pybind11/include/pybind11/numpy.h

394 lines
14 KiB
C++

/*
pybind11/numpy.h: Basic NumPy support, auto-vectorization support
Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "complex.h"
#include <numeric>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
NAMESPACE_BEGIN(pybind11)
template <typename type> struct npy_format_descriptor { };
class array : public buffer {
public:
struct API {
enum Entries {
API_PyArray_Type = 2,
API_PyArray_DescrFromType = 45,
API_PyArray_FromAny = 69,
API_PyArray_NewCopy = 85,
API_PyArray_NewFromDescr = 94,
NPY_C_CONTIGUOUS_ = 0x0001,
NPY_F_CONTIGUOUS_ = 0x0002,
NPY_ARRAY_FORCECAST_ = 0x0010,
NPY_ENSURE_ARRAY_ = 0x0040,
NPY_BOOL_ = 0,
NPY_BYTE_, NPY_UBYTE_,
NPY_SHORT_, NPY_USHORT_,
NPY_INT_, NPY_UINT_,
NPY_LONG_, NPY_ULONG_,
NPY_LONGLONG_, NPY_ULONGLONG_,
NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_,
NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_
};
static API lookup() {
module m = module::import("numpy.core.multiarray");
object c = (object) m.attr("_ARRAY_API");
#if PY_MAJOR_VERSION >= 3
void **api_ptr = (void **) (c ? PyCapsule_GetPointer(c.ptr(), NULL) : nullptr);
#else
void **api_ptr = (void **) (c ? PyCObject_AsVoidPtr(c.ptr()) : nullptr);
#endif
API api;
api.PyArray_Type_ = (decltype(api.PyArray_Type_)) api_ptr[API_PyArray_Type];
api.PyArray_DescrFromType_ = (decltype(api.PyArray_DescrFromType_)) api_ptr[API_PyArray_DescrFromType];
api.PyArray_FromAny_ = (decltype(api.PyArray_FromAny_)) api_ptr[API_PyArray_FromAny];
api.PyArray_NewCopy_ = (decltype(api.PyArray_NewCopy_)) api_ptr[API_PyArray_NewCopy];
api.PyArray_NewFromDescr_ = (decltype(api.PyArray_NewFromDescr_)) api_ptr[API_PyArray_NewFromDescr];
return api;
}
bool PyArray_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArray_Type_); }
PyObject *(*PyArray_DescrFromType_)(int);
PyObject *(*PyArray_NewFromDescr_)
(PyTypeObject *, PyObject *, int, Py_intptr_t *,
Py_intptr_t *, void *, int, PyObject *);
PyObject *(*PyArray_NewCopy_)(PyObject *, int);
PyTypeObject *PyArray_Type_;
PyObject *(*PyArray_FromAny_) (PyObject *, PyObject *, int, int, int, PyObject *);
};
PYBIND11_OBJECT_DEFAULT(array, buffer, lookup_api().PyArray_Check_)
template <typename Type> array(size_t size, const Type *ptr) {
API& api = lookup_api();
PyObject *descr = api.PyArray_DescrFromType_(npy_format_descriptor<Type>::value);
if (descr == nullptr)
pybind11_fail("NumPy: unsupported buffer format!");
Py_intptr_t shape = (Py_intptr_t) size;
object tmp = object(api.PyArray_NewFromDescr_(
api.PyArray_Type_, descr, 1, &shape, nullptr, (void *) ptr, 0, nullptr), false);
if (ptr && tmp)
tmp = object(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */), false);
if (!tmp)
pybind11_fail("NumPy: unable to create array!");
m_ptr = tmp.release().ptr();
}
array(const buffer_info &info) {
API& api = lookup_api();
if ((info.format.size() < 1) || (info.format.size() > 2))
pybind11_fail("Unsupported buffer format!");
int fmt = (int) info.format[0];
if (info.format == "Zd") fmt = API::NPY_CDOUBLE_;
else if (info.format == "Zf") fmt = API::NPY_CFLOAT_;
PyObject *descr = api.PyArray_DescrFromType_(fmt);
if (descr == nullptr)
pybind11_fail("NumPy: unsupported buffer format '" + info.format + "'!");
object tmp(api.PyArray_NewFromDescr_(
api.PyArray_Type_, descr, info.ndim, (Py_intptr_t *) &info.shape[0],
(Py_intptr_t *) &info.strides[0], info.ptr, 0, nullptr), false);
if (info.ptr && tmp)
tmp = object(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */), false);
if (!tmp)
pybind11_fail("NumPy: unable to create array!");
m_ptr = tmp.release().ptr();
}
protected:
static API &lookup_api() {
static API api = API::lookup();
return api;
}
};
template <typename T> class array_t : public array {
public:
PYBIND11_OBJECT_CVT(array_t, array, is_non_null, m_ptr = ensure(m_ptr));
array_t() : array() { }
static bool is_non_null(PyObject *ptr) { return ptr != nullptr; }
static PyObject *ensure(PyObject *ptr) {
if (ptr == nullptr)
return nullptr;
API &api = lookup_api();
PyObject *descr = api.PyArray_DescrFromType_(npy_format_descriptor<T>::value);
PyObject *result = api.PyArray_FromAny_(
ptr, descr, 0, 0, API::NPY_C_CONTIGUOUS_ | API::NPY_ENSURE_ARRAY_
| API::NPY_ARRAY_FORCECAST_, nullptr);
Py_DECREF(ptr);
return result;
}
};
#define DECL_FMT(t, n) template<> struct npy_format_descriptor<t> { enum { value = array::API::n }; }
DECL_FMT(int8_t, NPY_BYTE_); DECL_FMT(uint8_t, NPY_UBYTE_); DECL_FMT(int16_t, NPY_SHORT_);
DECL_FMT(uint16_t, NPY_USHORT_); DECL_FMT(int32_t, NPY_INT_); DECL_FMT(uint32_t, NPY_UINT_);
DECL_FMT(int64_t, NPY_LONGLONG_); DECL_FMT(uint64_t, NPY_ULONGLONG_); DECL_FMT(float, NPY_FLOAT_);
DECL_FMT(double, NPY_DOUBLE_); DECL_FMT(bool, NPY_BOOL_); DECL_FMT(std::complex<float>, NPY_CFLOAT_);
DECL_FMT(std::complex<double>, NPY_CDOUBLE_);
#undef DECL_FMT
NAMESPACE_BEGIN(detail)
template <class T>
using array_iterator = typename std::add_pointer<T>::type;
template <class T>
array_iterator<T> array_begin(const buffer_info& buffer) {
return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr));
}
template <class T>
array_iterator<T> array_end(const buffer_info& buffer) {
return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr) + buffer.size);
}
class common_iterator {
public:
using container_type = std::vector<size_t>;
using value_type = container_type::value_type;
using size_type = container_type::size_type;
common_iterator() : p_ptr(0), m_strides() {}
common_iterator(void* ptr, const container_type& strides, const std::vector<size_t>& shape)
: p_ptr(reinterpret_cast<char*>(ptr)), m_strides(strides.size()) {
m_strides.back() = static_cast<value_type>(strides.back());
for (size_type i = m_strides.size() - 1; i != 0; --i) {
size_type j = i - 1;
value_type s = static_cast<value_type>(shape[i]);
m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
}
}
void increment(size_type dim) {
p_ptr += m_strides[dim];
}
void* data() const {
return p_ptr;
}
private:
char* p_ptr;
container_type m_strides;
};
template <size_t N> class multi_array_iterator {
public:
using container_type = std::vector<size_t>;
multi_array_iterator(const std::array<buffer_info, N> &buffers,
const std::vector<size_t> &shape)
: m_shape(shape.size()), m_index(shape.size(), 0),
m_common_iterator() {
// Manual copy to avoid conversion warning if using std::copy
for (size_t i = 0; i < shape.size(); ++i)
m_shape[i] = static_cast<container_type::value_type>(shape[i]);
container_type strides(shape.size());
for (size_t i = 0; i < N; ++i)
init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
}
multi_array_iterator& operator++() {
for (size_t j = m_index.size(); j != 0; --j) {
size_t i = j - 1;
if (++m_index[i] != m_shape[i]) {
increment_common_iterator(i);
break;
} else {
m_index[i] = 0;
}
}
return *this;
}
template <size_t K, class T> const T& data() const {
return *reinterpret_cast<T*>(m_common_iterator[K].data());
}
private:
using common_iter = common_iterator;
void init_common_iterator(const buffer_info &buffer,
const std::vector<size_t> &shape,
common_iter &iterator, container_type &strides) {
auto buffer_shape_iter = buffer.shape.rbegin();
auto buffer_strides_iter = buffer.strides.rbegin();
auto shape_iter = shape.rbegin();
auto strides_iter = strides.rbegin();
while (buffer_shape_iter != buffer.shape.rend()) {
if (*shape_iter == *buffer_shape_iter)
*strides_iter = static_cast<int>(*buffer_strides_iter);
else
*strides_iter = 0;
++buffer_shape_iter;
++buffer_strides_iter;
++shape_iter;
++strides_iter;
}
std::fill(strides_iter, strides.rend(), 0);
iterator = common_iter(buffer.ptr, strides, shape);
}
void increment_common_iterator(size_t dim) {
for (auto &iter : m_common_iterator)
iter.increment(dim);
}
container_type m_shape;
container_type m_index;
std::array<common_iter, N> m_common_iterator;
};
template <size_t N>
bool broadcast(const std::array<buffer_info, N>& buffers, int& ndim, std::vector<size_t>& shape) {
ndim = std::accumulate(buffers.begin(), buffers.end(), 0, [](int res, const buffer_info& buf) {
return std::max(res, buf.ndim);
});
shape = std::vector<size_t>(static_cast<size_t>(ndim), 1);
bool trivial_broadcast = true;
for (size_t i = 0; i < N; ++i) {
auto res_iter = shape.rbegin();
bool i_trivial_broadcast = (buffers[i].size == 1) || (buffers[i].ndim == ndim);
for (auto shape_iter = buffers[i].shape.rbegin();
shape_iter != buffers[i].shape.rend(); ++shape_iter, ++res_iter) {
if (*res_iter == 1)
*res_iter = *shape_iter;
else if ((*shape_iter != 1) && (*res_iter != *shape_iter))
pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
i_trivial_broadcast = i_trivial_broadcast && (*res_iter == *shape_iter);
}
trivial_broadcast = trivial_broadcast && i_trivial_broadcast;
}
return trivial_broadcast;
}
template <typename Func, typename Return, typename... Args>
struct vectorize_helper {
typename std::remove_reference<Func>::type f;
template <typename T>
vectorize_helper(T&&f) : f(std::forward<T>(f)) { }
object operator()(array_t<Args>... args) {
return run(args..., typename make_index_sequence<sizeof...(Args)>::type());
}
template <size_t ... Index> object run(array_t<Args>&... args, index_sequence<Index...> index) {
/* Request buffers from all parameters */
const size_t N = sizeof...(Args);
std::array<buffer_info, N> buffers {{ args.request()... }};
/* Determine dimensions parameters of output array */
int ndim = 0;
std::vector<size_t> shape(0);
bool trivial_broadcast = broadcast(buffers, ndim, shape);
size_t size = 1;
std::vector<size_t> strides(ndim);
if (ndim > 0) {
strides[ndim-1] = sizeof(Return);
for (int i = ndim - 1; i > 0; --i) {
strides[i - 1] = strides[i] * shape[i];
size *= shape[i];
}
size *= shape[0];
}
if (size == 1)
return cast(f(*((Args *) buffers[Index].ptr)...));
array result(buffer_info(nullptr, sizeof(Return),
format_descriptor<Return>::value(),
ndim, shape, strides));
buffer_info buf = result.request();
Return *output = (Return *) buf.ptr;
if(trivial_broadcast) {
/* Call the function */
for (size_t i=0; i<size; ++i) {
output[i] = f((buffers[Index].size == 1
? *((Args *) buffers[Index].ptr)
: ((Args *) buffers[Index].ptr)[i])...);
}
} else {
apply_broadcast<N, Index...>(buffers, buf, index);
}
return result;
}
template <size_t N, size_t... Index>
void apply_broadcast(const std::array<buffer_info, N> &buffers,
buffer_info &output, index_sequence<Index...>) {
using input_iterator = multi_array_iterator<N>;
using output_iterator = array_iterator<Return>;
input_iterator input_iter(buffers, output.shape);
output_iterator output_end = array_end<Return>(output);
for (output_iterator iter = array_begin<Return>(output);
iter != output_end; ++iter, ++input_iter) {
*iter = f((input_iter.template data<Index, Args>())...);
}
}
};
template <typename T> struct handle_type_name<array_t<T>> {
static PYBIND11_DESCR name() { return _("array[") + type_caster<T>::name() + _("]"); }
};
NAMESPACE_END(detail)
template <typename Func, typename Return, typename... Args>
detail::vectorize_helper<Func, Return, Args...> vectorize(const Func &f, Return (*) (Args ...)) {
return detail::vectorize_helper<Func, Return, Args...>(f);
}
template <typename Return, typename... Args>
detail::vectorize_helper<Return (*) (Args ...), Return, Args...> vectorize(Return (*f) (Args ...)) {
return vectorize<Return (*) (Args ...), Return, Args...>(f, f);
}
template <typename func> auto vectorize(func &&f) -> decltype(
vectorize(std::forward<func>(f), (typename detail::remove_class<decltype(&std::remove_reference<func>::type::operator())>::type *) nullptr)) {
return vectorize(std::forward<func>(f), (typename detail::remove_class<decltype(
&std::remove_reference<func>::type::operator())>::type *) nullptr);
}
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif