pybind11/tests/test_sequences_and_iterators.cpp
Ralf W. Grosse-Kunstleve 6abf2baa62
CodeHealth: Enabling clang-tidy google-explicit-constructor (#3250)
* Adding google-explicit-constructor to .clang-tidy

* clang-tidy explicit attr.h (all automatic)

* clang-tidy explicit cast.h (all automatic)

* clang-tidy detail/init.h (1 NOLINT)

* clang-tidy detail/type_caster_base.h (2 NOLINT)

* clang-tidy pybind11.h (7 NOLINT)

* clang-tidy detail/common.h (3 NOLINT)

* clang-tidy detail/descr.h (2 NOLINT)

* clang-tidy pytypes.h (23 NOLINT, only 1 explicit)

* clang-tidy eigen.h (7 NOLINT, 0 explicit)

* Adding 2 explicit in functional.h

* Adding 4 explicit in iostream.h

* clang-tidy numpy.h (1 NOLINT, 1 explicit)

* clang-tidy embed.h (0 NOLINT, 1 explicit)

* clang-tidy tests/local_bindings.h (0 NOLINT, 4 explicit)

* clang-tidy tests/pybind11_cross_module_tests.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/pybind11_tests.h (0 NOLINT, 2 explicit)

* clang-tidy tests/test_buffers.cpp (0 NOLINT, 2 explicit)

* clang-tidy tests/test_builtin_casters.cpp (0 NOLINT, 4 explicit)

* clang-tidy tests/test_class.cpp (0 NOLINT, 6 explicit)

* clang-tidy tests/test_copy_move.cpp (0 NOLINT, 7 explicit)

* clang-tidy tests/test_embed/external_module.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/test_embed/test_interpreter.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/object.h (0 NOLINT, 2 explicit)

* clang-tidy batch of fully automatic fixes.

* Workaround for MSVC 19.16.27045.0 C++17 Python 2 C++ syntax error.
2021-09-08 18:53:38 -07:00

375 lines
13 KiB
C++

/*
tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators,
etc.
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/operators.h>
#include <pybind11/stl.h>
#include <algorithm>
#include <utility>
template<typename T>
class NonZeroIterator {
const T* ptr_;
public:
explicit NonZeroIterator(const T *ptr) : ptr_(ptr) {}
const T& operator*() const { return *ptr_; }
NonZeroIterator& operator++() { ++ptr_; return *this; }
};
class NonZeroSentinel {};
template<typename A, typename B>
bool operator==(const NonZeroIterator<std::pair<A, B>>& it, const NonZeroSentinel&) {
return !(*it).first || !(*it).second;
}
template <typename PythonType>
py::list test_random_access_iterator(PythonType x) {
if (x.size() < 5)
throw py::value_error("Please provide at least 5 elements for testing.");
auto checks = py::list();
auto assert_equal = [&checks](py::handle a, py::handle b) {
auto result = PyObject_RichCompareBool(a.ptr(), b.ptr(), Py_EQ);
if (result == -1) { throw py::error_already_set(); }
checks.append(result != 0);
};
auto it = x.begin();
assert_equal(x[0], *it);
assert_equal(x[0], it[0]);
assert_equal(x[1], it[1]);
assert_equal(x[1], *(++it));
assert_equal(x[1], *(it++));
assert_equal(x[2], *it);
assert_equal(x[3], *(it += 1));
assert_equal(x[2], *(--it));
assert_equal(x[2], *(it--));
assert_equal(x[1], *it);
assert_equal(x[0], *(it -= 1));
assert_equal(it->attr("real"), x[0].attr("real"));
assert_equal((it + 1)->attr("real"), x[1].attr("real"));
assert_equal(x[1], *(it + 1));
assert_equal(x[1], *(1 + it));
it += 3;
assert_equal(x[1], *(it - 2));
checks.append(static_cast<std::size_t>(x.end() - x.begin()) == x.size());
checks.append((x.begin() + static_cast<std::ptrdiff_t>(x.size())) == x.end());
checks.append(x.begin() < x.end());
return checks;
}
TEST_SUBMODULE(sequences_and_iterators, m) {
// test_sliceable
class Sliceable{
public:
explicit Sliceable(int n) : size(n) {}
int start, stop, step;
int size;
};
py::class_<Sliceable>(m, "Sliceable")
.def(py::init<int>())
.def("__getitem__", [](const Sliceable &s, const py::slice &slice) {
py::ssize_t start = 0, stop = 0, step = 0, slicelength = 0;
if (!slice.compute(s.size, &start, &stop, &step, &slicelength))
throw py::error_already_set();
int istart = static_cast<int>(start);
int istop = static_cast<int>(stop);
int istep = static_cast<int>(step);
return std::make_tuple(istart, istop, istep);
});
// test_sequence
class Sequence {
public:
explicit Sequence(size_t size) : m_size(size) {
print_created(this, "of size", m_size);
m_data = new float[size];
memset(m_data, 0, sizeof(float) * size);
}
explicit Sequence(const std::vector<float> &value) : m_size(value.size()) {
print_created(this, "of size", m_size, "from std::vector");
m_data = new float[m_size];
memcpy(m_data, &value[0], sizeof(float) * m_size);
}
Sequence(const Sequence &s) : m_size(s.m_size) {
print_copy_created(this);
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
Sequence(Sequence &&s) noexcept : m_size(s.m_size), m_data(s.m_data) {
print_move_created(this);
s.m_size = 0;
s.m_data = nullptr;
}
~Sequence() { print_destroyed(this); delete[] m_data; }
Sequence &operator=(const Sequence &s) {
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
print_copy_assigned(this);
return *this;
}
Sequence &operator=(Sequence &&s) noexcept {
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = s.m_data;
s.m_size = 0;
s.m_data = nullptr;
}
print_move_assigned(this);
return *this;
}
bool operator==(const Sequence &s) const {
if (m_size != s.size()) return false;
for (size_t i = 0; i < m_size; ++i)
if (m_data[i] != s[i])
return false;
return true;
}
bool operator!=(const Sequence &s) const { return !operator==(s); }
float operator[](size_t index) const { return m_data[index]; }
float &operator[](size_t index) { return m_data[index]; }
bool contains(float v) const {
for (size_t i = 0; i < m_size; ++i)
if (v == m_data[i])
return true;
return false;
}
Sequence reversed() const {
Sequence result(m_size);
for (size_t i = 0; i < m_size; ++i)
result[m_size - i - 1] = m_data[i];
return result;
}
size_t size() const { return m_size; }
const float *begin() const { return m_data; }
const float *end() const { return m_data+m_size; }
private:
size_t m_size;
float *m_data;
};
py::class_<Sequence>(m, "Sequence")
.def(py::init<size_t>())
.def(py::init<const std::vector<float> &>())
/// Bare bones interface
.def("__getitem__",
[](const Sequence &s, size_t i) {
if (i >= s.size())
throw py::index_error();
return s[i];
})
.def("__setitem__",
[](Sequence &s, size_t i, float v) {
if (i >= s.size())
throw py::index_error();
s[i] = v;
})
.def("__len__", &Sequence::size)
/// Optional sequence protocol operations
.def(
"__iter__",
[](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); },
py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */)
.def("__contains__", [](const Sequence &s, float v) { return s.contains(v); })
.def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); })
/// Slicing protocol (optional)
.def("__getitem__",
[](const Sequence &s, const py::slice &slice) -> Sequence * {
size_t start = 0, stop = 0, step = 0, slicelength = 0;
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
auto *seq = new Sequence(slicelength);
for (size_t i = 0; i < slicelength; ++i) {
(*seq)[i] = s[start];
start += step;
}
return seq;
})
.def("__setitem__",
[](Sequence &s, const py::slice &slice, const Sequence &value) {
size_t start = 0, stop = 0, step = 0, slicelength = 0;
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
if (slicelength != value.size())
throw std::runtime_error(
"Left and right hand size of slice assignment have different sizes!");
for (size_t i = 0; i < slicelength; ++i) {
s[start] = value[i];
start += step;
}
})
/// Comparisons
.def(py::self == py::self)
.def(py::self != py::self)
// Could also define py::self + py::self for concatenation, etc.
;
// test_map_iterator
// Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic
// map-like functionality.
class StringMap {
public:
StringMap() = default;
explicit StringMap(std::unordered_map<std::string, std::string> init)
: map(std::move(init)) {}
void set(const std::string &key, std::string val) { map[key] = std::move(val); }
std::string get(const std::string &key) const { return map.at(key); }
size_t size() const { return map.size(); }
private:
std::unordered_map<std::string, std::string> map;
public:
decltype(map.cbegin()) begin() const { return map.cbegin(); }
decltype(map.cend()) end() const { return map.cend(); }
};
py::class_<StringMap>(m, "StringMap")
.def(py::init<>())
.def(py::init<std::unordered_map<std::string, std::string>>())
.def("__getitem__",
[](const StringMap &map, const std::string &key) {
try {
return map.get(key);
} catch (const std::out_of_range &) {
throw py::key_error("key '" + key + "' does not exist");
}
})
.def("__setitem__", &StringMap::set)
.def("__len__", &StringMap::size)
.def(
"__iter__",
[](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); },
py::keep_alive<0, 1>())
.def(
"items",
[](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); },
py::keep_alive<0, 1>());
// test_generalized_iterators
class IntPairs {
public:
explicit IntPairs(std::vector<std::pair<int, int>> data) : data_(std::move(data)) {}
const std::pair<int, int>* begin() const { return data_.data(); }
private:
std::vector<std::pair<int, int>> data_;
};
py::class_<IntPairs>(m, "IntPairs")
.def(py::init<std::vector<std::pair<int, int>>>())
.def("nonzero", [](const IntPairs& s) {
return py::make_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel());
}, py::keep_alive<0, 1>())
.def("nonzero_keys", [](const IntPairs& s) {
return py::make_key_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel());
}, py::keep_alive<0, 1>())
;
#if 0
// Obsolete: special data structure for exposing custom iterator types to python
// kept here for illustrative purposes because there might be some use cases which
// are not covered by the much simpler py::make_iterator
struct PySequenceIterator {
PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { }
float next() {
if (index == seq.size())
throw py::stop_iteration();
return seq[index++];
}
const Sequence &seq;
py::object ref; // keep a reference
size_t index = 0;
};
py::class_<PySequenceIterator>(seq, "Iterator")
.def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; })
.def("__next__", &PySequenceIterator::next);
On the actual Sequence object, the iterator would be constructed as follows:
.def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); })
#endif
// test_python_iterator_in_cpp
m.def("object_to_list", [](const py::object &o) {
auto l = py::list();
for (auto item : o) {
l.append(item);
}
return l;
});
m.def("iterator_to_list", [](py::iterator it) {
auto l = py::list();
while (it != py::iterator::sentinel()) {
l.append(*it);
++it;
}
return l;
});
// test_sequence_length: check that Python sequences can be converted to py::sequence.
m.def("sequence_length", [](const py::sequence &seq) { return seq.size(); });
// Make sure that py::iterator works with std algorithms
m.def("count_none", [](const py::object &o) {
return std::count_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); });
});
m.def("find_none", [](const py::object &o) {
auto it = std::find_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); });
return it->is_none();
});
m.def("count_nonzeros", [](const py::dict &d) {
return std::count_if(d.begin(), d.end(), [](std::pair<py::handle, py::handle> p) {
return p.second.cast<int>() != 0;
});
});
m.def("tuple_iterator", &test_random_access_iterator<py::tuple>);
m.def("list_iterator", &test_random_access_iterator<py::list>);
m.def("sequence_iterator", &test_random_access_iterator<py::sequence>);
// test_iterator_passthrough
// #181: iterator passthrough did not compile
m.def("iterator_passthrough", [](py::iterator s) -> py::iterator {
return py::make_iterator(std::begin(s), std::end(s));
});
// test_iterator_rvp
// #388: Can't make iterators via make_iterator() with different r/v policies
static std::vector<int> list = { 1, 2, 3 };
m.def("make_iterator_1", []() { return py::make_iterator<py::return_value_policy::copy>(list); });
m.def("make_iterator_2", []() { return py::make_iterator<py::return_value_policy::automatic>(list); });
}