mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-15 09:54:48 +00:00
706a7d96bd
ICC was reporting that `try_direct_conversions()` cannot be `constexpr` because `handle` is not a literal type. The fix removes `constexpr` from the function since it isn't strictly needed. This commit also suppresses new false positive warnings which mostly appear in constexpr contexts (where the compiler knows conversions are safe).
2013 lines
83 KiB
C++
2013 lines
83 KiB
C++
/*
|
|
pybind11/cast.h: Partial template specializations to cast between
|
|
C++ and Python types
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "pytypes.h"
|
|
#include "typeid.h"
|
|
#include "descr.h"
|
|
#include <array>
|
|
#include <limits>
|
|
#include <tuple>
|
|
|
|
#if defined(PYBIND11_CPP17)
|
|
# if defined(__has_include)
|
|
# if __has_include(<string_view>)
|
|
# define PYBIND11_HAS_STRING_VIEW
|
|
# endif
|
|
# elif defined(_MSC_VER)
|
|
# define PYBIND11_HAS_STRING_VIEW
|
|
# endif
|
|
#endif
|
|
#ifdef PYBIND11_HAS_STRING_VIEW
|
|
#include <string_view>
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(pybind11)
|
|
NAMESPACE_BEGIN(detail)
|
|
// Forward declarations:
|
|
inline PyTypeObject *make_static_property_type();
|
|
inline PyTypeObject *make_default_metaclass();
|
|
inline PyObject *make_object_base_type(PyTypeObject *metaclass);
|
|
struct value_and_holder;
|
|
|
|
/// Additional type information which does not fit into the PyTypeObject
|
|
struct type_info {
|
|
PyTypeObject *type;
|
|
const std::type_info *cpptype;
|
|
size_t type_size, holder_size_in_ptrs;
|
|
void *(*operator_new)(size_t);
|
|
void (*init_holder)(instance *, const void *);
|
|
void (*dealloc)(const value_and_holder &v_h);
|
|
std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
|
|
std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
|
|
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
|
|
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
|
|
void *get_buffer_data = nullptr;
|
|
/* A simple type never occurs as a (direct or indirect) parent
|
|
* of a class that makes use of multiple inheritance */
|
|
bool simple_type : 1;
|
|
/* True if there is no multiple inheritance in this type's inheritance tree */
|
|
bool simple_ancestors : 1;
|
|
/* for base vs derived holder_type checks */
|
|
bool default_holder : 1;
|
|
};
|
|
|
|
// Store the static internals pointer in a version-specific function so that we're guaranteed it
|
|
// will be distinct for modules compiled for different pybind11 versions. Without this, some
|
|
// compilers (i.e. gcc) can use the same static pointer storage location across different .so's,
|
|
// even though the `get_internals()` function itself is local to each shared object.
|
|
template <int = PYBIND11_VERSION_MAJOR, int = PYBIND11_VERSION_MINOR>
|
|
internals *&get_internals_ptr() { static internals *internals_ptr = nullptr; return internals_ptr; }
|
|
|
|
PYBIND11_NOINLINE inline internals &get_internals() {
|
|
internals *&internals_ptr = get_internals_ptr();
|
|
if (internals_ptr)
|
|
return *internals_ptr;
|
|
handle builtins(PyEval_GetBuiltins());
|
|
const char *id = PYBIND11_INTERNALS_ID;
|
|
if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
|
|
internals_ptr = *static_cast<internals **>(capsule(builtins[id]));
|
|
} else {
|
|
internals_ptr = new internals();
|
|
#if defined(WITH_THREAD)
|
|
PyEval_InitThreads();
|
|
PyThreadState *tstate = PyThreadState_Get();
|
|
internals_ptr->tstate = PyThread_create_key();
|
|
PyThread_set_key_value(internals_ptr->tstate, tstate);
|
|
internals_ptr->istate = tstate->interp;
|
|
#endif
|
|
builtins[id] = capsule(&internals_ptr);
|
|
internals_ptr->registered_exception_translators.push_front(
|
|
[](std::exception_ptr p) -> void {
|
|
try {
|
|
if (p) std::rethrow_exception(p);
|
|
} catch (error_already_set &e) { e.restore(); return;
|
|
} catch (const builtin_exception &e) { e.set_error(); return;
|
|
} catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
|
|
} catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
} catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
} catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
} catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
|
|
} catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
|
|
} catch (...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
|
|
return;
|
|
}
|
|
}
|
|
);
|
|
internals_ptr->static_property_type = make_static_property_type();
|
|
internals_ptr->default_metaclass = make_default_metaclass();
|
|
internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
|
|
}
|
|
return *internals_ptr;
|
|
}
|
|
|
|
/// A life support system for temporary objects created by `type_caster::load()`.
|
|
/// Adding a patient will keep it alive up until the enclosing function returns.
|
|
class loader_life_support {
|
|
public:
|
|
/// A new patient frame is created when a function is entered
|
|
loader_life_support() {
|
|
get_internals().loader_patient_stack.push_back(nullptr);
|
|
}
|
|
|
|
/// ... and destroyed after it returns
|
|
~loader_life_support() {
|
|
auto &stack = get_internals().loader_patient_stack;
|
|
if (stack.empty())
|
|
pybind11_fail("loader_life_support: internal error");
|
|
|
|
auto ptr = stack.back();
|
|
stack.pop_back();
|
|
Py_CLEAR(ptr);
|
|
|
|
// A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
|
|
if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
|
|
stack.shrink_to_fit();
|
|
}
|
|
|
|
/// This can only be used inside a pybind11-bound function, either by `argument_loader`
|
|
/// at argument preparation time or by `py::cast()` at execution time.
|
|
PYBIND11_NOINLINE static void add_patient(handle h) {
|
|
auto &stack = get_internals().loader_patient_stack;
|
|
if (stack.empty())
|
|
throw cast_error("When called outside a bound function, py::cast() cannot "
|
|
"do Python -> C++ conversions which require the creation "
|
|
"of temporary values");
|
|
|
|
auto &list_ptr = stack.back();
|
|
if (list_ptr == nullptr) {
|
|
list_ptr = PyList_New(1);
|
|
if (!list_ptr)
|
|
pybind11_fail("loader_life_support: error allocating list");
|
|
PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
|
|
} else {
|
|
auto result = PyList_Append(list_ptr, h.ptr());
|
|
if (result == -1)
|
|
pybind11_fail("loader_life_support: error adding patient");
|
|
}
|
|
}
|
|
};
|
|
|
|
// Gets the cache entry for the given type, creating it if necessary. The return value is the pair
|
|
// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
|
|
// just created.
|
|
inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
|
|
|
|
// Populates a just-created cache entry.
|
|
PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
|
|
std::vector<PyTypeObject *> check;
|
|
for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
|
|
check.push_back((PyTypeObject *) parent.ptr());
|
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
|
for (size_t i = 0; i < check.size(); i++) {
|
|
auto type = check[i];
|
|
// Ignore Python2 old-style class super type:
|
|
if (!PyType_Check((PyObject *) type)) continue;
|
|
|
|
// Check `type` in the current set of registered python types:
|
|
auto it = type_dict.find(type);
|
|
if (it != type_dict.end()) {
|
|
// We found a cache entry for it, so it's either pybind-registered or has pre-computed
|
|
// pybind bases, but we have to make sure we haven't already seen the type(s) before: we
|
|
// want to follow Python/virtual C++ rules that there should only be one instance of a
|
|
// common base.
|
|
for (auto *tinfo : it->second) {
|
|
// NB: Could use a second set here, rather than doing a linear search, but since
|
|
// having a large number of immediate pybind11-registered types seems fairly
|
|
// unlikely, that probably isn't worthwhile.
|
|
bool found = false;
|
|
for (auto *known : bases) {
|
|
if (known == tinfo) { found = true; break; }
|
|
}
|
|
if (!found) bases.push_back(tinfo);
|
|
}
|
|
}
|
|
else if (type->tp_bases) {
|
|
// It's some python type, so keep follow its bases classes to look for one or more
|
|
// registered types
|
|
if (i + 1 == check.size()) {
|
|
// When we're at the end, we can pop off the current element to avoid growing
|
|
// `check` when adding just one base (which is typical--.e. when there is no
|
|
// multiple inheritance)
|
|
check.pop_back();
|
|
i--;
|
|
}
|
|
for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
|
|
check.push_back((PyTypeObject *) parent.ptr());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will
|
|
* be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
|
|
* derived class that uses single inheritance. Will contain as many types as required for a Python
|
|
* class that uses multiple inheritance to inherit (directly or indirectly) from multiple
|
|
* pybind-registered classes. Will be empty if neither the type nor any base classes are
|
|
* pybind-registered.
|
|
*
|
|
* The value is cached for the lifetime of the Python type.
|
|
*/
|
|
inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
|
|
auto ins = all_type_info_get_cache(type);
|
|
if (ins.second)
|
|
// New cache entry: populate it
|
|
all_type_info_populate(type, ins.first->second);
|
|
|
|
return ins.first->second;
|
|
}
|
|
|
|
/**
|
|
* Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any
|
|
* ancestors are pybind11-registered. Throws an exception if there are multiple bases--use
|
|
* `all_type_info` instead if you want to support multiple bases.
|
|
*/
|
|
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
|
|
auto &bases = all_type_info(type);
|
|
if (bases.size() == 0)
|
|
return nullptr;
|
|
if (bases.size() > 1)
|
|
pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
|
|
return bases.front();
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp,
|
|
bool throw_if_missing = false) {
|
|
auto &types = get_internals().registered_types_cpp;
|
|
|
|
auto it = types.find(std::type_index(tp));
|
|
if (it != types.end())
|
|
return (detail::type_info *) it->second;
|
|
if (throw_if_missing) {
|
|
std::string tname = tp.name();
|
|
detail::clean_type_id(tname);
|
|
pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
|
|
detail::type_info *type_info = get_type_info(tp, throw_if_missing);
|
|
return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
|
|
}
|
|
|
|
struct value_and_holder {
|
|
instance *inst;
|
|
size_t index;
|
|
const detail::type_info *type;
|
|
void **vh;
|
|
|
|
value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
|
|
inst{i}, index{index}, type{type},
|
|
vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
|
|
{}
|
|
|
|
// Used for past-the-end iterator
|
|
value_and_holder(size_t index) : index{index} {}
|
|
|
|
template <typename V = void> V *&value_ptr() const {
|
|
return reinterpret_cast<V *&>(vh[0]);
|
|
}
|
|
// True if this `value_and_holder` has a non-null value pointer
|
|
explicit operator bool() const { return value_ptr(); }
|
|
|
|
template <typename H> H &holder() const {
|
|
return reinterpret_cast<H &>(vh[1]);
|
|
}
|
|
bool holder_constructed() const {
|
|
return inst->simple_layout
|
|
? inst->simple_holder_constructed
|
|
: inst->nonsimple.holder_constructed[index];
|
|
}
|
|
void set_holder_constructed() {
|
|
if (inst->simple_layout)
|
|
inst->simple_holder_constructed = true;
|
|
else
|
|
inst->nonsimple.holder_constructed[index] = true;
|
|
}
|
|
};
|
|
|
|
// Container for accessing and iterating over an instance's values/holders
|
|
struct values_and_holders {
|
|
private:
|
|
instance *inst;
|
|
using type_vec = std::vector<detail::type_info *>;
|
|
const type_vec &tinfo;
|
|
|
|
public:
|
|
values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
|
|
|
|
struct iterator {
|
|
private:
|
|
instance *inst;
|
|
using vec_iter = std::vector<detail::type_info *>::const_iterator;
|
|
vec_iter typeit;
|
|
value_and_holder curr;
|
|
friend struct values_and_holders;
|
|
iterator(instance *inst, const type_vec &tinfo)
|
|
: inst{inst}, typeit{tinfo.begin()},
|
|
curr(inst /* instance */,
|
|
tinfo.size() > 0 ? *typeit : nullptr /* type info */,
|
|
0, /* vpos: (non-simple types only): the first vptr comes first */
|
|
0 /* index */)
|
|
{}
|
|
// Past-the-end iterator:
|
|
iterator(size_t end) : curr(end) {}
|
|
public:
|
|
bool operator==(const iterator &other) { return curr.index == other.curr.index; }
|
|
bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
|
|
iterator &operator++() {
|
|
if (!inst->simple_layout) {
|
|
curr.vh += 1 + (*typeit)->holder_size_in_ptrs;
|
|
curr.type = *(++typeit);
|
|
}
|
|
++curr.index;
|
|
return *this;
|
|
}
|
|
value_and_holder &operator*() { return curr; }
|
|
value_and_holder *operator->() { return &curr; }
|
|
};
|
|
|
|
iterator begin() { return iterator(inst, tinfo); }
|
|
iterator end() { return iterator(tinfo.size()); }
|
|
|
|
iterator find(const type_info *find_type) {
|
|
auto it = begin(), endit = end();
|
|
while (it != endit && it->type != find_type) ++it;
|
|
return it;
|
|
}
|
|
|
|
size_t size() { return tinfo.size(); }
|
|
};
|
|
|
|
/**
|
|
* Extracts C++ value and holder pointer references from an instance (which may contain multiple
|
|
* values/holders for python-side multiple inheritance) that match the given type. Throws an error
|
|
* if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If
|
|
* `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
|
|
* regardless of type (and the resulting .type will be nullptr).
|
|
*
|
|
* The returned object should be short-lived: in particular, it must not outlive the called-upon
|
|
* instance.
|
|
*/
|
|
PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/) {
|
|
// Optimize common case:
|
|
if (!find_type || Py_TYPE(this) == find_type->type)
|
|
return value_and_holder(this, find_type, 0, 0);
|
|
|
|
detail::values_and_holders vhs(this);
|
|
auto it = vhs.find(find_type);
|
|
if (it != vhs.end())
|
|
return *it;
|
|
|
|
#if defined(NDEBUG)
|
|
pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
|
|
"type is not a pybind11 base of the given instance "
|
|
"(compile in debug mode for type details)");
|
|
#else
|
|
pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
|
|
std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
|
|
std::string(Py_TYPE(this)->tp_name) + "' instance");
|
|
#endif
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline void instance::allocate_layout() {
|
|
auto &tinfo = all_type_info(Py_TYPE(this));
|
|
|
|
const size_t n_types = tinfo.size();
|
|
|
|
if (n_types == 0)
|
|
pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
|
|
|
|
simple_layout =
|
|
n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
|
|
|
|
// Simple path: no python-side multiple inheritance, and a small-enough holder
|
|
if (simple_layout) {
|
|
simple_value_holder[0] = nullptr;
|
|
simple_holder_constructed = false;
|
|
}
|
|
else { // multiple base types or a too-large holder
|
|
// Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
|
|
// [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
|
|
// values that tracks whether each associated holder has been initialized. Each [block] is
|
|
// padded, if necessary, to an integer multiple of sizeof(void *).
|
|
size_t space = 0;
|
|
for (auto t : tinfo) {
|
|
space += 1; // value pointer
|
|
space += t->holder_size_in_ptrs; // holder instance
|
|
}
|
|
size_t flags_at = space;
|
|
space += size_in_ptrs(n_types * sizeof(bool)); // holder constructed flags
|
|
|
|
// Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
|
|
// in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6
|
|
// they default to using pymalloc, which is designed to be efficient for small allocations
|
|
// like the one we're doing here; in earlier versions (and for larger allocations) they are
|
|
// just wrappers around malloc.
|
|
#if PY_VERSION_HEX >= 0x03050000
|
|
nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
|
|
if (!nonsimple.values_and_holders) throw std::bad_alloc();
|
|
#else
|
|
nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
|
|
if (!nonsimple.values_and_holders) throw std::bad_alloc();
|
|
std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
|
|
#endif
|
|
nonsimple.holder_constructed = reinterpret_cast<bool *>(&nonsimple.values_and_holders[flags_at]);
|
|
}
|
|
owned = true;
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline void instance::deallocate_layout() {
|
|
if (!simple_layout)
|
|
PyMem_Free(nonsimple.values_and_holders);
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
|
|
handle type = detail::get_type_handle(tp, false);
|
|
if (!type)
|
|
return false;
|
|
return isinstance(obj, type);
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline std::string error_string() {
|
|
if (!PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
|
|
return "Unknown internal error occurred";
|
|
}
|
|
|
|
error_scope scope; // Preserve error state
|
|
|
|
std::string errorString;
|
|
if (scope.type) {
|
|
errorString += handle(scope.type).attr("__name__").cast<std::string>();
|
|
errorString += ": ";
|
|
}
|
|
if (scope.value)
|
|
errorString += (std::string) str(scope.value);
|
|
|
|
PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
|
|
|
|
#if PY_MAJOR_VERSION >= 3
|
|
if (scope.trace != nullptr)
|
|
PyException_SetTraceback(scope.value, scope.trace);
|
|
#endif
|
|
|
|
#if !defined(PYPY_VERSION)
|
|
if (scope.trace) {
|
|
PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
|
|
|
|
/* Get the deepest trace possible */
|
|
while (trace->tb_next)
|
|
trace = trace->tb_next;
|
|
|
|
PyFrameObject *frame = trace->tb_frame;
|
|
errorString += "\n\nAt:\n";
|
|
while (frame) {
|
|
int lineno = PyFrame_GetLineNumber(frame);
|
|
errorString +=
|
|
" " + handle(frame->f_code->co_filename).cast<std::string>() +
|
|
"(" + std::to_string(lineno) + "): " +
|
|
handle(frame->f_code->co_name).cast<std::string>() + "\n";
|
|
frame = frame->f_back;
|
|
}
|
|
trace = trace->tb_next;
|
|
}
|
|
#endif
|
|
|
|
return errorString;
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
|
|
auto &instances = get_internals().registered_instances;
|
|
auto range = instances.equal_range(ptr);
|
|
for (auto it = range.first; it != range.second; ++it) {
|
|
for (auto vh : values_and_holders(it->second)) {
|
|
if (vh.type == type)
|
|
return handle((PyObject *) it->second);
|
|
}
|
|
}
|
|
return handle();
|
|
}
|
|
|
|
inline PyThreadState *get_thread_state_unchecked() {
|
|
#if defined(PYPY_VERSION)
|
|
return PyThreadState_GET();
|
|
#elif PY_VERSION_HEX < 0x03000000
|
|
return _PyThreadState_Current;
|
|
#elif PY_VERSION_HEX < 0x03050000
|
|
return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
|
|
#elif PY_VERSION_HEX < 0x03050200
|
|
return (PyThreadState*) _PyThreadState_Current.value;
|
|
#else
|
|
return _PyThreadState_UncheckedGet();
|
|
#endif
|
|
}
|
|
|
|
// Forward declarations
|
|
inline void keep_alive_impl(handle nurse, handle patient);
|
|
inline void register_instance(instance *self, void *valptr, const type_info *tinfo);
|
|
inline PyObject *make_new_instance(PyTypeObject *type, bool allocate_value = true);
|
|
|
|
class type_caster_generic {
|
|
public:
|
|
PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
|
|
: typeinfo(get_type_info(type_info)) { }
|
|
|
|
bool load(handle src, bool convert) {
|
|
return load_impl<type_caster_generic>(src, convert);
|
|
}
|
|
|
|
PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
|
|
const detail::type_info *tinfo,
|
|
void *(*copy_constructor)(const void *),
|
|
void *(*move_constructor)(const void *),
|
|
const void *existing_holder = nullptr) {
|
|
if (!tinfo) // no type info: error will be set already
|
|
return handle();
|
|
|
|
void *src = const_cast<void *>(_src);
|
|
if (src == nullptr)
|
|
return none().release();
|
|
|
|
auto it_instances = get_internals().registered_instances.equal_range(src);
|
|
for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
|
|
for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
|
|
if (instance_type && instance_type == tinfo)
|
|
return handle((PyObject *) it_i->second).inc_ref();
|
|
}
|
|
}
|
|
|
|
auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type, false /* don't allocate value */));
|
|
auto wrapper = reinterpret_cast<instance *>(inst.ptr());
|
|
wrapper->owned = false;
|
|
void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
|
|
|
|
switch (policy) {
|
|
case return_value_policy::automatic:
|
|
case return_value_policy::take_ownership:
|
|
valueptr = src;
|
|
wrapper->owned = true;
|
|
break;
|
|
|
|
case return_value_policy::automatic_reference:
|
|
case return_value_policy::reference:
|
|
valueptr = src;
|
|
wrapper->owned = false;
|
|
break;
|
|
|
|
case return_value_policy::copy:
|
|
if (copy_constructor)
|
|
valueptr = copy_constructor(src);
|
|
else
|
|
throw cast_error("return_value_policy = copy, but the "
|
|
"object is non-copyable!");
|
|
wrapper->owned = true;
|
|
break;
|
|
|
|
case return_value_policy::move:
|
|
if (move_constructor)
|
|
valueptr = move_constructor(src);
|
|
else if (copy_constructor)
|
|
valueptr = copy_constructor(src);
|
|
else
|
|
throw cast_error("return_value_policy = move, but the "
|
|
"object is neither movable nor copyable!");
|
|
wrapper->owned = true;
|
|
break;
|
|
|
|
case return_value_policy::reference_internal:
|
|
valueptr = src;
|
|
wrapper->owned = false;
|
|
keep_alive_impl(inst, parent);
|
|
break;
|
|
|
|
default:
|
|
throw cast_error("unhandled return_value_policy: should not happen!");
|
|
}
|
|
|
|
register_instance(wrapper, valueptr, tinfo);
|
|
tinfo->init_holder(wrapper, existing_holder);
|
|
|
|
return inst.release();
|
|
}
|
|
|
|
protected:
|
|
|
|
// Base methods for generic caster; there are overridden in copyable_holder_caster
|
|
void load_value(const value_and_holder &v_h) {
|
|
value = v_h.value_ptr();
|
|
}
|
|
bool try_implicit_casts(handle src, bool convert) {
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
type_caster_generic sub_caster(*cast.first);
|
|
if (sub_caster.load(src, convert)) {
|
|
value = cast.second(sub_caster.value);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
bool try_direct_conversions(handle src) {
|
|
for (auto &converter : *typeinfo->direct_conversions) {
|
|
if (converter(src.ptr(), value))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
void check_holder_compat() {}
|
|
|
|
// Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
|
|
// bits of code between here and copyable_holder_caster where the two classes need different
|
|
// logic (without having to resort to virtual inheritance).
|
|
template <typename ThisT>
|
|
PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
|
|
if (!src || !typeinfo)
|
|
return false;
|
|
if (src.is_none()) {
|
|
// Defer accepting None to other overloads (if we aren't in convert mode):
|
|
if (!convert) return false;
|
|
value = nullptr;
|
|
return true;
|
|
}
|
|
|
|
auto &this_ = static_cast<ThisT &>(*this);
|
|
this_.check_holder_compat();
|
|
|
|
PyTypeObject *srctype = Py_TYPE(src.ptr());
|
|
|
|
// Case 1: If src is an exact type match for the target type then we can reinterpret_cast
|
|
// the instance's value pointer to the target type:
|
|
if (srctype == typeinfo->type) {
|
|
this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
|
|
return true;
|
|
}
|
|
// Case 2: We have a derived class
|
|
else if (PyType_IsSubtype(srctype, typeinfo->type)) {
|
|
auto &bases = all_type_info(srctype);
|
|
bool no_cpp_mi = typeinfo->simple_type;
|
|
|
|
// Case 2a: the python type is a Python-inherited derived class that inherits from just
|
|
// one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
|
|
// the right type and we can use reinterpret_cast.
|
|
// (This is essentially the same as case 2b, but because not using multiple inheritance
|
|
// is extremely common, we handle it specially to avoid the loop iterator and type
|
|
// pointer lookup overhead)
|
|
if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
|
|
this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
|
|
return true;
|
|
}
|
|
// Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if
|
|
// we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
|
|
// can safely reinterpret_cast to the relevant pointer.
|
|
else if (bases.size() > 1) {
|
|
for (auto base : bases) {
|
|
if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
|
|
this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
|
|
// in the registered bases, above, so try implicit casting (needed for proper C++ casting
|
|
// when MI is involved).
|
|
if (this_.try_implicit_casts(src, convert))
|
|
return true;
|
|
}
|
|
|
|
// Perform an implicit conversion
|
|
if (convert) {
|
|
for (auto &converter : typeinfo->implicit_conversions) {
|
|
auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
|
|
if (load_impl<ThisT>(temp, false)) {
|
|
loader_life_support::add_patient(temp);
|
|
return true;
|
|
}
|
|
}
|
|
if (this_.try_direct_conversions(src))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
|
|
// isn't needed or can't be used. If the type is unknown, sets the error and returns a pair
|
|
// with .second = nullptr. (p.first = nullptr is not an error: it becomes None).
|
|
PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
|
|
const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
|
|
auto &internals = get_internals();
|
|
auto it = internals.registered_types_cpp.find(std::type_index(cast_type));
|
|
if (it != internals.registered_types_cpp.end())
|
|
return {src, (const type_info *) it->second};
|
|
|
|
// Not found, set error:
|
|
std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
|
|
detail::clean_type_id(tname);
|
|
std::string msg = "Unregistered type : " + tname;
|
|
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
const type_info *typeinfo = nullptr;
|
|
void *value = nullptr;
|
|
};
|
|
|
|
/**
|
|
* Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster
|
|
* needs to provide `operator T*()` and `operator T&()` operators.
|
|
*
|
|
* If the type supports moving the value away via an `operator T&&() &&` method, it should use
|
|
* `movable_cast_op_type` instead.
|
|
*/
|
|
template <typename T>
|
|
using cast_op_type =
|
|
conditional_t<std::is_pointer<remove_reference_t<T>>::value,
|
|
typename std::add_pointer<intrinsic_t<T>>::type,
|
|
typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
|
|
|
|
/**
|
|
* Determine suitable casting operator for a type caster with a movable value. Such a type caster
|
|
* needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be
|
|
* called in appropriate contexts where the value can be moved rather than copied.
|
|
*
|
|
* These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
|
|
*/
|
|
template <typename T>
|
|
using movable_cast_op_type =
|
|
conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
|
|
typename std::add_pointer<intrinsic_t<T>>::type,
|
|
conditional_t<std::is_rvalue_reference<T>::value,
|
|
typename std::add_rvalue_reference<intrinsic_t<T>>::type,
|
|
typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
|
|
|
|
// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
|
|
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
|
|
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
|
|
|
|
// Specialization for types that appear to be copy constructible but also look like stl containers
|
|
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
|
|
// so, copy constructability depends on whether the value_type is copy constructible.
|
|
template <typename Container> struct is_copy_constructible<Container, enable_if_t<
|
|
std::is_copy_constructible<Container>::value &&
|
|
std::is_same<typename Container::value_type &, typename Container::reference>::value
|
|
>> : std::is_copy_constructible<typename Container::value_type> {};
|
|
|
|
/// Generic type caster for objects stored on the heap
|
|
template <typename type> class type_caster_base : public type_caster_generic {
|
|
using itype = intrinsic_t<type>;
|
|
public:
|
|
static PYBIND11_DESCR name() { return type_descr(_<type>()); }
|
|
|
|
type_caster_base() : type_caster_base(typeid(type)) { }
|
|
explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
|
|
|
|
static handle cast(const itype &src, return_value_policy policy, handle parent) {
|
|
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
|
|
policy = return_value_policy::copy;
|
|
return cast(&src, policy, parent);
|
|
}
|
|
|
|
static handle cast(itype &&src, return_value_policy, handle parent) {
|
|
return cast(&src, return_value_policy::move, parent);
|
|
}
|
|
|
|
// Returns a (pointer, type_info) pair taking care of necessary RTTI type lookup for a
|
|
// polymorphic type. If the instance isn't derived, returns the non-RTTI base version.
|
|
template <typename T = itype, enable_if_t<std::is_polymorphic<T>::value, int> = 0>
|
|
static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
|
|
const void *vsrc = src;
|
|
auto &internals = get_internals();
|
|
auto &cast_type = typeid(itype);
|
|
const std::type_info *instance_type = nullptr;
|
|
if (vsrc) {
|
|
instance_type = &typeid(*src);
|
|
if (!same_type(cast_type, *instance_type)) {
|
|
// This is a base pointer to a derived type; if it is a pybind11-registered type, we
|
|
// can get the correct derived pointer (which may be != base pointer) by a
|
|
// dynamic_cast to most derived type:
|
|
auto it = internals.registered_types_cpp.find(std::type_index(*instance_type));
|
|
if (it != internals.registered_types_cpp.end())
|
|
return {dynamic_cast<const void *>(src), (const type_info *) it->second};
|
|
}
|
|
}
|
|
// Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
|
|
// don't do a cast
|
|
return type_caster_generic::src_and_type(vsrc, cast_type, instance_type);
|
|
}
|
|
|
|
// Non-polymorphic type, so no dynamic casting; just call the generic version directly
|
|
template <typename T = itype, enable_if_t<!std::is_polymorphic<T>::value, int> = 0>
|
|
static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
|
|
return type_caster_generic::src_and_type(src, typeid(itype));
|
|
}
|
|
|
|
static handle cast(const itype *src, return_value_policy policy, handle parent) {
|
|
auto st = src_and_type(src);
|
|
return type_caster_generic::cast(
|
|
st.first, policy, parent, st.second,
|
|
make_copy_constructor(src), make_move_constructor(src));
|
|
}
|
|
|
|
static handle cast_holder(const itype *src, const void *holder) {
|
|
auto st = src_and_type(src);
|
|
return type_caster_generic::cast(
|
|
st.first, return_value_policy::take_ownership, {}, st.second,
|
|
nullptr, nullptr, holder);
|
|
}
|
|
|
|
template <typename T> using cast_op_type = cast_op_type<T>;
|
|
|
|
operator itype*() { return (type *) value; }
|
|
operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
|
|
|
|
protected:
|
|
using Constructor = void *(*)(const void *);
|
|
|
|
/* Only enabled when the types are {copy,move}-constructible *and* when the type
|
|
does not have a private operator new implementation. */
|
|
template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
|
|
static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
|
|
return [](const void *arg) -> void * {
|
|
return new T(*reinterpret_cast<const T *>(arg));
|
|
};
|
|
}
|
|
|
|
template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
|
|
static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
|
|
return [](const void *arg) -> void * {
|
|
return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
|
|
};
|
|
}
|
|
|
|
static Constructor make_copy_constructor(...) { return nullptr; }
|
|
static Constructor make_move_constructor(...) { return nullptr; }
|
|
};
|
|
|
|
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
|
|
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
|
|
|
|
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
|
|
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
|
|
return caster.operator typename make_caster<T>::template cast_op_type<T>();
|
|
}
|
|
template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
|
|
cast_op(make_caster<T> &&caster) {
|
|
return std::move(caster).operator
|
|
typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
|
|
}
|
|
|
|
template <typename type> class type_caster<std::reference_wrapper<type>> {
|
|
private:
|
|
using caster_t = make_caster<type>;
|
|
caster_t subcaster;
|
|
using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
|
|
static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
|
|
"std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
|
|
public:
|
|
bool load(handle src, bool convert) { return subcaster.load(src, convert); }
|
|
static PYBIND11_DESCR name() { return caster_t::name(); }
|
|
static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
|
|
// It is definitely wrong to take ownership of this pointer, so mask that rvp
|
|
if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
|
|
policy = return_value_policy::automatic_reference;
|
|
return caster_t::cast(&src.get(), policy, parent);
|
|
}
|
|
template <typename T> using cast_op_type = std::reference_wrapper<type>;
|
|
operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
|
|
};
|
|
|
|
#define PYBIND11_TYPE_CASTER(type, py_name) \
|
|
protected: \
|
|
type value; \
|
|
public: \
|
|
static PYBIND11_DESCR name() { return type_descr(py_name); } \
|
|
static handle cast(const type *src, return_value_policy policy, handle parent) { \
|
|
if (!src) return none().release(); \
|
|
return cast(*src, policy, parent); \
|
|
} \
|
|
operator type*() { return &value; } \
|
|
operator type&() { return value; } \
|
|
operator type&&() && { return std::move(value); } \
|
|
template <typename _T> using cast_op_type = pybind11::detail::movable_cast_op_type<_T>
|
|
|
|
|
|
template <typename CharT> using is_std_char_type = any_of<
|
|
std::is_same<CharT, char>, /* std::string */
|
|
std::is_same<CharT, char16_t>, /* std::u16string */
|
|
std::is_same<CharT, char32_t>, /* std::u32string */
|
|
std::is_same<CharT, wchar_t> /* std::wstring */
|
|
>;
|
|
|
|
template <typename T>
|
|
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
|
|
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
|
|
using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
|
|
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
|
|
public:
|
|
|
|
bool load(handle src, bool convert) {
|
|
py_type py_value;
|
|
|
|
if (!src)
|
|
return false;
|
|
|
|
if (std::is_floating_point<T>::value) {
|
|
if (convert || PyFloat_Check(src.ptr()))
|
|
py_value = (py_type) PyFloat_AsDouble(src.ptr());
|
|
else
|
|
return false;
|
|
} else if (PyFloat_Check(src.ptr())) {
|
|
return false;
|
|
} else if (std::is_unsigned<py_type>::value) {
|
|
py_value = as_unsigned<py_type>(src.ptr());
|
|
} else { // signed integer:
|
|
py_value = sizeof(T) <= sizeof(long)
|
|
? (py_type) PyLong_AsLong(src.ptr())
|
|
: (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
|
|
}
|
|
|
|
bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
|
|
if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
|
|
(py_value < (py_type) std::numeric_limits<T>::min() ||
|
|
py_value > (py_type) std::numeric_limits<T>::max()))) {
|
|
bool type_error = py_err && PyErr_ExceptionMatches(
|
|
#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
|
|
PyExc_SystemError
|
|
#else
|
|
PyExc_TypeError
|
|
#endif
|
|
);
|
|
PyErr_Clear();
|
|
if (type_error && convert && PyNumber_Check(src.ptr())) {
|
|
auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value
|
|
? PyNumber_Float(src.ptr())
|
|
: PyNumber_Long(src.ptr()));
|
|
PyErr_Clear();
|
|
return load(tmp, false);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
value = (T) py_value;
|
|
return true;
|
|
}
|
|
|
|
static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
|
|
if (std::is_floating_point<T>::value) {
|
|
return PyFloat_FromDouble((double) src);
|
|
} else if (sizeof(T) <= sizeof(long)) {
|
|
if (std::is_signed<T>::value)
|
|
return PyLong_FromLong((long) src);
|
|
else
|
|
return PyLong_FromUnsignedLong((unsigned long) src);
|
|
} else {
|
|
if (std::is_signed<T>::value)
|
|
return PyLong_FromLongLong((long long) src);
|
|
else
|
|
return PyLong_FromUnsignedLongLong((unsigned long long) src);
|
|
}
|
|
}
|
|
|
|
PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
|
|
};
|
|
|
|
template<typename T> struct void_caster {
|
|
public:
|
|
bool load(handle src, bool) {
|
|
if (src && src.is_none())
|
|
return true;
|
|
return false;
|
|
}
|
|
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
|
|
return none().inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(T, _("None"));
|
|
};
|
|
|
|
template <> class type_caster<void_type> : public void_caster<void_type> {};
|
|
|
|
template <> class type_caster<void> : public type_caster<void_type> {
|
|
public:
|
|
using type_caster<void_type>::cast;
|
|
|
|
bool load(handle h, bool) {
|
|
if (!h) {
|
|
return false;
|
|
} else if (h.is_none()) {
|
|
value = nullptr;
|
|
return true;
|
|
}
|
|
|
|
/* Check if this is a capsule */
|
|
if (isinstance<capsule>(h)) {
|
|
value = reinterpret_borrow<capsule>(h);
|
|
return true;
|
|
}
|
|
|
|
/* Check if this is a C++ type */
|
|
auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
|
|
if (bases.size() == 1) { // Only allowing loading from a single-value type
|
|
value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
|
|
return true;
|
|
}
|
|
|
|
/* Fail */
|
|
return false;
|
|
}
|
|
|
|
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
|
|
if (ptr)
|
|
return capsule(ptr).release();
|
|
else
|
|
return none().inc_ref();
|
|
}
|
|
|
|
template <typename T> using cast_op_type = void*&;
|
|
operator void *&() { return value; }
|
|
static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
|
|
private:
|
|
void *value = nullptr;
|
|
};
|
|
|
|
template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
|
|
|
|
template <> class type_caster<bool> {
|
|
public:
|
|
bool load(handle src, bool) {
|
|
if (!src) return false;
|
|
else if (src.ptr() == Py_True) { value = true; return true; }
|
|
else if (src.ptr() == Py_False) { value = false; return true; }
|
|
else return false;
|
|
}
|
|
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
|
|
return handle(src ? Py_True : Py_False).inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(bool, _("bool"));
|
|
};
|
|
|
|
// Helper class for UTF-{8,16,32} C++ stl strings:
|
|
template <typename StringType, bool IsView = false> struct string_caster {
|
|
using CharT = typename StringType::value_type;
|
|
|
|
// Simplify life by being able to assume standard char sizes (the standard only guarantees
|
|
// minimums, but Python requires exact sizes)
|
|
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
|
|
static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
|
|
static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
|
|
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
|
|
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
|
|
"Unsupported wchar_t size != 2/4");
|
|
static constexpr size_t UTF_N = 8 * sizeof(CharT);
|
|
|
|
bool load(handle src, bool) {
|
|
#if PY_MAJOR_VERSION < 3
|
|
object temp;
|
|
#endif
|
|
handle load_src = src;
|
|
if (!src) {
|
|
return false;
|
|
} else if (!PyUnicode_Check(load_src.ptr())) {
|
|
#if PY_MAJOR_VERSION >= 3
|
|
return load_bytes(load_src);
|
|
#else
|
|
if (sizeof(CharT) == 1) {
|
|
return load_bytes(load_src);
|
|
}
|
|
|
|
// The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
|
|
if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
|
|
return false;
|
|
|
|
temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
|
|
if (!temp) { PyErr_Clear(); return false; }
|
|
load_src = temp;
|
|
#endif
|
|
}
|
|
|
|
object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
|
|
load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
|
|
if (!utfNbytes) { PyErr_Clear(); return false; }
|
|
|
|
const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
|
|
size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
|
|
if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
|
|
value = StringType(buffer, length);
|
|
|
|
// If we're loading a string_view we need to keep the encoded Python object alive:
|
|
if (IsView)
|
|
loader_life_support::add_patient(utfNbytes);
|
|
|
|
return true;
|
|
}
|
|
|
|
static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
|
|
const char *buffer = reinterpret_cast<const char *>(src.data());
|
|
ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
|
|
handle s = decode_utfN(buffer, nbytes);
|
|
if (!s) throw error_already_set();
|
|
return s;
|
|
}
|
|
|
|
PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
|
|
|
|
private:
|
|
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
|
|
#if !defined(PYPY_VERSION)
|
|
return
|
|
UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
|
|
UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
|
|
PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
|
|
#else
|
|
// PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
|
|
// sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
|
|
// non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
|
|
// passing the encoding as a string value, which works properly:
|
|
return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
|
|
#endif
|
|
}
|
|
|
|
// When loading into a std::string or char*, accept a bytes object as-is (i.e.
|
|
// without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
|
|
// which supports loading a unicode from a str, doesn't take this path.
|
|
template <typename C = CharT>
|
|
bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
|
|
if (PYBIND11_BYTES_CHECK(src.ptr())) {
|
|
// We were passed a Python 3 raw bytes; accept it into a std::string or char*
|
|
// without any encoding attempt.
|
|
const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
|
|
if (bytes) {
|
|
value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename C = CharT>
|
|
bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
|
|
};
|
|
|
|
template <typename CharT, class Traits, class Allocator>
|
|
struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
|
|
: string_caster<std::basic_string<CharT, Traits, Allocator>> {};
|
|
|
|
#ifdef PYBIND11_HAS_STRING_VIEW
|
|
template <typename CharT, class Traits>
|
|
struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
|
|
: string_caster<std::basic_string_view<CharT, Traits>, true> {};
|
|
#endif
|
|
|
|
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
|
|
// ability to use None as a nullptr char* (which the string caster doesn't allow).
|
|
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
|
|
using StringType = std::basic_string<CharT>;
|
|
using StringCaster = type_caster<StringType>;
|
|
StringCaster str_caster;
|
|
bool none = false;
|
|
public:
|
|
bool load(handle src, bool convert) {
|
|
if (!src) return false;
|
|
if (src.is_none()) {
|
|
// Defer accepting None to other overloads (if we aren't in convert mode):
|
|
if (!convert) return false;
|
|
none = true;
|
|
return true;
|
|
}
|
|
return str_caster.load(src, convert);
|
|
}
|
|
|
|
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
|
|
if (src == nullptr) return pybind11::none().inc_ref();
|
|
return StringCaster::cast(StringType(src), policy, parent);
|
|
}
|
|
|
|
static handle cast(CharT src, return_value_policy policy, handle parent) {
|
|
if (std::is_same<char, CharT>::value) {
|
|
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
|
|
if (!s) throw error_already_set();
|
|
return s;
|
|
}
|
|
return StringCaster::cast(StringType(1, src), policy, parent);
|
|
}
|
|
|
|
operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
|
|
operator CharT() {
|
|
if (none)
|
|
throw value_error("Cannot convert None to a character");
|
|
|
|
auto &value = static_cast<StringType &>(str_caster);
|
|
size_t str_len = value.size();
|
|
if (str_len == 0)
|
|
throw value_error("Cannot convert empty string to a character");
|
|
|
|
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
|
|
// is too high, and one for multiple unicode characters (caught later), so we need to figure
|
|
// out how long the first encoded character is in bytes to distinguish between these two
|
|
// errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
|
|
// can fit into a single char value.
|
|
if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
|
|
unsigned char v0 = static_cast<unsigned char>(value[0]);
|
|
size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
|
|
(v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
|
|
(v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
|
|
4; // 0b11110xxx - start of 4-byte sequence
|
|
|
|
if (char0_bytes == str_len) {
|
|
// If we have a 128-255 value, we can decode it into a single char:
|
|
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
|
|
return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
|
|
}
|
|
// Otherwise we have a single character, but it's > U+00FF
|
|
throw value_error("Character code point not in range(0x100)");
|
|
}
|
|
}
|
|
|
|
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
|
|
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
|
|
// string was too long" error).
|
|
else if (StringCaster::UTF_N == 16 && str_len == 2) {
|
|
char16_t v0 = static_cast<char16_t>(value[0]);
|
|
if (v0 >= 0xD800 && v0 < 0xE000)
|
|
throw value_error("Character code point not in range(0x10000)");
|
|
}
|
|
|
|
if (str_len != 1)
|
|
throw value_error("Expected a character, but multi-character string found");
|
|
|
|
return value[0];
|
|
}
|
|
|
|
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
|
|
template <typename _T> using cast_op_type = remove_reference_t<pybind11::detail::cast_op_type<_T>>;
|
|
};
|
|
|
|
// Base implementation for std::tuple and std::pair
|
|
template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
|
|
using type = Tuple<Ts...>;
|
|
static constexpr auto size = sizeof...(Ts);
|
|
using indices = make_index_sequence<size>;
|
|
public:
|
|
|
|
bool load(handle src, bool convert) {
|
|
if (!isinstance<sequence>(src))
|
|
return false;
|
|
const auto seq = reinterpret_borrow<sequence>(src);
|
|
if (seq.size() != size)
|
|
return false;
|
|
return load_impl(seq, convert, indices{});
|
|
}
|
|
|
|
template <typename T>
|
|
static handle cast(T &&src, return_value_policy policy, handle parent) {
|
|
return cast_impl(std::forward<T>(src), policy, parent, indices{});
|
|
}
|
|
|
|
static PYBIND11_DESCR name() {
|
|
return type_descr(_("Tuple[") + detail::concat(make_caster<Ts>::name()...) + _("]"));
|
|
}
|
|
|
|
template <typename T> using cast_op_type = type;
|
|
|
|
operator type() & { return implicit_cast(indices{}); }
|
|
operator type() && { return std::move(*this).implicit_cast(indices{}); }
|
|
|
|
protected:
|
|
template <size_t... Is>
|
|
type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
|
|
template <size_t... Is>
|
|
type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
|
|
|
|
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
|
|
|
|
template <size_t... Is>
|
|
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
|
|
for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
|
|
if (!r)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Implementation: Convert a C++ tuple into a Python tuple */
|
|
template <typename T, size_t... Is>
|
|
static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
|
|
std::array<object, size> entries{{
|
|
reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
|
|
}};
|
|
for (const auto &entry: entries)
|
|
if (!entry)
|
|
return handle();
|
|
tuple result(size);
|
|
int counter = 0;
|
|
for (auto & entry: entries)
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
|
|
return result.release();
|
|
}
|
|
|
|
Tuple<make_caster<Ts>...> subcasters;
|
|
};
|
|
|
|
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
|
|
: public tuple_caster<std::pair, T1, T2> {};
|
|
|
|
template <typename... Ts> class type_caster<std::tuple<Ts...>>
|
|
: public tuple_caster<std::tuple, Ts...> {};
|
|
|
|
/// Helper class which abstracts away certain actions. Users can provide specializations for
|
|
/// custom holders, but it's only necessary if the type has a non-standard interface.
|
|
template <typename T>
|
|
struct holder_helper {
|
|
static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
|
|
};
|
|
|
|
/// Type caster for holder types like std::shared_ptr, etc.
|
|
template <typename type, typename holder_type>
|
|
struct copyable_holder_caster : public type_caster_base<type> {
|
|
public:
|
|
using base = type_caster_base<type>;
|
|
static_assert(std::is_base_of<base, type_caster<type>>::value,
|
|
"Holder classes are only supported for custom types");
|
|
using base::base;
|
|
using base::cast;
|
|
using base::typeinfo;
|
|
using base::value;
|
|
|
|
bool load(handle src, bool convert) {
|
|
return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
|
|
}
|
|
|
|
explicit operator type*() { return this->value; }
|
|
explicit operator type&() { return *(this->value); }
|
|
explicit operator holder_type*() { return &holder; }
|
|
|
|
// Workaround for Intel compiler bug
|
|
// see pybind11 issue 94
|
|
#if defined(__ICC) || defined(__INTEL_COMPILER)
|
|
operator holder_type&() { return holder; }
|
|
#else
|
|
explicit operator holder_type&() { return holder; }
|
|
#endif
|
|
|
|
static handle cast(const holder_type &src, return_value_policy, handle) {
|
|
const auto *ptr = holder_helper<holder_type>::get(src);
|
|
return type_caster_base<type>::cast_holder(ptr, &src);
|
|
}
|
|
|
|
protected:
|
|
friend class type_caster_generic;
|
|
void check_holder_compat() {
|
|
if (typeinfo->default_holder)
|
|
throw cast_error("Unable to load a custom holder type from a default-holder instance");
|
|
}
|
|
|
|
bool load_value(const value_and_holder &v_h) {
|
|
if (v_h.holder_constructed()) {
|
|
value = v_h.value_ptr();
|
|
holder = v_h.holder<holder_type>();
|
|
return true;
|
|
} else {
|
|
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
|
|
#if defined(NDEBUG)
|
|
"(compile in debug mode for type information)");
|
|
#else
|
|
"of type '" + type_id<holder_type>() + "''");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
bool try_implicit_casts(handle, bool) { return false; }
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
bool try_implicit_casts(handle src, bool convert) {
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
copyable_holder_caster sub_caster(*cast.first);
|
|
if (sub_caster.load(src, convert)) {
|
|
value = cast.second(sub_caster.value);
|
|
holder = holder_type(sub_caster.holder, (type *) value);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool try_direct_conversions(handle) { return false; }
|
|
|
|
|
|
holder_type holder;
|
|
};
|
|
|
|
/// Specialize for the common std::shared_ptr, so users don't need to
|
|
template <typename T>
|
|
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
|
|
|
|
template <typename type, typename holder_type>
|
|
struct move_only_holder_caster {
|
|
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
|
|
"Holder classes are only supported for custom types");
|
|
|
|
static handle cast(holder_type &&src, return_value_policy, handle) {
|
|
auto *ptr = holder_helper<holder_type>::get(src);
|
|
return type_caster_base<type>::cast_holder(ptr, &src);
|
|
}
|
|
static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
|
|
};
|
|
|
|
template <typename type, typename deleter>
|
|
class type_caster<std::unique_ptr<type, deleter>>
|
|
: public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
|
|
|
|
template <typename type, typename holder_type>
|
|
using type_caster_holder = conditional_t<std::is_copy_constructible<holder_type>::value,
|
|
copyable_holder_caster<type, holder_type>,
|
|
move_only_holder_caster<type, holder_type>>;
|
|
|
|
template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
|
|
|
|
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
|
|
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
|
|
namespace pybind11 { namespace detail { \
|
|
template <typename type> \
|
|
struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
|
|
template <typename type> \
|
|
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
|
|
: public type_caster_holder<type, holder_type> { }; \
|
|
}}
|
|
|
|
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
|
|
template <typename base, typename holder> struct is_holder_type :
|
|
std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
|
|
// Specialization for always-supported unique_ptr holders:
|
|
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
|
|
std::true_type {};
|
|
|
|
template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
|
|
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
|
|
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
|
|
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
|
|
|
|
template <typename type>
|
|
struct pyobject_caster {
|
|
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
|
|
bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
|
|
|
|
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
|
|
bool load(handle src, bool /* convert */) {
|
|
if (!isinstance<type>(src))
|
|
return false;
|
|
value = reinterpret_borrow<type>(src);
|
|
return true;
|
|
}
|
|
|
|
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
|
|
return src.inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
|
|
};
|
|
|
|
template <typename T>
|
|
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
|
|
|
|
// Our conditions for enabling moving are quite restrictive:
|
|
// At compile time:
|
|
// - T needs to be a non-const, non-pointer, non-reference type
|
|
// - type_caster<T>::operator T&() must exist
|
|
// - the type must be move constructible (obviously)
|
|
// At run-time:
|
|
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
|
|
// must have ref_count() == 1)h
|
|
// If any of the above are not satisfied, we fall back to copying.
|
|
template <typename T> using move_is_plain_type = satisfies_none_of<T,
|
|
std::is_void, std::is_pointer, std::is_reference, std::is_const
|
|
>;
|
|
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
|
|
template <typename T> struct move_always<T, enable_if_t<all_of<
|
|
move_is_plain_type<T>,
|
|
negation<std::is_copy_constructible<T>>,
|
|
std::is_move_constructible<T>,
|
|
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
|
|
>::value>> : std::true_type {};
|
|
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
|
|
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
|
|
move_is_plain_type<T>,
|
|
negation<move_always<T>>,
|
|
std::is_move_constructible<T>,
|
|
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
|
|
>::value>> : std::true_type {};
|
|
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
|
|
|
|
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
|
|
// reference or pointer to a local variable of the type_caster. Basically, only
|
|
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
|
|
// everything else returns a reference/pointer to a local variable.
|
|
template <typename type> using cast_is_temporary_value_reference = bool_constant<
|
|
(std::is_reference<type>::value || std::is_pointer<type>::value) &&
|
|
!std::is_base_of<type_caster_generic, make_caster<type>>::value
|
|
>;
|
|
|
|
// When a value returned from a C++ function is being cast back to Python, we almost always want to
|
|
// force `policy = move`, regardless of the return value policy the function/method was declared
|
|
// with. Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
|
|
// specializing this struct.
|
|
template <typename Return, typename SFINAE = void> struct return_value_policy_override {
|
|
static return_value_policy policy(return_value_policy p) {
|
|
return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
|
|
? return_value_policy::move : p;
|
|
}
|
|
};
|
|
|
|
// Basic python -> C++ casting; throws if casting fails
|
|
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
|
|
if (!conv.load(handle, true)) {
|
|
#if defined(NDEBUG)
|
|
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
|
|
#else
|
|
throw cast_error("Unable to cast Python instance of type " +
|
|
(std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
|
|
#endif
|
|
}
|
|
return conv;
|
|
}
|
|
// Wrapper around the above that also constructs and returns a type_caster
|
|
template <typename T> make_caster<T> load_type(const handle &handle) {
|
|
make_caster<T> conv;
|
|
load_type(conv, handle);
|
|
return conv;
|
|
}
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
// pytype -> C++ type
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
T cast(const handle &handle) {
|
|
using namespace detail;
|
|
static_assert(!cast_is_temporary_value_reference<T>::value,
|
|
"Unable to cast type to reference: value is local to type caster");
|
|
return cast_op<T>(load_type<T>(handle));
|
|
}
|
|
|
|
// pytype -> pytype (calls converting constructor)
|
|
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
|
|
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
|
|
|
|
// C++ type -> py::object
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
|
|
handle parent = handle()) {
|
|
if (policy == return_value_policy::automatic)
|
|
policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
|
|
else if (policy == return_value_policy::automatic_reference)
|
|
policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
|
|
return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
|
|
}
|
|
|
|
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
|
|
template <> inline void handle::cast() const { return; }
|
|
|
|
template <typename T>
|
|
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
|
|
if (obj.ref_count() > 1)
|
|
#if defined(NDEBUG)
|
|
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
|
|
" (compile in debug mode for details)");
|
|
#else
|
|
throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
|
|
" instance to C++ " + type_id<T>() + " instance: instance has multiple references");
|
|
#endif
|
|
|
|
// Move into a temporary and return that, because the reference may be a local value of `conv`
|
|
T ret = std::move(detail::load_type<T>(obj).operator T&());
|
|
return ret;
|
|
}
|
|
|
|
// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
|
|
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
|
|
// object has multiple references, but trying to copy will fail to compile.
|
|
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
|
|
// - Otherwise (not movable), copy.
|
|
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
|
|
return move<T>(std::move(object));
|
|
}
|
|
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
|
|
if (object.ref_count() > 1)
|
|
return cast<T>(object);
|
|
else
|
|
return move<T>(std::move(object));
|
|
}
|
|
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
|
|
return cast<T>(object);
|
|
}
|
|
|
|
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
|
|
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
|
|
template <> inline void object::cast() const & { return; }
|
|
template <> inline void object::cast() && { return; }
|
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
// Declared in pytypes.h:
|
|
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
|
|
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
|
|
|
|
struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
|
|
template <typename ret_type> using overload_caster_t = conditional_t<
|
|
cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
|
|
|
|
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
|
|
// store the result in the given variable. For other types, this is a no-op.
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
|
|
return cast_op<T>(load_type(caster, o));
|
|
}
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
|
|
pybind11_fail("Internal error: cast_ref fallback invoked"); }
|
|
|
|
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
|
|
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
|
|
// cases where pybind11::cast is valid.
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
|
|
return pybind11::cast<T>(std::move(o)); }
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
|
|
pybind11_fail("Internal error: cast_safe fallback invoked"); }
|
|
template <> inline void cast_safe<void>(object &&) {}
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
template <return_value_policy policy = return_value_policy::automatic_reference,
|
|
typename... Args> tuple make_tuple(Args&&... args_) {
|
|
constexpr size_t size = sizeof...(Args);
|
|
std::array<object, size> args {
|
|
{ reinterpret_steal<object>(detail::make_caster<Args>::cast(
|
|
std::forward<Args>(args_), policy, nullptr))... }
|
|
};
|
|
for (size_t i = 0; i < args.size(); i++) {
|
|
if (!args[i]) {
|
|
#if defined(NDEBUG)
|
|
throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
|
|
#else
|
|
std::array<std::string, size> argtypes { {type_id<Args>()...} };
|
|
throw cast_error("make_tuple(): unable to convert argument of type '" +
|
|
argtypes[i] + "' to Python object");
|
|
#endif
|
|
}
|
|
}
|
|
tuple result(size);
|
|
int counter = 0;
|
|
for (auto &arg_value : args)
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
|
|
return result;
|
|
}
|
|
|
|
/// \ingroup annotations
|
|
/// Annotation for arguments
|
|
struct arg {
|
|
/// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
|
|
constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
|
|
/// Assign a value to this argument
|
|
template <typename T> arg_v operator=(T &&value) const;
|
|
/// Indicate that the type should not be converted in the type caster
|
|
arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
|
|
/// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
|
|
arg &none(bool flag = true) { flag_none = flag; return *this; }
|
|
|
|
const char *name; ///< If non-null, this is a named kwargs argument
|
|
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
|
|
bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
|
|
};
|
|
|
|
/// \ingroup annotations
|
|
/// Annotation for arguments with values
|
|
struct arg_v : arg {
|
|
private:
|
|
template <typename T>
|
|
arg_v(arg &&base, T &&x, const char *descr = nullptr)
|
|
: arg(base),
|
|
value(reinterpret_steal<object>(
|
|
detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
|
|
)),
|
|
descr(descr)
|
|
#if !defined(NDEBUG)
|
|
, type(type_id<T>())
|
|
#endif
|
|
{ }
|
|
|
|
public:
|
|
/// Direct construction with name, default, and description
|
|
template <typename T>
|
|
arg_v(const char *name, T &&x, const char *descr = nullptr)
|
|
: arg_v(arg(name), std::forward<T>(x), descr) { }
|
|
|
|
/// Called internally when invoking `py::arg("a") = value`
|
|
template <typename T>
|
|
arg_v(const arg &base, T &&x, const char *descr = nullptr)
|
|
: arg_v(arg(base), std::forward<T>(x), descr) { }
|
|
|
|
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
|
|
arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
|
|
|
|
/// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
|
|
arg_v &none(bool flag = true) { arg::none(flag); return *this; }
|
|
|
|
/// The default value
|
|
object value;
|
|
/// The (optional) description of the default value
|
|
const char *descr;
|
|
#if !defined(NDEBUG)
|
|
/// The C++ type name of the default value (only available when compiled in debug mode)
|
|
std::string type;
|
|
#endif
|
|
};
|
|
|
|
template <typename T>
|
|
arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
|
|
|
|
/// Alias for backward compatibility -- to be removed in version 2.0
|
|
template <typename /*unused*/> using arg_t = arg_v;
|
|
|
|
inline namespace literals {
|
|
/** \rst
|
|
String literal version of `arg`
|
|
\endrst */
|
|
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
|
|
}
|
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
// forward declaration (definition in attr.h)
|
|
struct function_record;
|
|
|
|
/// Internal data associated with a single function call
|
|
struct function_call {
|
|
function_call(function_record &f, handle p); // Implementation in attr.h
|
|
|
|
/// The function data:
|
|
const function_record &func;
|
|
|
|
/// Arguments passed to the function:
|
|
std::vector<handle> args;
|
|
|
|
/// The `convert` value the arguments should be loaded with
|
|
std::vector<bool> args_convert;
|
|
|
|
/// The parent, if any
|
|
handle parent;
|
|
};
|
|
|
|
|
|
/// Helper class which loads arguments for C++ functions called from Python
|
|
template <typename... Args>
|
|
class argument_loader {
|
|
using indices = make_index_sequence<sizeof...(Args)>;
|
|
|
|
template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
|
|
template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
|
|
// Get args/kwargs argument positions relative to the end of the argument list:
|
|
static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
|
|
kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
|
|
|
|
static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
|
|
|
|
static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
|
|
|
|
public:
|
|
static constexpr bool has_kwargs = kwargs_pos < 0;
|
|
static constexpr bool has_args = args_pos < 0;
|
|
|
|
static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }
|
|
|
|
bool load_args(function_call &call) {
|
|
return load_impl_sequence(call, indices{});
|
|
}
|
|
|
|
template <typename Return, typename Guard, typename Func>
|
|
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
|
|
return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
|
|
}
|
|
|
|
template <typename Return, typename Guard, typename Func>
|
|
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
|
|
std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
|
|
return void_type();
|
|
}
|
|
|
|
private:
|
|
|
|
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
|
|
|
|
template <size_t... Is>
|
|
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
|
|
for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
|
|
if (!r)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
template <typename Return, typename Func, size_t... Is, typename Guard>
|
|
Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
|
|
return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
|
|
}
|
|
|
|
std::tuple<make_caster<Args>...> argcasters;
|
|
};
|
|
|
|
/// Helper class which collects only positional arguments for a Python function call.
|
|
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
|
|
template <return_value_policy policy>
|
|
class simple_collector {
|
|
public:
|
|
template <typename... Ts>
|
|
explicit simple_collector(Ts &&...values)
|
|
: m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
dict kwargs() const { return {}; }
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
object call(PyObject *ptr) const {
|
|
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
|
|
if (!result)
|
|
throw error_already_set();
|
|
return reinterpret_steal<object>(result);
|
|
}
|
|
|
|
private:
|
|
tuple m_args;
|
|
};
|
|
|
|
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
|
|
template <return_value_policy policy>
|
|
class unpacking_collector {
|
|
public:
|
|
template <typename... Ts>
|
|
explicit unpacking_collector(Ts &&...values) {
|
|
// Tuples aren't (easily) resizable so a list is needed for collection,
|
|
// but the actual function call strictly requires a tuple.
|
|
auto args_list = list();
|
|
int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
|
|
ignore_unused(_);
|
|
|
|
m_args = std::move(args_list);
|
|
}
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
const dict &kwargs() const & { return m_kwargs; }
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
dict kwargs() && { return std::move(m_kwargs); }
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
object call(PyObject *ptr) const {
|
|
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
|
|
if (!result)
|
|
throw error_already_set();
|
|
return reinterpret_steal<object>(result);
|
|
}
|
|
|
|
private:
|
|
template <typename T>
|
|
void process(list &args_list, T &&x) {
|
|
auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
|
|
if (!o) {
|
|
#if defined(NDEBUG)
|
|
argument_cast_error();
|
|
#else
|
|
argument_cast_error(std::to_string(args_list.size()), type_id<T>());
|
|
#endif
|
|
}
|
|
args_list.append(o);
|
|
}
|
|
|
|
void process(list &args_list, detail::args_proxy ap) {
|
|
for (const auto &a : ap)
|
|
args_list.append(a);
|
|
}
|
|
|
|
void process(list &/*args_list*/, arg_v a) {
|
|
if (!a.name)
|
|
#if defined(NDEBUG)
|
|
nameless_argument_error();
|
|
#else
|
|
nameless_argument_error(a.type);
|
|
#endif
|
|
|
|
if (m_kwargs.contains(a.name)) {
|
|
#if defined(NDEBUG)
|
|
multiple_values_error();
|
|
#else
|
|
multiple_values_error(a.name);
|
|
#endif
|
|
}
|
|
if (!a.value) {
|
|
#if defined(NDEBUG)
|
|
argument_cast_error();
|
|
#else
|
|
argument_cast_error(a.name, a.type);
|
|
#endif
|
|
}
|
|
m_kwargs[a.name] = a.value;
|
|
}
|
|
|
|
void process(list &/*args_list*/, detail::kwargs_proxy kp) {
|
|
if (!kp)
|
|
return;
|
|
for (const auto &k : reinterpret_borrow<dict>(kp)) {
|
|
if (m_kwargs.contains(k.first)) {
|
|
#if defined(NDEBUG)
|
|
multiple_values_error();
|
|
#else
|
|
multiple_values_error(str(k.first));
|
|
#endif
|
|
}
|
|
m_kwargs[k.first] = k.second;
|
|
}
|
|
}
|
|
|
|
[[noreturn]] static void nameless_argument_error() {
|
|
throw type_error("Got kwargs without a name; only named arguments "
|
|
"may be passed via py::arg() to a python function call. "
|
|
"(compile in debug mode for details)");
|
|
}
|
|
[[noreturn]] static void nameless_argument_error(std::string type) {
|
|
throw type_error("Got kwargs without a name of type '" + type + "'; only named "
|
|
"arguments may be passed via py::arg() to a python function call. ");
|
|
}
|
|
[[noreturn]] static void multiple_values_error() {
|
|
throw type_error("Got multiple values for keyword argument "
|
|
"(compile in debug mode for details)");
|
|
}
|
|
|
|
[[noreturn]] static void multiple_values_error(std::string name) {
|
|
throw type_error("Got multiple values for keyword argument '" + name + "'");
|
|
}
|
|
|
|
[[noreturn]] static void argument_cast_error() {
|
|
throw cast_error("Unable to convert call argument to Python object "
|
|
"(compile in debug mode for details)");
|
|
}
|
|
|
|
[[noreturn]] static void argument_cast_error(std::string name, std::string type) {
|
|
throw cast_error("Unable to convert call argument '" + name
|
|
+ "' of type '" + type + "' to Python object");
|
|
}
|
|
|
|
private:
|
|
tuple m_args;
|
|
dict m_kwargs;
|
|
};
|
|
|
|
/// Collect only positional arguments for a Python function call
|
|
template <return_value_policy policy, typename... Args,
|
|
typename = enable_if_t<all_of<is_positional<Args>...>::value>>
|
|
simple_collector<policy> collect_arguments(Args &&...args) {
|
|
return simple_collector<policy>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
|
|
template <return_value_policy policy, typename... Args,
|
|
typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
|
|
unpacking_collector<policy> collect_arguments(Args &&...args) {
|
|
// Following argument order rules for generalized unpacking according to PEP 448
|
|
static_assert(
|
|
constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
|
|
&& constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
|
|
"Invalid function call: positional args must precede keywords and ** unpacking; "
|
|
"* unpacking must precede ** unpacking"
|
|
);
|
|
return unpacking_collector<policy>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <typename Derived>
|
|
template <return_value_policy policy, typename... Args>
|
|
object object_api<Derived>::operator()(Args &&...args) const {
|
|
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
|
|
}
|
|
|
|
template <typename Derived>
|
|
template <return_value_policy policy, typename... Args>
|
|
object object_api<Derived>::call(Args &&...args) const {
|
|
return operator()<policy>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
#define PYBIND11_MAKE_OPAQUE(Type) \
|
|
namespace pybind11 { namespace detail { \
|
|
template<> class type_caster<Type> : public type_caster_base<Type> { }; \
|
|
}}
|
|
|
|
NAMESPACE_END(pybind11)
|