pybind11/tests/test_numpy_vectorize.cpp
Jason Rhinelander 391c75447d Update all remaining tests to new test styles
This udpates all the remaining tests to the new test suite code and
comment styles started in #898.  For the most part, the test coverage
here is unchanged, with a few minor exceptions as noted below.

- test_constants_and_functions: this adds more overload tests with
  overloads with different number of arguments for more comprehensive
  overload_cast testing.  The test style conversion broke the overload
  tests under MSVC 2015, prompting the additional tests while looking
  for a workaround.

- test_eigen: this dropped the unused functions `get_cm_corners` and
  `get_cm_corners_const`--these same tests were duplicates of the same
  things provided (and used) via ReturnTester methods.

- test_opaque_types: this test had a hidden dependence on ExampleMandA
  which is now fixed by using the global UserType which suffices for the
  relevant test.

- test_methods_and_attributes: this required some additions to UserType
  to make it usable as a replacement for the test's previous SimpleType:
  UserType gained a value mutator, and the `value` property is not
  mutable (it was previously readonly).  Some overload tests were also
  added to better test overload_cast (as described above).

- test_numpy_array: removed the untemplated mutate_data/mutate_data_t:
  the templated versions with an empty parameter pack expand to the same
  thing.

- test_stl: this was already mostly in the new style; this just tweaks
  things a bit, localizing a class, and adding some missing
  `// test_whatever` comments.

- test_virtual_functions: like `test_stl`, this was mostly in the new
  test style already, but needed some `// test_whatever` comments.
  This commit also moves the inherited virtual example code to the end
  of the file, after the main set of tests (since it is less important
  than the other tests, and rather length); it also got renamed to
  `test_inherited_virtuals` (from `test_inheriting_repeat`) because it
  tests both inherited virtual approaches, not just the repeat approach.
2017-08-05 18:46:22 -04:00

90 lines
3.6 KiB
C++

/*
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
arguments
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include <pybind11/numpy.h>
double my_func(int x, float y, double z) {
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
return (float) x*y*z;
}
TEST_SUBMODULE(numpy_vectorize, m) {
try { py::module::import("numpy"); }
catch (...) { return; }
// test_vectorize, test_docs, test_array_collapse
// Vectorize all arguments of a function (though non-vector arguments are also allowed)
m.def("vectorized_func", py::vectorize(my_func));
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
m.def("vectorized_func2",
[](py::array_t<int> x, py::array_t<float> y, float z) {
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
}
);
// Vectorize a complex-valued function
m.def("vectorized_func3", py::vectorize(
[](std::complex<double> c) { return c * std::complex<double>(2.f); }
));
// test_type_selection
// Numpy function which only accepts specific data types
m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
// test_passthrough_arguments
// Passthrough test: references and non-pod types should be automatically passed through (in the
// function definition below, only `b`, `d`, and `g` are vectorized):
struct NonPODClass {
NonPODClass(int v) : value{v} {}
int value;
};
py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>());
m.def("vec_passthrough", py::vectorize(
[](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
return *a + b + c.at(0) + d + e + f.value + g;
}
));
// test_method_vectorization
struct VectorizeTestClass {
VectorizeTestClass(int v) : value{v} {};
float method(int x, float y) { return y + (float) (x + value); }
int value = 0;
};
py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
vtc .def(py::init<int>())
.def_readwrite("value", &VectorizeTestClass::value);
// Automatic vectorizing of methods
vtc.def("method", py::vectorize(&VectorizeTestClass::method));
// test_trivial_broadcasting
// Internal optimization test for whether the input is trivially broadcastable:
py::enum_<py::detail::broadcast_trivial>(m, "trivial")
.value("f_trivial", py::detail::broadcast_trivial::f_trivial)
.value("c_trivial", py::detail::broadcast_trivial::c_trivial)
.value("non_trivial", py::detail::broadcast_trivial::non_trivial);
m.def("vectorized_is_trivial", [](
py::array_t<int, py::array::forcecast> arg1,
py::array_t<float, py::array::forcecast> arg2,
py::array_t<double, py::array::forcecast> arg3
) {
ssize_t ndim;
std::vector<ssize_t> shape;
std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
return py::detail::broadcast(buffers, ndim, shape);
});
}