pybind11/include/pybind/pybind.h

894 lines
36 KiB
C++

/*
pybind/pybind.h: Main header file of the C++11 python binding generator library
Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning)
#pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name
#pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter
#pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted
#elif defined(__GNUG__) and !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-but-set-parameter"
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
#include <pybind/cast.h>
#include <iostream>
NAMESPACE_BEGIN(pybind)
template <typename T> struct arg_t;
/// Annotation for keyword arguments
struct arg {
arg(const char *name) : name(name) { }
template <typename T> inline arg_t<T> operator=(const T &value);
const char *name;
};
/// Annotation for keyword arguments with default values
template <typename T> struct arg_t : public arg {
arg_t(const char *name, const T &value) : arg(name), value(value) { }
T value;
};
template <typename T> inline arg_t<T> arg::operator=(const T &value) { return arg_t<T>(name, value); }
/// Annotation for methods
struct is_method {
#if PY_MAJOR_VERSION < 3
PyObject *class_;
is_method(object *o) : class_(o->ptr()) { }
#else
is_method(object *) { }
#endif
};
/// Annotation for documentation
struct doc { const char *value; doc(const char *value) : value(value) { } };
/// Annotation for function names
struct name { const char *value; name(const char *value) : value(value) { } };
/// Annotation for function siblings
struct sibling { PyObject *value; sibling(handle value) : value(value.ptr()) { } };
/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function {
private:
/// Chained list of function entries for overloading
struct function_entry {
const char *name = nullptr;
PyObject * (*impl) (function_entry *, PyObject *, PyObject *, PyObject *) = nullptr;
PyMethodDef *def = nullptr;
void *data = nullptr;
bool is_constructor = false, is_method = false;
short keywords = 0;
return_value_policy policy = return_value_policy::automatic;
std::string signature;
#if PY_MAJOR_VERSION < 3
PyObject *class_ = nullptr;
#endif
PyObject *sibling = nullptr;
const char *doc = nullptr;
function_entry *next = nullptr;
};
function_entry *m_entry;
/// Picks a suitable return value converter from cast.h
template <typename T> using return_value_caster =
detail::type_caster<typename std::conditional<
std::is_void<T>::value, detail::void_type, typename detail::decay<T>::type>::type>;
/// Picks a suitable argument value converter from cast.h
template <typename... T> using arg_value_caster =
detail::type_caster<typename std::tuple<T...>>;
template <typename... T> static void process_extras(const std::tuple<T...> &args,
function_entry *entry, const char **kw, const char **def) {
process_extras(args, entry, kw, def, typename detail::make_index_sequence<sizeof...(T)>::type());
}
template <typename... T, size_t ... Index> static void process_extras(const std::tuple<T...> &args,
function_entry *entry, const char **kw, const char **def, detail::index_sequence<Index...>) {
int unused[] = { 0, (process_extra(std::get<Index>(args), entry, kw, def), 0)... };
(void) unused;
}
template <typename... T> static void process_extras(const std::tuple<T...> &args,
PyObject *pyArgs, PyObject *kwargs, bool is_method) {
process_extras(args, pyArgs, kwargs, is_method, typename detail::make_index_sequence<sizeof...(T)>::type());
}
template <typename... T, size_t... Index> static void process_extras(const std::tuple<T...> &args,
PyObject *pyArgs, PyObject *kwargs, bool is_method, detail::index_sequence<Index...>) {
int index = is_method ? 1 : 0;
int unused[] = { 0, (process_extra(std::get<Index>(args), index, pyArgs, kwargs), 0)... };
(void) unused; (void) index;
}
static void process_extra(const char *doc, function_entry *entry, const char **, const char **) { entry->doc = doc; }
static void process_extra(const pybind::doc &d, function_entry *entry, const char **, const char **) { entry->doc = d.value; }
static void process_extra(const pybind::name &n, function_entry *entry, const char **, const char **) { entry->name = n.value; }
static void process_extra(const pybind::arg &a, function_entry *entry, const char **kw, const char **) {
if (entry->is_method && entry->keywords == 0)
kw[entry->keywords++] = "self";
kw[entry->keywords++] = a.name;
}
template <typename T>
static void process_extra(const pybind::arg_t<T> &a, function_entry *entry, const char **kw, const char **def) {
if (entry->is_method && entry->keywords == 0)
kw[entry->keywords++] = "self";
kw[entry->keywords] = a.name;
def[entry->keywords++] = strdup(std::to_string(a.value).c_str());
}
static void process_extra(const pybind::is_method &m, function_entry *entry, const char **, const char **) {
entry->is_method = true;
#if PY_MAJOR_VERSION < 3
entry->class_ = m.class_;
#else
(void) m;
#endif
}
static void process_extra(const pybind::return_value_policy p, function_entry *entry, const char **, const char **) { entry->policy = p; }
static void process_extra(pybind::sibling s, function_entry *entry, const char **, const char **) { entry->sibling = s.value; }
template <typename T> static void process_extra(T, int &, PyObject *, PyObject *) { }
static void process_extra(const pybind::arg &a, int &index, PyObject *args, PyObject *kwargs) {
if (kwargs) {
if (PyTuple_GET_ITEM(args, index) != nullptr) {
index++;
return;
}
PyObject *value = PyDict_GetItemString(kwargs, a.name);
if (value) {
Py_INCREF(value);
PyTuple_SetItem(args, index, value);
}
}
index++;
}
template <typename T>
static void process_extra(const pybind::arg_t<T> &a, int &index, PyObject *args, PyObject *kwargs) {
if (PyTuple_GET_ITEM(args, index) != nullptr) {
index++;
return;
}
PyObject *value = nullptr;
if (kwargs)
value = PyDict_GetItemString(kwargs, a.name);
if (value) {
Py_INCREF(value);
} else {
value = detail::type_caster<typename detail::decay<T>::type>::cast(
a.value, return_value_policy::automatic, nullptr);
}
PyTuple_SetItem(args, index, value);
index++;
}
public:
cpp_function() { }
/// Vanilla function pointers
template <typename Return, typename... Arg, typename... Extra>
cpp_function(Return (*f)(Arg...), Extra&&... extra) {
struct capture {
Return (*f)(Arg...);
std::tuple<Extra...> extras;
};
m_entry = new function_entry();
m_entry->data = new capture { f, std::tuple<Extra...>(std::forward<Extra>(extra)...) };
typedef arg_value_caster<Arg...> cast_in;
typedef return_value_caster<Return> cast_out;
m_entry->impl = [](function_entry *entry, PyObject *pyArgs, PyObject *kwargs, PyObject *parent) -> PyObject * {
capture *data = (capture *) entry->data;
process_extras(data->extras, pyArgs, kwargs, entry->is_method);
cast_in args;
if (!args.load(pyArgs, true))
return nullptr;
return cast_out::cast(args.template call<Return>(data->f), entry->policy, parent);
};
const int N = sizeof...(Extra) > sizeof...(Arg) ? sizeof...(Extra) : sizeof...(Arg);
std::array<const char *, N> kw{}, def{};
process_extras(((capture *) m_entry->data)->extras, m_entry, kw.data(), def.data());
detail::descr d = cast_in::name(kw.data(), def.data());
d += " -> ";
d += std::move(cast_out::name());
initialize(d, sizeof...(Arg));
}
/// Delegating helper constructor to deal with lambda functions
template <typename Func, typename... Extra> cpp_function(Func &&f, Extra&&... extra) {
initialize(std::forward<Func>(f),
(typename detail::remove_class<decltype(
&std::remove_reference<Func>::type::operator())>::type *) nullptr,
std::forward<Extra>(extra)...);
}
/// Class methods (non-const)
template <typename Return, typename Class, typename... Arg, typename... Extra> cpp_function(
Return (Class::*f)(Arg...), Extra&&... extra) {
initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); },
(Return (*) (Class *, Arg...)) nullptr, std::forward<Extra>(extra)...);
}
/// Class methods (const)
template <typename Return, typename Class, typename... Arg, typename... Extra> cpp_function(
Return (Class::*f)(Arg...) const, Extra&&... extra) {
initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); },
(Return (*)(const Class *, Arg ...)) nullptr, std::forward<Extra>(extra)...);
}
/// Return the function name
const char *name() const { return m_entry->name; }
private:
/// Functors, lambda functions, etc.
template <typename Func, typename Return, typename... Arg, typename... Extra>
void initialize(Func &&f, Return (*)(Arg...), Extra&&... extra) {
struct capture {
typename std::remove_reference<Func>::type f;
std::tuple<Extra...> extras;
};
m_entry = new function_entry();
m_entry->data = new capture { std::forward<Func>(f), std::tuple<Extra...>(std::forward<Extra>(extra)...) };
typedef arg_value_caster<Arg...> cast_in;
typedef return_value_caster<Return> cast_out;
m_entry->impl = [](function_entry *entry, PyObject *pyArgs, PyObject *kwargs, PyObject *parent) -> PyObject *{
capture *data = (capture *)entry->data;
process_extras(data->extras, pyArgs, kwargs, entry->is_method);
cast_in args;
if (!args.load(pyArgs, true))
return nullptr;
return cast_out::cast(args.template call<Return>(data->f), entry->policy, parent);
};
const int N = sizeof...(Extra) > sizeof...(Arg) ? sizeof...(Extra) : sizeof...(Arg);
std::array<const char *, N> kw{}, def{};
process_extras(((capture *) m_entry->data)->extras, m_entry, kw.data(), def.data());
detail::descr d = cast_in::name(kw.data(), def.data());
d += " -> ";
d += std::move(cast_out::name());
initialize(d, sizeof...(Arg));
}
static PyObject *dispatcher(PyObject *self, PyObject *args, PyObject *kwargs) {
function_entry *overloads = (function_entry *) PyCapsule_GetPointer(self, nullptr);
int nargs = (int) PyTuple_Size(args);
PyObject *result = nullptr;
PyObject *parent = nargs > 0 ? PyTuple_GetItem(args, 0) : nullptr;
try {
for (function_entry *it = overloads; it != nullptr; it = it->next) {
PyObject *args_ = args;
if (it->keywords != 0 && nargs < it->keywords) {
args_ = PyTuple_New(it->keywords);
for (int i=0; i<nargs; ++i) {
PyObject *item = PyTuple_GET_ITEM(args, i);
Py_INCREF(item);
PyTuple_SET_ITEM(args_, i, item);
}
}
result = it->impl(it, args_, kwargs, parent);
if (args_ != args) {
Py_DECREF(args_);
}
if (result != nullptr)
break;
}
} catch (const error_already_set &) { return nullptr;
} catch (const index_error &e) { PyErr_SetString(PyExc_IndexError, e.what()); return nullptr;
} catch (const stop_iteration &e) { PyErr_SetString(PyExc_StopIteration, e.what()); return nullptr;
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return nullptr;
} catch (...) {
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
return nullptr;
}
if (result) {
if (overloads->is_constructor) {
PyObject *inst = PyTuple_GetItem(args, 0);
const detail::type_info *type_info =
capsule(PyObject_GetAttrString((PyObject *) Py_TYPE(inst),
const_cast<char *>("__pybind__")), false);
type_info->init_holder(inst);
}
return result;
} else {
std::string signatures = "Incompatible function arguments. The "
"following argument types are supported:\n";
int ctr = 0;
for (function_entry *it = overloads; it != nullptr; it = it->next) {
signatures += " "+ std::to_string(++ctr) + ". ";
signatures += it->signature;
signatures += "\n";
}
PyErr_SetString(PyExc_TypeError, signatures.c_str());
return nullptr;
}
}
static void destruct(function_entry *entry) {
while (entry) {
delete entry->def;
operator delete(entry->data);
function_entry *next = entry->next;
delete entry;
entry = next;
}
}
void initialize(const detail::descr &descr, int args) {
if (m_entry->name == nullptr)
m_entry->name = "";
#if PY_MAJOR_VERSION < 3
if (strcmp(m_entry->name, "__next__") == 0)
m_entry->name = "next";
#endif
if (m_entry->keywords != 0 && m_entry->keywords != args)
throw std::runtime_error(
"cpp_function(): function \"" + std::string(m_entry->name) + "\" takes " +
std::to_string(args) + " arguments, but " + std::to_string(m_entry->keywords) +
" pybind::arg entries were specified!");
m_entry->is_constructor = !strcmp(m_entry->name, "__init__");
m_entry->signature = descr.str();
#if PY_MAJOR_VERSION < 3
if (m_entry->sibling && PyMethod_Check(m_entry->sibling))
m_entry->sibling = PyMethod_GET_FUNCTION(m_entry->sibling);
#endif
function_entry *entry = m_entry;
bool overloaded = false;
if (!entry->sibling || !PyCFunction_Check(entry->sibling)) {
entry->def = new PyMethodDef();
memset(entry->def, 0, sizeof(PyMethodDef));
entry->def->ml_name = entry->name;
entry->def->ml_meth = reinterpret_cast<PyCFunction>(*dispatcher);
entry->def->ml_flags = METH_VARARGS | METH_KEYWORDS;
capsule entry_capsule(entry, [](PyObject *o) { destruct((function_entry *) PyCapsule_GetPointer(o, nullptr)); });
m_ptr = PyCFunction_New(entry->def, entry_capsule.ptr());
if (!m_ptr)
throw std::runtime_error("cpp_function::cpp_function(): Could not allocate function object");
} else {
m_ptr = entry->sibling;
inc_ref();
capsule entry_capsule(PyCFunction_GetSelf(m_ptr), true);
function_entry *parent = (function_entry *) entry_capsule, *backup = parent;
while (parent->next)
parent = parent->next;
parent->next = entry;
entry = backup;
overloaded = true;
}
std::string signatures;
int index = 0;
function_entry *it = entry;
while (it) { /* Create pydoc it */
if (overloaded)
signatures += std::to_string(++index) + ". ";
signatures += "Signature : " + std::string(it->signature) + "\n";
if (it->doc && strlen(it->doc) > 0)
signatures += "\n" + std::string(it->doc) + "\n";
if (it->next)
signatures += "\n";
it = it->next;
}
PyCFunctionObject *func = (PyCFunctionObject *) m_ptr;
if (func->m_ml->ml_doc)
std::free((char *) func->m_ml->ml_doc);
func->m_ml->ml_doc = strdup(signatures.c_str());
if (entry->is_method) {
#if PY_MAJOR_VERSION >= 3
m_ptr = PyInstanceMethod_New(m_ptr);
#else
m_ptr = PyMethod_New(m_ptr, nullptr, entry->class_);
#endif
if (!m_ptr)
throw std::runtime_error("cpp_function::cpp_function(): Could not allocate instance method object");
Py_DECREF(func);
}
}
};
class module : public object {
public:
PYBIND_OBJECT_DEFAULT(module, object, PyModule_Check)
module(const char *name, const char *doc = nullptr) {
#if PY_MAJOR_VERSION >= 3
PyModuleDef *def = new PyModuleDef();
memset(def, 0, sizeof(PyModuleDef));
def->m_name = name;
def->m_doc = doc;
def->m_size = -1;
Py_INCREF(def);
m_ptr = PyModule_Create(def);
#else
m_ptr = Py_InitModule3(name, nullptr, doc);
#endif
if (m_ptr == nullptr)
throw std::runtime_error("Internal error in module::module()");
inc_ref();
}
template <typename Func, typename... Extra>
module &def(const char *name_, Func &&f, Extra&& ... extra) {
cpp_function func(std::forward<Func>(f), name(name_),
sibling((handle) attr(name_)), std::forward<Extra>(extra)...);
func.inc_ref(); /* The following line steals a reference to 'func' */
PyModule_AddObject(ptr(), name_, func.ptr());
return *this;
}
module def_submodule(const char *name, const char *doc = nullptr) {
std::string full_name = std::string(PyModule_GetName(m_ptr))
+ std::string(".") + std::string(name);
module result(PyImport_AddModule(full_name.c_str()), true);
if (doc)
result.attr("__doc__") = pybind::str(doc);
attr(name) = result;
return result;
}
};
NAMESPACE_BEGIN(detail)
/// Basic support for creating new Python heap types
class custom_type : public object {
public:
PYBIND_OBJECT_DEFAULT(custom_type, object, PyType_Check)
custom_type(object &scope, const char *name_, const std::type_info *tinfo,
size_t type_size, size_t instance_size,
void (*init_holder)(PyObject *), const destructor &dealloc,
PyObject *parent, const char *doc) {
PyHeapTypeObject *type = (PyHeapTypeObject*) PyType_Type.tp_alloc(&PyType_Type, 0);
#if PY_MAJOR_VERSION >= 3
PyObject *name = PyUnicode_FromString(name_);
#else
PyObject *name = PyString_FromString(name_);
#endif
if (type == nullptr || name == nullptr)
throw std::runtime_error("Internal error in custom_type::custom_type()");
Py_INCREF(name);
std::string full_name(name_);
pybind::str scope_name = (object) scope.attr("__name__"),
module_name = (object) scope.attr("__module__");
if (scope_name.check())
full_name = std::string(scope_name) + "." + full_name;
if (module_name.check())
full_name = std::string(module_name) + "." + full_name;
type->ht_name = name;
#if PY_MAJOR_VERSION >= 3
type->ht_qualname = name;
#endif
type->ht_type.tp_name = strdup(full_name.c_str());
type->ht_type.tp_basicsize = instance_size;
type->ht_type.tp_init = (initproc) init;
type->ht_type.tp_new = (newfunc) new_instance;
type->ht_type.tp_dealloc = dealloc;
type->ht_type.tp_flags |=
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC;
#if PY_MAJOR_VERSION < 3
type->ht_type.tp_flags |= Py_TPFLAGS_CHECKTYPES;
#endif
type->ht_type.tp_as_number = &type->as_number;
type->ht_type.tp_as_sequence = &type->as_sequence;
type->ht_type.tp_as_mapping = &type->as_mapping;
type->ht_type.tp_base = (PyTypeObject *) parent;
if (doc) {
size_t size = strlen(doc)+1;
type->ht_type.tp_doc = (char *)PyObject_MALLOC(size);
memcpy((void *) type->ht_type.tp_doc, doc, size);
}
Py_XINCREF(parent);
if (PyType_Ready(&type->ht_type) < 0)
throw std::runtime_error("Internal error in custom_type::custom_type()");
m_ptr = (PyObject *) type;
/* Needed by pydoc */
if (((module &) scope).check())
attr("__module__") = scope_name;
auto &type_info = detail::get_internals().registered_types[tinfo];
type_info.type = (PyTypeObject *) m_ptr;
type_info.type_size = type_size;
type_info.init_holder = init_holder;
attr("__pybind__") = capsule(&type_info);
scope.attr(name) = *this;
}
protected:
/* Allocate a metaclass on demand (for static properties) */
handle metaclass() {
auto &ht_type = ((PyHeapTypeObject *) m_ptr)->ht_type;
#if PY_MAJOR_VERSION >= 3
auto &ob_type = ht_type.ob_base.ob_base.ob_type;
#else
auto &ob_type = ht_type.ob_type;
#endif
if (ob_type == &PyType_Type) {
std::string name_ = std::string(ht_type.tp_name) + "_meta";
PyHeapTypeObject *type = (PyHeapTypeObject*) PyType_Type.tp_alloc(&PyType_Type, 0);
PyObject *name = PyUnicode_FromString(name_.c_str());
if (type == nullptr || name == nullptr)
throw std::runtime_error("Internal error in custom_type::metaclass()");
Py_INCREF(name);
type->ht_name = name;
#if PY_MAJOR_VERSION >= 3
type->ht_qualname = name;
#endif
type->ht_type.tp_name = strdup(name_.c_str());
type->ht_type.tp_base = &PyType_Type;
type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE;
type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC;
if (PyType_Ready(&type->ht_type) < 0)
throw std::runtime_error("Internal error in custom_type::metaclass()");
ob_type = (PyTypeObject *) type;
Py_INCREF(type);
}
return handle((PyObject *) ob_type);
}
static int init(void *self, PyObject *, PyObject *) {
std::string msg = std::string(Py_TYPE(self)->tp_name) + ": No constructor defined!";
PyErr_SetString(PyExc_TypeError, msg.c_str());
return -1;
}
static PyObject *new_instance(PyTypeObject *type, PyObject *, PyObject *) {
const detail::type_info *type_info = capsule(
PyObject_GetAttrString((PyObject *) type, const_cast<char*>("__pybind__")), false);
instance<void> *self = (instance<void> *) PyType_GenericAlloc(type, 0);
self->value = ::operator new(type_info->type_size);
self->owned = true;
self->parent = nullptr;
self->constructed = false;
detail::get_internals().registered_instances[self->value] = (PyObject *) self;
return (PyObject *) self;
}
static void dealloc(instance<void> *self) {
if (self->value) {
bool dont_cache = self->parent && ((instance<void> *) self->parent)->value == self->value;
if (!dont_cache) { // avoid an issue with internal references matching their parent's address
auto &registered_instances = detail::get_internals().registered_instances;
auto it = registered_instances.find(self->value);
if (it == registered_instances.end())
throw std::runtime_error("Deallocating unregistered instance!");
registered_instances.erase(it);
}
Py_XDECREF(self->parent);
}
Py_TYPE(self)->tp_free((PyObject*) self);
}
void install_buffer_funcs(
buffer_info *(*get_buffer)(PyObject *, void *),
void *get_buffer_data) {
PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr;
type->ht_type.tp_as_buffer = &type->as_buffer;
#if PY_MAJOR_VERSION < 3
type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER;
#endif
type->as_buffer.bf_getbuffer = getbuffer;
type->as_buffer.bf_releasebuffer = releasebuffer;
auto info = ((detail::type_info *) capsule(attr("__pybind__")));
info->get_buffer = get_buffer;
info->get_buffer_data = get_buffer_data;
}
static int getbuffer(PyObject *obj, Py_buffer *view, int flags) {
auto const &typeinfo = ((detail::type_info *) capsule(handle(obj).attr("__pybind__")));
if (view == nullptr || obj == nullptr || !typeinfo || !typeinfo->get_buffer) {
PyErr_SetString(PyExc_BufferError, "Internal error");
return -1;
}
memset(view, 0, sizeof(Py_buffer));
buffer_info *info = typeinfo->get_buffer(obj, typeinfo->get_buffer_data);
view->obj = obj;
view->ndim = 1;
view->internal = info;
view->buf = info->ptr;
view->itemsize = info->itemsize;
view->len = view->itemsize;
for (auto s : info->shape)
view->len *= s;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = const_cast<char *>(info->format.c_str());
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
view->ndim = info->ndim;
view->strides = (Py_ssize_t *)&info->strides[0];
view->shape = (Py_ssize_t *) &info->shape[0];
}
Py_INCREF(view->obj);
return 0;
}
static void releasebuffer(PyObject *, Py_buffer *view) { delete (buffer_info *) view->internal; }
};
/* Forward declarations */
enum op_id : int;
enum op_type : int;
struct undefined_t;
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_;
template <typename... Args> struct init;
NAMESPACE_END(detail)
template <typename type, typename holder_type = std::unique_ptr<type>> class class_ : public detail::custom_type {
public:
typedef detail::instance<type, holder_type> instance_type;
PYBIND_OBJECT(class_, detail::custom_type, PyType_Check)
class_(object &scope, const char *name, const char *doc = nullptr)
: detail::custom_type(scope, name, &typeid(type), sizeof(type),
sizeof(instance_type), init_holder, dealloc,
nullptr, doc) { }
class_(object &scope, const char *name, object &parent,
const char *doc = nullptr)
: detail::custom_type(scope, name, &typeid(type), sizeof(type),
sizeof(instance_type), init_holder, dealloc,
parent.ptr(), doc) { }
template <typename Func, typename... Extra>
class_ &def(const char *name_, Func&& f, Extra&&... extra) {
cpp_function cf(std::forward<Func>(f), name(name_),
sibling(attr(name_)), is_method(this),
std::forward<Extra>(extra)...);
attr(cf.name()) = cf;
return *this;
}
template <typename Func, typename... Extra> class_ &
def_static(const char *name_, Func f, Extra&&... extra) {
cpp_function cf(std::forward<Func>(f), name(name_),
sibling(attr(name_)),
std::forward<Extra>(extra)...);
attr(cf.name()) = cf;
return *this;
}
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
class_ &def(const detail::op_<id, ot, L, R> &op, Extra&&... extra) {
op.template execute<type>(*this, std::forward<Extra>(extra)...);
return *this;
}
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
class_ & def_cast(const detail::op_<id, ot, L, R> &op, Extra&&... extra) {
op.template execute_cast<type>(*this, std::forward<Extra>(extra)...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::init<Args...> &init, Extra&&... extra) {
init.template execute<type>(*this, std::forward<Extra>(extra)...);
return *this;
}
template <typename Func> class_& def_buffer(Func &&func) {
struct capture { Func func; };
capture *ptr = new capture { std::forward<Func>(func) };
install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* {
detail::type_caster<type> caster;
if (!caster.load(obj, false))
return nullptr;
return new buffer_info(((capture *) ptr)->func(caster));
}, ptr);
return *this;
}
template <typename C, typename D, typename... Extra>
class_ &def_readwrite(const char *name, D C::*pm, Extra&&... extra) {
cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; },
return_value_policy::reference_internal,
is_method(this), extra...),
fset([pm](C &c, const D &value) { c.*pm = value; },
is_method(this), extra...);
def_property(name, fget, fset);
return *this;
}
template <typename C, typename D, typename... Extra>
class_ &def_readonly(const char *name, const D C::*pm, Extra&& ...extra) {
cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; },
return_value_policy::reference_internal,
is_method(this), std::forward<Extra>(extra)...);
def_property_readonly(name, fget);
return *this;
}
template <typename D, typename... Extra>
class_ &def_readwrite_static(const char *name, D *pm, Extra&& ...extra) {
cpp_function fget([pm](object) -> const D &{ return *pm; }, nullptr,
return_value_policy::reference_internal, extra...),
fset([pm](object, const D &value) { *pm = value; }, extra...);
def_property_static(name, fget, fset);
return *this;
}
template <typename D, typename... Extra>
class_ &def_readonly_static(const char *name, const D *pm, Extra&& ...extra) {
cpp_function fget([pm](object) -> const D &{ return *pm; }, nullptr,
return_value_policy::reference_internal, std::forward<Extra>(extra)...);
def_property_readonly_static(name, fget);
return *this;
}
class_ &def_property_readonly(const char *name, const cpp_function &fget, const char *doc = nullptr) {
def_property(name, fget, cpp_function(), doc);
return *this;
}
class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const char *doc = nullptr) {
def_property_static(name, fget, cpp_function(), doc);
return *this;
}
class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const char *doc = nullptr) {
object doc_obj = doc ? pybind::str(doc) : (object) const_cast<cpp_function&>(fget).attr("__doc__");
object property(
PyObject_CallFunction((PyObject *)&PyProperty_Type,
const_cast<char *>("OOOO"), fget.ptr() ? fget.ptr() : Py_None,
fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr()), false);
attr(name) = property;
return *this;
}
class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const char *doc = nullptr) {
object doc_obj = doc ? pybind::str(doc) : (object) const_cast<cpp_function&>(fget).attr("__doc__");
object property(
PyObject_CallFunction((PyObject *)&PyProperty_Type,
const_cast<char *>("OOOs"), fget.ptr() ? fget.ptr() : Py_None,
fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr()), false);
metaclass().attr(name) = property;
return *this;
}
private:
static void init_holder(PyObject *inst_) {
instance_type *inst = (instance_type *) inst_;
new (&inst->holder) holder_type(inst->value);
inst->constructed = true;
}
static void dealloc(PyObject *inst_) {
instance_type *inst = (instance_type *) inst_;
if (inst->owned) {
if (inst->constructed)
inst->holder.~holder_type();
else
::operator delete(inst->value);
}
custom_type::dealloc((detail::instance<void> *) inst);
}
};
/// Binds C++ enumerations and enumeration classes to Python
template <typename Type> class enum_ : public class_<Type> {
public:
enum_(object &scope, const char *name, const char *doc = nullptr)
: class_<Type>(scope, name, doc), m_parent(scope) {
auto entries = new std::unordered_map<int, const char *>();
this->def("__str__", [name, entries](Type value) -> std::string {
auto it = entries->find((int) value);
return std::string(name) + "." +
((it == entries->end()) ? std::string("???")
: std::string(it->second));
});
m_entries = entries;
}
/// Export enumeration entries into the parent scope
void export_values() {
PyObject *dict = ((PyTypeObject *) this->m_ptr)->tp_dict;
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(dict, &pos, &key, &value))
if (PyObject_IsInstance(value, this->m_ptr))
m_parent.attr(key) = value;
}
/// Add an enumeration entry
enum_& value(char const* name, Type value) {
this->attr(name) = pybind::cast(value, return_value_policy::copy);
(*m_entries)[(int) value] = name;
return *this;
}
private:
std::unordered_map<int, const char *> *m_entries;
object &m_parent;
};
NAMESPACE_BEGIN(detail)
template <typename... Args> struct init {
template <typename Base, typename Holder, typename... Extra> void execute(pybind::class_<Base, Holder> &class_, Extra&&... extra) const {
/// Function which calls a specific C++ in-place constructor
class_.def("__init__", [](Base *instance, Args... args) { new (instance) Base(args...); }, std::forward<Extra>(extra)...);
}
};
NAMESPACE_END(detail)
template <typename... Args> detail::init<Args...> init() { return detail::init<Args...>(); };
template <typename InputType, typename OutputType> void implicitly_convertible() {
auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject *{
if (!detail::type_caster<InputType>().load(obj, false))
return nullptr;
tuple args(1);
args[0] = obj;
PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
if (result == nullptr)
PyErr_Clear();
return result;
};
auto & registered_types = detail::get_internals().registered_types;
auto it = registered_types.find(&typeid(OutputType));
if (it == registered_types.end())
throw std::runtime_error("implicitly_convertible: Unable to find type " + type_id<OutputType>());
it->second.implicit_conversions.push_back(implicit_caster);
}
inline void init_threading() { PyEval_InitThreads(); }
class gil_scoped_acquire {
PyGILState_STATE state;
public:
inline gil_scoped_acquire() { state = PyGILState_Ensure(); }
inline ~gil_scoped_acquire() { PyGILState_Release(state); }
};
class gil_scoped_release {
PyThreadState *state;
public:
inline gil_scoped_release() { state = PyEval_SaveThread(); }
inline ~gil_scoped_release() { PyEval_RestoreThread(state); }
};
NAMESPACE_END(pybind)
#if defined(_MSC_VER)
#pragma warning(pop)
#elif defined(__GNUG__) and !defined(__clang__)
#pragma GCC diagnostic pop
#endif