pybind11/tests/test_numpy_vectorize.cpp
Ralf W. Grosse-Kunstleve 6abf2baa62
CodeHealth: Enabling clang-tidy google-explicit-constructor (#3250)
* Adding google-explicit-constructor to .clang-tidy

* clang-tidy explicit attr.h (all automatic)

* clang-tidy explicit cast.h (all automatic)

* clang-tidy detail/init.h (1 NOLINT)

* clang-tidy detail/type_caster_base.h (2 NOLINT)

* clang-tidy pybind11.h (7 NOLINT)

* clang-tidy detail/common.h (3 NOLINT)

* clang-tidy detail/descr.h (2 NOLINT)

* clang-tidy pytypes.h (23 NOLINT, only 1 explicit)

* clang-tidy eigen.h (7 NOLINT, 0 explicit)

* Adding 2 explicit in functional.h

* Adding 4 explicit in iostream.h

* clang-tidy numpy.h (1 NOLINT, 1 explicit)

* clang-tidy embed.h (0 NOLINT, 1 explicit)

* clang-tidy tests/local_bindings.h (0 NOLINT, 4 explicit)

* clang-tidy tests/pybind11_cross_module_tests.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/pybind11_tests.h (0 NOLINT, 2 explicit)

* clang-tidy tests/test_buffers.cpp (0 NOLINT, 2 explicit)

* clang-tidy tests/test_builtin_casters.cpp (0 NOLINT, 4 explicit)

* clang-tidy tests/test_class.cpp (0 NOLINT, 6 explicit)

* clang-tidy tests/test_copy_move.cpp (0 NOLINT, 7 explicit)

* clang-tidy tests/test_embed/external_module.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/test_embed/test_interpreter.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/object.h (0 NOLINT, 2 explicit)

* clang-tidy batch of fully automatic fixes.

* Workaround for MSVC 19.16.27045.0 C++17 Python 2 C++ syntax error.
2021-09-08 18:53:38 -07:00

104 lines
4.3 KiB
C++

/*
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
arguments
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include <pybind11/numpy.h>
#include <utility>
double my_func(int x, float y, double z) {
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
return (float) x*y*z;
}
TEST_SUBMODULE(numpy_vectorize, m) {
try { py::module_::import("numpy"); }
catch (...) { return; }
// test_vectorize, test_docs, test_array_collapse
// Vectorize all arguments of a function (though non-vector arguments are also allowed)
m.def("vectorized_func", py::vectorize(my_func));
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
m.def("vectorized_func2", [](py::array_t<int> x, py::array_t<float> y, float z) {
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(std::move(x),
std::move(y));
});
// Vectorize a complex-valued function
m.def("vectorized_func3", py::vectorize(
[](std::complex<double> c) { return c * std::complex<double>(2.f); }
));
// test_type_selection
// NumPy function which only accepts specific data types
// A lot of these no lints could be replaced with const refs, and probably should at some point.
m.def("selective_func",
[](const py::array_t<int, py::array::c_style> &) { return "Int branch taken."; });
m.def("selective_func",
[](const py::array_t<float, py::array::c_style> &) { return "Float branch taken."; });
m.def("selective_func", [](const py::array_t<std::complex<float>, py::array::c_style> &) {
return "Complex float branch taken.";
});
// test_passthrough_arguments
// Passthrough test: references and non-pod types should be automatically passed through (in the
// function definition below, only `b`, `d`, and `g` are vectorized):
struct NonPODClass {
explicit NonPODClass(int v) : value{v} {}
int value;
};
py::class_<NonPODClass>(m, "NonPODClass")
.def(py::init<int>())
.def_readwrite("value", &NonPODClass::value);
m.def("vec_passthrough",
py::vectorize([](const double *a,
double b,
// Changing this broke things
// NOLINTNEXTLINE(performance-unnecessary-value-param)
py::array_t<double> c,
const int &d,
int &e,
NonPODClass f,
const double g) { return *a + b + c.at(0) + d + e + f.value + g; }));
// test_method_vectorization
struct VectorizeTestClass {
explicit VectorizeTestClass(int v) : value{v} {};
float method(int x, float y) const { return y + (float) (x + value); }
int value = 0;
};
py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
vtc .def(py::init<int>())
.def_readwrite("value", &VectorizeTestClass::value);
// Automatic vectorizing of methods
vtc.def("method", py::vectorize(&VectorizeTestClass::method));
// test_trivial_broadcasting
// Internal optimization test for whether the input is trivially broadcastable:
py::enum_<py::detail::broadcast_trivial>(m, "trivial")
.value("f_trivial", py::detail::broadcast_trivial::f_trivial)
.value("c_trivial", py::detail::broadcast_trivial::c_trivial)
.value("non_trivial", py::detail::broadcast_trivial::non_trivial);
m.def("vectorized_is_trivial",
[](const py::array_t<int, py::array::forcecast> &arg1,
const py::array_t<float, py::array::forcecast> &arg2,
const py::array_t<double, py::array::forcecast> &arg3) {
py::ssize_t ndim = 0;
std::vector<py::ssize_t> shape;
std::array<py::buffer_info, 3> buffers{
{arg1.request(), arg2.request(), arg3.request()}};
return py::detail::broadcast(buffers, ndim, shape);
});
m.def("add_to", py::vectorize([](NonPODClass& x, int a) { x.value += a; }));
}