mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-13 09:03:54 +00:00
7672292e6b
When using `method_adaptor` (usually implicitly via a `cl.def("f", &D::f)`) a compilation failure results if `f` is actually a method of an inaccessible base class made public via `using`, such as: class B { public: void f() {} }; class D : private B { public: using B::f; }; pybind deduces `&D::f` as a `B` member function pointer. Since the base class is inaccessible, the cast in `method_adaptor` from a base class member function pointer to derived class member function pointer isn't valid, and a cast failure results. This was sort of a regression in 2.2, which introduced `method_adaptor` to do the expected thing when the base class *is* accessible. It wasn't actually something that *worked* in 2.1, though: you wouldn't get a compile-time failure, but the method was not callable (because the `D *` couldn't be cast to a `B *` because of the access restriction). As a result, you'd simply get a run-time failure if you ever tried to call the function (this is what #855 fixed). Thus the change in 2.2 essentially promoted a run-time failure to a compile-time failure, so isn't really a regression. This commit simply adds a `static_assert` with an accessible-base-class check so that, rather than just a cryptic cast failure, you get something more informative (along with a suggestion for a workaround). The workaround is to use a lambda, e.g.: class Derived : private Base { public: using Base::f; }; // In binding code: //cl.def("f", &Derived::f); // fails: &Derived::f is actually a base // class member function pointer cl.def("f", [](Derived &self) { return self.f(); }); This is a bit of a nuissance (especially if there are a bunch of arguments to forward), but I don't really see another solution. Fixes #1124 |
||
---|---|---|
.. | ||
pybind11 |