func(x:int=2, y:float=20, z:float=3)
|
|
my_func(x:int=4, y:float=40, z:float=3)
|
|
"""
|
|
)
|
|
with capture:
|
|
a, b, c = (
|
|
np.array([[1, 3, 5], [7, 9, 11]]),
|
|
np.array([[2, 4, 6], [8, 10, 12]]),
|
|
3,
|
|
)
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=3)
|
|
my_func(x:int=3, y:float=4, z:float=3)
|
|
my_func(x:int=5, y:float=6, z:float=3)
|
|
my_func(x:int=7, y:float=8, z:float=3)
|
|
my_func(x:int=9, y:float=10, z:float=3)
|
|
my_func(x:int=11, y:float=12, z:float=3)
|
|
"""
|
|
)
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=2, y:float=3, z:float=2)
|
|
my_func(x:int=3, y:float=4, z:float=2)
|
|
my_func(x:int=4, y:float=2, z:float=2)
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=4, z:float=2)
|
|
"""
|
|
)
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=2, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
)
|
|
with capture:
|
|
a, b, c = (
|
|
np.array([[1, 2, 3], [4, 5, 6]], order="F"),
|
|
np.array([[2], [3]]),
|
|
2,
|
|
)
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=2, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
)
|
|
with capture:
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]])[::, ::2], np.array([[2], [3]]), 2
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
)
|
|
with capture:
|
|
a, b, c = (
|
|
np.array([[1, 2, 3], [4, 5, 6]], order="F")[::, ::2],
|
|
np.array([[2], [3]]),
|
|
2,
|
|
)
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
assert (
|
|
capture
|
|
== """
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
"""
|
|
)
|
|
|
|
|
|
def test_type_selection():
|
|
assert m.selective_func(np.array([1], dtype=np.int32)) == "Int branch taken."
|
|
assert m.selective_func(np.array([1.0], dtype=np.float32)) == "Float branch taken."
|
|
assert (
|
|
m.selective_func(np.array([1.0j], dtype=np.complex64))
|
|
== "Complex float branch taken."
|
|
)
|
|
|
|
|
|
def test_docs(doc):
|
|
assert (
|
|
doc(m.vectorized_func)
|
|
== """
|
|
vectorized_func(arg0: numpy.ndarray[numpy.int32], arg1: numpy.ndarray[numpy.float32], arg2: numpy.ndarray[numpy.float64]) -> object
|
|
"""
|
|
)
|
|
|
|
|
|
def test_trivial_broadcasting():
|
|
trivial, vectorized_is_trivial = m.trivial, m.vectorized_is_trivial
|
|
|
|
assert vectorized_is_trivial(1, 2, 3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(np.array(1), np.array(2), 3) == trivial.c_trivial
|
|
assert (
|
|
vectorized_is_trivial(np.array([1, 3]), np.array([2, 4]), 3)
|
|
== trivial.c_trivial
|
|
)
|
|
assert trivial.c_trivial == vectorized_is_trivial(
|
|
np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3
|
|
)
|
|
assert (
|
|
vectorized_is_trivial(np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2)
|
|
== trivial.non_trivial
|
|
)
|
|
assert (
|
|
vectorized_is_trivial(np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2)
|
|
== trivial.non_trivial
|
|
)
|
|
z1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype="int32")
|
|
z2 = np.array(z1, dtype="float32")
|
|
z3 = np.array(z1, dtype="float64")
|
|
assert vectorized_is_trivial(z1, z2, z3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(1, z2, z3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(z1, 1, z3) == trivial.c_trivial
|
|
assert vectorized_is_trivial(z1, z2, 1) == trivial.c_trivial
|
|
assert vectorized_is_trivial(z1[::2, ::2], 1, 1) == trivial.non_trivial
|
|
assert vectorized_is_trivial(1, 1, z1[::2, ::2]) == trivial.c_trivial
|
|
assert vectorized_is_trivial(1, 1, z3[::2, ::2]) == trivial.non_trivial
|
|
assert vectorized_is_trivial(z1, 1, z3[1::4, 1::4]) == trivial.c_trivial
|
|
|
|
y1 = np.array(z1, order="F")
|
|
y2 = np.array(y1)
|
|
y3 = np.array(y1)
|
|
assert vectorized_is_trivial(y1, y2, y3) == trivial.f_trivial
|
|
assert vectorized_is_trivial(y1, 1, 1) == trivial.f_trivial
|
|
assert vectorized_is_trivial(1, y2, 1) == trivial.f_trivial
|
|
assert vectorized_is_trivial(1, 1, y3) == trivial.f_trivial
|
|
assert vectorized_is_trivial(y1, z2, 1) == trivial.non_trivial
|
|
assert vectorized_is_trivial(z1[1::4, 1::4], y2, 1) == trivial.f_trivial
|
|
assert vectorized_is_trivial(y1[1::4, 1::4], z2, 1) == trivial.c_trivial
|
|
|
|
assert m.vectorized_func(z1, z2, z3).flags.c_contiguous
|
|
assert m.vectorized_func(y1, y2, y3).flags.f_contiguous
|
|
assert m.vectorized_func(z1, 1, 1).flags.c_contiguous
|
|
assert m.vectorized_func(1, y2, 1).flags.f_contiguous
|
|
assert m.vectorized_func(z1[1::4, 1::4], y2, 1).flags.f_contiguous
|
|
assert m.vectorized_func(y1[1::4, 1::4], z2, 1).flags.c_contiguous
|
|
|
|
|
|
def test_passthrough_arguments(doc):
|
|
assert doc(m.vec_passthrough) == (
|
|
"vec_passthrough("
|
|
+ ", ".join(
|
|
[
|
|
"arg0: float",
|
|
"arg1: numpy.ndarray[numpy.float64]",
|
|
"arg2: numpy.ndarray[numpy.float64]",
|
|
"arg3: numpy.ndarray[numpy.int32]",
|
|
"arg4: int",
|
|
"arg5: m.numpy_vectorize.NonPODClass",
|
|
"arg6: numpy.ndarray[numpy.float64]",
|
|
]
|
|
)
|
|
+ ") -> object"
|
|
)
|
|
|
|
b = np.array([[10, 20, 30]], dtype="float64")
|
|
c = np.array([100, 200]) # NOT a vectorized argument
|
|
d = np.array([[1000], [2000], [3000]], dtype="int")
|
|
g = np.array([[1000000, 2000000, 3000000]], dtype="int") # requires casting
|
|
assert np.all(
|
|
m.vec_passthrough(1, b, c, d, 10000, m.NonPODClass(100000), g)
|
|
== np.array(
|
|
[
|
|
[1111111, 2111121, 3111131],
|
|
[1112111, 2112121, 3112131],
|
|
[1113111, 2113121, 3113131],
|
|
]
|
|
)
|
|
)
|
|
|
|
|
|
def test_method_vectorization():
|
|
o = m.VectorizeTestClass(3)
|
|
x = np.array([1, 2], dtype="int")
|
|
y = np.array([[10], [20]], dtype="float32")
|
|
assert np.all(o.method(x, y) == [[14, 15], [24, 25]])
|
|
|
|
|
|
def test_array_collapse():
|
|
assert not isinstance(m.vectorized_func(1, 2, 3), np.ndarray)
|
|
assert not isinstance(m.vectorized_func(np.array(1), 2, 3), np.ndarray)
|
|
z = m.vectorized_func([1], 2, 3)
|
|
assert isinstance(z, np.ndarray)
|
|
assert z.shape == (1,)
|
|
z = m.vectorized_func(1, [[[2]]], 3)
|
|
assert isinstance(z, np.ndarray)
|
|
assert z.shape == (1, 1, 1)
|
|
|
|
|
|
def test_vectorized_noreturn():
|
|
x = m.NonPODClass(0)
|
|
assert x.value == 0
|
|
m.add_to(x, [1, 2, 3, 4])
|
|
assert x.value == 10
|
|
m.add_to(x, 1)
|
|
assert x.value == 11
|
|
m.add_to(x, [[1, 1], [2, 3]])
|
|
assert x.value == 18
|