mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-22 21:25:13 +00:00
559 lines
22 KiB
C++
559 lines
22 KiB
C++
/*
|
|
tests/test_class.cpp -- test py::class_ definitions and basic functionality
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#if defined(__INTEL_COMPILER) && __cplusplus >= 201703L
|
|
// Intel compiler requires a separate header file to support aligned new operators
|
|
// and does not set the __cpp_aligned_new feature macro.
|
|
// This header needs to be included before pybind11.
|
|
#include <aligned_new>
|
|
#endif
|
|
|
|
#include "pybind11_tests.h"
|
|
#include "constructor_stats.h"
|
|
#include "local_bindings.h"
|
|
#include <pybind11/stl.h>
|
|
|
|
#include <utility>
|
|
|
|
#if defined(_MSC_VER)
|
|
# pragma warning(disable: 4324) // warning C4324: structure was padded due to alignment specifier
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
// test_brace_initialization
|
|
struct NoBraceInitialization {
|
|
NoBraceInitialization(std::vector<int> v) : vec{std::move(v)} {}
|
|
template <typename T>
|
|
NoBraceInitialization(std::initializer_list<T> l) : vec(l) {}
|
|
|
|
std::vector<int> vec;
|
|
};
|
|
|
|
// test_mismatched_holder
|
|
struct MismatchBase1 { };
|
|
struct MismatchDerived1 : MismatchBase1 { };
|
|
struct MismatchBase2 { };
|
|
struct MismatchDerived2 : MismatchBase2 { };
|
|
|
|
// test_multiple_instances_with_same_pointer
|
|
struct SamePointer {};
|
|
|
|
} // namespace
|
|
|
|
PYBIND11_TYPE_CASTER_BASE_HOLDER(MismatchBase1, std::shared_ptr<MismatchBase1>)
|
|
PYBIND11_TYPE_CASTER_BASE_HOLDER(MismatchDerived1, std::unique_ptr<MismatchDerived1>)
|
|
PYBIND11_TYPE_CASTER_BASE_HOLDER(MismatchBase2, std::unique_ptr<MismatchBase2>)
|
|
PYBIND11_TYPE_CASTER_BASE_HOLDER(MismatchDerived2, std::shared_ptr<MismatchDerived2>)
|
|
PYBIND11_TYPE_CASTER_BASE_HOLDER(SamePointer, std::unique_ptr<SamePointer>)
|
|
|
|
TEST_SUBMODULE(class_, m) {
|
|
// test_instance
|
|
struct NoConstructor {
|
|
NoConstructor() = default;
|
|
NoConstructor(const NoConstructor &) = default;
|
|
NoConstructor(NoConstructor &&) = default;
|
|
static NoConstructor *new_instance() {
|
|
auto *ptr = new NoConstructor();
|
|
print_created(ptr, "via new_instance");
|
|
return ptr;
|
|
}
|
|
~NoConstructor() { print_destroyed(this); }
|
|
};
|
|
|
|
py::class_<NoConstructor>(m, "NoConstructor")
|
|
.def_static("new_instance", &NoConstructor::new_instance, "Return an instance");
|
|
|
|
// test_inheritance
|
|
class Pet {
|
|
public:
|
|
Pet(const std::string &name, const std::string &species)
|
|
: m_name(name), m_species(species) {}
|
|
std::string name() const { return m_name; }
|
|
std::string species() const { return m_species; }
|
|
private:
|
|
std::string m_name;
|
|
std::string m_species;
|
|
};
|
|
|
|
class Dog : public Pet {
|
|
public:
|
|
Dog(const std::string &name) : Pet(name, "dog") {}
|
|
std::string bark() const { return "Woof!"; }
|
|
};
|
|
|
|
class Rabbit : public Pet {
|
|
public:
|
|
Rabbit(const std::string &name) : Pet(name, "parrot") {}
|
|
};
|
|
|
|
class Hamster : public Pet {
|
|
public:
|
|
Hamster(const std::string &name) : Pet(name, "rodent") {}
|
|
};
|
|
|
|
class Chimera : public Pet {
|
|
Chimera() : Pet("Kimmy", "chimera") {}
|
|
};
|
|
|
|
py::class_<Pet> pet_class(m, "Pet");
|
|
pet_class
|
|
.def(py::init<std::string, std::string>())
|
|
.def("name", &Pet::name)
|
|
.def("species", &Pet::species);
|
|
|
|
/* One way of declaring a subclass relationship: reference parent's class_ object */
|
|
py::class_<Dog>(m, "Dog", pet_class)
|
|
.def(py::init<std::string>());
|
|
|
|
/* Another way of declaring a subclass relationship: reference parent's C++ type */
|
|
py::class_<Rabbit, Pet>(m, "Rabbit")
|
|
.def(py::init<std::string>());
|
|
|
|
/* And another: list parent in class template arguments */
|
|
py::class_<Hamster, Pet>(m, "Hamster")
|
|
.def(py::init<std::string>());
|
|
|
|
/* Constructors are not inherited by default */
|
|
py::class_<Chimera, Pet>(m, "Chimera");
|
|
|
|
m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); });
|
|
m.def("dog_bark", [](const Dog &dog) { return dog.bark(); });
|
|
|
|
// test_automatic_upcasting
|
|
struct BaseClass {
|
|
BaseClass() = default;
|
|
BaseClass(const BaseClass &) = default;
|
|
BaseClass(BaseClass &&) = default;
|
|
virtual ~BaseClass() = default;
|
|
};
|
|
struct DerivedClass1 : BaseClass { };
|
|
struct DerivedClass2 : BaseClass { };
|
|
|
|
py::class_<BaseClass>(m, "BaseClass").def(py::init<>());
|
|
py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>());
|
|
py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>());
|
|
|
|
m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); });
|
|
m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); });
|
|
m.def("return_class_n", [](int n) -> BaseClass* {
|
|
if (n == 1) return new DerivedClass1();
|
|
if (n == 2) return new DerivedClass2();
|
|
return new BaseClass();
|
|
});
|
|
m.def("return_none", []() -> BaseClass* { return nullptr; });
|
|
|
|
// test_isinstance
|
|
// NOLINTNEXTLINE(performance-unnecessary-value-param)
|
|
m.def("check_instances", [](py::list l) {
|
|
return py::make_tuple(
|
|
py::isinstance<py::tuple>(l[0]),
|
|
py::isinstance<py::dict>(l[1]),
|
|
py::isinstance<Pet>(l[2]),
|
|
py::isinstance<Pet>(l[3]),
|
|
py::isinstance<Dog>(l[4]),
|
|
py::isinstance<Rabbit>(l[5]),
|
|
py::isinstance<UnregisteredType>(l[6])
|
|
);
|
|
});
|
|
|
|
struct Invalid {};
|
|
|
|
// test_type
|
|
m.def("check_type", [](int category) {
|
|
// Currently not supported (via a fail at compile time)
|
|
// See https://github.com/pybind/pybind11/issues/2486
|
|
// if (category == 2)
|
|
// return py::type::of<int>();
|
|
if (category == 1)
|
|
return py::type::of<DerivedClass1>();
|
|
else
|
|
return py::type::of<Invalid>();
|
|
});
|
|
|
|
m.def("get_type_of", [](py::object ob) { return py::type::of(std::move(ob)); });
|
|
|
|
m.def("get_type_classic", [](py::handle h) {
|
|
return h.get_type();
|
|
});
|
|
|
|
m.def("as_type", [](const py::object &ob) { return py::type(ob); });
|
|
|
|
// test_mismatched_holder
|
|
m.def("mismatched_holder_1", []() {
|
|
auto mod = py::module_::import("__main__");
|
|
py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1");
|
|
py::class_<MismatchDerived1, std::unique_ptr<MismatchDerived1>,
|
|
MismatchBase1>(mod, "MismatchDerived1");
|
|
});
|
|
m.def("mismatched_holder_2", []() {
|
|
auto mod = py::module_::import("__main__");
|
|
py::class_<MismatchBase2, std::unique_ptr<MismatchBase2>>(mod, "MismatchBase2");
|
|
py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>,
|
|
MismatchBase2>(mod, "MismatchDerived2");
|
|
});
|
|
|
|
// test_override_static
|
|
// #511: problem with inheritance + overwritten def_static
|
|
struct MyBase {
|
|
static std::unique_ptr<MyBase> make() {
|
|
return std::unique_ptr<MyBase>(new MyBase());
|
|
}
|
|
};
|
|
|
|
struct MyDerived : MyBase {
|
|
static std::unique_ptr<MyDerived> make() {
|
|
return std::unique_ptr<MyDerived>(new MyDerived());
|
|
}
|
|
};
|
|
|
|
py::class_<MyBase>(m, "MyBase")
|
|
.def_static("make", &MyBase::make);
|
|
|
|
py::class_<MyDerived, MyBase>(m, "MyDerived")
|
|
.def_static("make", &MyDerived::make)
|
|
.def_static("make2", &MyDerived::make);
|
|
|
|
// test_implicit_conversion_life_support
|
|
struct ConvertibleFromUserType {
|
|
int i;
|
|
|
|
ConvertibleFromUserType(UserType u) : i(u.value()) { }
|
|
};
|
|
|
|
py::class_<ConvertibleFromUserType>(m, "AcceptsUserType")
|
|
.def(py::init<UserType>());
|
|
py::implicitly_convertible<UserType, ConvertibleFromUserType>();
|
|
|
|
m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; });
|
|
// NOLINTNEXTLINE(performance-unnecessary-value-param)
|
|
m.def("implicitly_convert_variable", [](py::object o) {
|
|
// `o` is `UserType` and `r` is a reference to a temporary created by implicit
|
|
// conversion. This is valid when called inside a bound function because the temp
|
|
// object is attached to the same life support system as the arguments.
|
|
const auto &r = o.cast<const ConvertibleFromUserType &>();
|
|
return r.i;
|
|
});
|
|
m.add_object("implicitly_convert_variable_fail", [&] {
|
|
auto f = [](PyObject *, PyObject *args) -> PyObject * {
|
|
auto o = py::reinterpret_borrow<py::tuple>(args)[0];
|
|
try { // It should fail here because there is no life support.
|
|
o.cast<const ConvertibleFromUserType &>();
|
|
} catch (const py::cast_error &e) {
|
|
return py::str(e.what()).release().ptr();
|
|
}
|
|
return py::str().release().ptr();
|
|
};
|
|
|
|
auto def = new PyMethodDef{"f", f, METH_VARARGS, nullptr};
|
|
py::capsule def_capsule(def, [](void *ptr) { delete reinterpret_cast<PyMethodDef *>(ptr); });
|
|
return py::reinterpret_steal<py::object>(PyCFunction_NewEx(def, def_capsule.ptr(), m.ptr()));
|
|
}());
|
|
|
|
// test_operator_new_delete
|
|
struct HasOpNewDel {
|
|
std::uint64_t i;
|
|
static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); }
|
|
static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; }
|
|
static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); }
|
|
};
|
|
struct HasOpNewDelSize {
|
|
std::uint32_t i;
|
|
static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); }
|
|
static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; }
|
|
static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); }
|
|
};
|
|
struct AliasedHasOpNewDelSize {
|
|
std::uint64_t i;
|
|
static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); }
|
|
static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; }
|
|
static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); }
|
|
virtual ~AliasedHasOpNewDelSize() = default;
|
|
AliasedHasOpNewDelSize() = default;
|
|
AliasedHasOpNewDelSize(const AliasedHasOpNewDelSize&) = delete;
|
|
};
|
|
struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize {
|
|
PyAliasedHasOpNewDelSize() = default;
|
|
PyAliasedHasOpNewDelSize(int) { }
|
|
std::uint64_t j;
|
|
};
|
|
struct HasOpNewDelBoth {
|
|
std::uint32_t i[8];
|
|
static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); }
|
|
static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; }
|
|
static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); }
|
|
static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); }
|
|
};
|
|
py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>());
|
|
py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>());
|
|
py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>());
|
|
py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m, "AliasedHasOpNewDelSize");
|
|
aliased.def(py::init<>());
|
|
aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize));
|
|
aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize));
|
|
|
|
// This test is actually part of test_local_bindings (test_duplicate_local), but we need a
|
|
// definition in a different compilation unit within the same module:
|
|
bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local());
|
|
|
|
// test_bind_protected_functions
|
|
class ProtectedA {
|
|
protected:
|
|
int foo() const { return value; }
|
|
|
|
private:
|
|
int value = 42;
|
|
};
|
|
|
|
class PublicistA : public ProtectedA {
|
|
public:
|
|
using ProtectedA::foo;
|
|
};
|
|
|
|
py::class_<ProtectedA>(m, "ProtectedA")
|
|
.def(py::init<>())
|
|
#if !defined(_MSC_VER) || _MSC_VER >= 1910
|
|
.def("foo", &PublicistA::foo);
|
|
#else
|
|
.def("foo", static_cast<int (ProtectedA::*)() const>(&PublicistA::foo));
|
|
#endif
|
|
|
|
class ProtectedB {
|
|
public:
|
|
virtual ~ProtectedB() = default;
|
|
ProtectedB() = default;
|
|
ProtectedB(const ProtectedB &) = delete;
|
|
|
|
protected:
|
|
virtual int foo() const { return value; }
|
|
|
|
private:
|
|
int value = 42;
|
|
};
|
|
|
|
class TrampolineB : public ProtectedB {
|
|
public:
|
|
int foo() const override { PYBIND11_OVERRIDE(int, ProtectedB, foo, ); }
|
|
};
|
|
|
|
class PublicistB : public ProtectedB {
|
|
public:
|
|
// [workaround(intel)] = default does not work here
|
|
// Removing or defaulting this destructor results in linking errors with the Intel compiler
|
|
// (in Debug builds only, tested with icpc (ICC) 2021.1 Beta 20200827)
|
|
~PublicistB() override {}; // NOLINT(modernize-use-equals-default)
|
|
using ProtectedB::foo;
|
|
};
|
|
|
|
py::class_<ProtectedB, TrampolineB>(m, "ProtectedB")
|
|
.def(py::init<>())
|
|
#if !defined(_MSC_VER) || _MSC_VER >= 1910
|
|
.def("foo", &PublicistB::foo);
|
|
#else
|
|
.def("foo", static_cast<int (ProtectedB::*)() const>(&PublicistB::foo));
|
|
#endif
|
|
|
|
// test_brace_initialization
|
|
struct BraceInitialization {
|
|
int field1;
|
|
std::string field2;
|
|
};
|
|
|
|
py::class_<BraceInitialization>(m, "BraceInitialization")
|
|
.def(py::init<int, const std::string &>())
|
|
.def_readwrite("field1", &BraceInitialization::field1)
|
|
.def_readwrite("field2", &BraceInitialization::field2);
|
|
// We *don't* want to construct using braces when the given constructor argument maps to a
|
|
// constructor, because brace initialization could go to the wrong place (in particular when
|
|
// there is also an `initializer_list<T>`-accept constructor):
|
|
py::class_<NoBraceInitialization>(m, "NoBraceInitialization")
|
|
.def(py::init<std::vector<int>>())
|
|
.def_readonly("vec", &NoBraceInitialization::vec);
|
|
|
|
// test_reentrant_implicit_conversion_failure
|
|
// #1035: issue with runaway reentrant implicit conversion
|
|
struct BogusImplicitConversion {
|
|
BogusImplicitConversion(const BogusImplicitConversion &) = default;
|
|
};
|
|
|
|
py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion")
|
|
.def(py::init<const BogusImplicitConversion &>());
|
|
|
|
py::implicitly_convertible<int, BogusImplicitConversion>();
|
|
|
|
// test_qualname
|
|
// #1166: nested class docstring doesn't show nested name
|
|
// Also related: tests that __qualname__ is set properly
|
|
struct NestBase {};
|
|
struct Nested {};
|
|
py::class_<NestBase> base(m, "NestBase");
|
|
base.def(py::init<>());
|
|
py::class_<Nested>(base, "Nested")
|
|
.def(py::init<>())
|
|
.def("fn", [](Nested &, int, NestBase &, Nested &) {})
|
|
.def("fa", [](Nested &, int, NestBase &, Nested &) {},
|
|
"a"_a, "b"_a, "c"_a);
|
|
base.def("g", [](NestBase &, Nested &) {});
|
|
base.def("h", []() { return NestBase(); });
|
|
|
|
// test_error_after_conversion
|
|
// The second-pass path through dispatcher() previously didn't
|
|
// remember which overload was used, and would crash trying to
|
|
// generate a useful error message
|
|
|
|
struct NotRegistered {};
|
|
struct StringWrapper { std::string str; };
|
|
m.def("test_error_after_conversions", [](int) {});
|
|
m.def("test_error_after_conversions",
|
|
// NOLINTNEXTLINE(performance-unnecessary-value-param)
|
|
[](StringWrapper) -> NotRegistered { return {}; });
|
|
py::class_<StringWrapper>(m, "StringWrapper").def(py::init<std::string>());
|
|
py::implicitly_convertible<std::string, StringWrapper>();
|
|
|
|
#if defined(PYBIND11_CPP17)
|
|
struct alignas(1024) Aligned {
|
|
std::uintptr_t ptr() const { return (uintptr_t) this; }
|
|
};
|
|
py::class_<Aligned>(m, "Aligned")
|
|
.def(py::init<>())
|
|
.def("ptr", &Aligned::ptr);
|
|
#endif
|
|
|
|
// test_final
|
|
struct IsFinal final {};
|
|
py::class_<IsFinal>(m, "IsFinal", py::is_final());
|
|
|
|
// test_non_final_final
|
|
struct IsNonFinalFinal {};
|
|
py::class_<IsNonFinalFinal>(m, "IsNonFinalFinal", py::is_final());
|
|
|
|
// test_exception_rvalue_abort
|
|
struct PyPrintDestructor {
|
|
PyPrintDestructor() = default;
|
|
~PyPrintDestructor() {
|
|
py::print("Print from destructor");
|
|
}
|
|
void throw_something() { throw std::runtime_error("error"); }
|
|
};
|
|
py::class_<PyPrintDestructor>(m, "PyPrintDestructor")
|
|
.def(py::init<>())
|
|
.def("throw_something", &PyPrintDestructor::throw_something);
|
|
|
|
// test_multiple_instances_with_same_pointer
|
|
static SamePointer samePointer;
|
|
py::class_<SamePointer, std::unique_ptr<SamePointer, py::nodelete>>(m, "SamePointer")
|
|
.def(py::init([]() { return &samePointer; }));
|
|
|
|
struct Empty {};
|
|
py::class_<Empty>(m, "Empty")
|
|
.def(py::init<>());
|
|
|
|
// test_base_and_derived_nested_scope
|
|
struct BaseWithNested {
|
|
struct Nested {};
|
|
};
|
|
|
|
struct DerivedWithNested : BaseWithNested {
|
|
struct Nested {};
|
|
};
|
|
|
|
py::class_<BaseWithNested> baseWithNested_class(m, "BaseWithNested");
|
|
py::class_<DerivedWithNested, BaseWithNested> derivedWithNested_class(m, "DerivedWithNested");
|
|
py::class_<BaseWithNested::Nested>(baseWithNested_class, "Nested")
|
|
.def_static("get_name", []() { return "BaseWithNested::Nested"; });
|
|
py::class_<DerivedWithNested::Nested>(derivedWithNested_class, "Nested")
|
|
.def_static("get_name", []() { return "DerivedWithNested::Nested"; });
|
|
|
|
// test_register_duplicate_class
|
|
struct Duplicate {};
|
|
struct OtherDuplicate {};
|
|
struct DuplicateNested {};
|
|
struct OtherDuplicateNested {};
|
|
|
|
m.def("register_duplicate_class_name", [](const py::module_ &m) {
|
|
py::class_<Duplicate>(m, "Duplicate");
|
|
py::class_<OtherDuplicate>(m, "Duplicate");
|
|
});
|
|
m.def("register_duplicate_class_type", [](const py::module_ &m) {
|
|
py::class_<OtherDuplicate>(m, "OtherDuplicate");
|
|
py::class_<OtherDuplicate>(m, "YetAnotherDuplicate");
|
|
});
|
|
m.def("register_duplicate_nested_class_name", [](const py::object >) {
|
|
py::class_<DuplicateNested>(gt, "DuplicateNested");
|
|
py::class_<OtherDuplicateNested>(gt, "DuplicateNested");
|
|
});
|
|
m.def("register_duplicate_nested_class_type", [](const py::object >) {
|
|
py::class_<OtherDuplicateNested>(gt, "OtherDuplicateNested");
|
|
py::class_<OtherDuplicateNested>(gt, "YetAnotherDuplicateNested");
|
|
});
|
|
}
|
|
|
|
template <int N> class BreaksBase { public:
|
|
virtual ~BreaksBase() = default;
|
|
BreaksBase() = default;
|
|
BreaksBase(const BreaksBase&) = delete;
|
|
};
|
|
template <int N> class BreaksTramp : public BreaksBase<N> {};
|
|
// These should all compile just fine:
|
|
using DoesntBreak1 = py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>>;
|
|
using DoesntBreak2 = py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>>;
|
|
using DoesntBreak3 = py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>>;
|
|
using DoesntBreak4 = py::class_<BreaksBase<4>, BreaksTramp<4>>;
|
|
using DoesntBreak5 = py::class_<BreaksBase<5>>;
|
|
using DoesntBreak6 = py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>>;
|
|
using DoesntBreak7 = py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>>;
|
|
using DoesntBreak8 = py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>>;
|
|
#define CHECK_BASE(N) static_assert(std::is_same<typename DoesntBreak##N::type, BreaksBase<N>>::value, \
|
|
"DoesntBreak" #N " has wrong type!")
|
|
CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8);
|
|
#define CHECK_ALIAS(N) static_assert(DoesntBreak##N::has_alias && std::is_same<typename DoesntBreak##N::type_alias, BreaksTramp<N>>::value, \
|
|
"DoesntBreak" #N " has wrong type_alias!")
|
|
#define CHECK_NOALIAS(N) static_assert(!DoesntBreak##N::has_alias && std::is_void<typename DoesntBreak##N::type_alias>::value, \
|
|
"DoesntBreak" #N " has type alias, but shouldn't!")
|
|
CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8);
|
|
#define CHECK_HOLDER(N, TYPE) static_assert(std::is_same<typename DoesntBreak##N::holder_type, std::TYPE##_ptr<BreaksBase<N>>>::value, \
|
|
"DoesntBreak" #N " has wrong holder_type!")
|
|
#define CHECK_SMART_HOLDER(N) static_assert(std::is_same<typename DoesntBreak##N::holder_type, py::smart_holder>::value, \
|
|
"DoesntBreak" #N " has wrong holder_type!")
|
|
CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique);
|
|
#ifndef PYBIND11_USE_SMART_HOLDER_AS_DEFAULT
|
|
CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique);
|
|
#else
|
|
CHECK_SMART_HOLDER(4); CHECK_SMART_HOLDER(5);
|
|
#endif
|
|
CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared);
|
|
|
|
// There's no nice way to test that these fail because they fail to compile; leave them here,
|
|
// though, so that they can be manually tested by uncommenting them (and seeing that compilation
|
|
// failures occurs).
|
|
|
|
// We have to actually look into the type: the typedef alone isn't enough to instantiate the type:
|
|
#define CHECK_BROKEN(N) static_assert(std::is_same<typename Breaks##N::type, BreaksBase<-N>>::value, \
|
|
"Breaks1 has wrong type!");
|
|
|
|
//// Two holder classes:
|
|
//typedef py::class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>> Breaks1;
|
|
//CHECK_BROKEN(1);
|
|
//// Two aliases:
|
|
//typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2;
|
|
//CHECK_BROKEN(2);
|
|
//// Holder + 2 aliases
|
|
//typedef py::class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3;
|
|
//CHECK_BROKEN(3);
|
|
//// Alias + 2 holders
|
|
//typedef py::class_<BreaksBase<-4>, std::unique_ptr<BreaksBase<-4>>, BreaksTramp<-4>, std::shared_ptr<BreaksBase<-4>>> Breaks4;
|
|
//CHECK_BROKEN(4);
|
|
//// Invalid option (not a subclass or holder)
|
|
//typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5;
|
|
//CHECK_BROKEN(5);
|
|
//// Invalid option: multiple inheritance not supported:
|
|
//template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {};
|
|
//typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8;
|
|
//CHECK_BROKEN(8);
|