pybind11/tests/test_builtin_casters.cpp
Ralf W. Grosse-Kunstleve 6abf2baa62
CodeHealth: Enabling clang-tidy google-explicit-constructor (#3250)
* Adding google-explicit-constructor to .clang-tidy

* clang-tidy explicit attr.h (all automatic)

* clang-tidy explicit cast.h (all automatic)

* clang-tidy detail/init.h (1 NOLINT)

* clang-tidy detail/type_caster_base.h (2 NOLINT)

* clang-tidy pybind11.h (7 NOLINT)

* clang-tidy detail/common.h (3 NOLINT)

* clang-tidy detail/descr.h (2 NOLINT)

* clang-tidy pytypes.h (23 NOLINT, only 1 explicit)

* clang-tidy eigen.h (7 NOLINT, 0 explicit)

* Adding 2 explicit in functional.h

* Adding 4 explicit in iostream.h

* clang-tidy numpy.h (1 NOLINT, 1 explicit)

* clang-tidy embed.h (0 NOLINT, 1 explicit)

* clang-tidy tests/local_bindings.h (0 NOLINT, 4 explicit)

* clang-tidy tests/pybind11_cross_module_tests.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/pybind11_tests.h (0 NOLINT, 2 explicit)

* clang-tidy tests/test_buffers.cpp (0 NOLINT, 2 explicit)

* clang-tidy tests/test_builtin_casters.cpp (0 NOLINT, 4 explicit)

* clang-tidy tests/test_class.cpp (0 NOLINT, 6 explicit)

* clang-tidy tests/test_copy_move.cpp (0 NOLINT, 7 explicit)

* clang-tidy tests/test_embed/external_module.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/test_embed/test_interpreter.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/object.h (0 NOLINT, 2 explicit)

* clang-tidy batch of fully automatic fixes.

* Workaround for MSVC 19.16.27045.0 C++17 Python 2 C++ syntax error.
2021-09-08 18:53:38 -07:00

287 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
tests/test_builtin_casters.cpp -- Casters available without any additional headers
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include <pybind11/complex.h>
struct ConstRefCasted {
int tag;
};
PYBIND11_NAMESPACE_BEGIN(pybind11)
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
class type_caster<ConstRefCasted> {
public:
static constexpr auto name = _<ConstRefCasted>();
// Input is unimportant, a new value will always be constructed based on the
// cast operator.
bool load(handle, bool) { return true; }
explicit operator ConstRefCasted &&() {
value = {1};
// NOLINTNEXTLINE(performance-move-const-arg)
return std::move(value);
}
explicit operator ConstRefCasted &() {
value = {2};
return value;
}
explicit operator ConstRefCasted *() {
value = {3};
return &value;
}
explicit operator const ConstRefCasted &() {
value = {4};
return value;
}
explicit operator const ConstRefCasted *() {
value = {5};
return &value;
}
// custom cast_op to explicitly propagate types to the conversion operators.
template <typename T_>
using cast_op_type =
/// const
conditional_t<
std::is_same<remove_reference_t<T_>, const ConstRefCasted*>::value, const ConstRefCasted*,
conditional_t<
std::is_same<T_, const ConstRefCasted&>::value, const ConstRefCasted&,
/// non-const
conditional_t<
std::is_same<remove_reference_t<T_>, ConstRefCasted*>::value, ConstRefCasted*,
conditional_t<
std::is_same<T_, ConstRefCasted&>::value, ConstRefCasted&,
/* else */ConstRefCasted&&>>>>;
private:
ConstRefCasted value = {0};
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(pybind11)
TEST_SUBMODULE(builtin_casters, m) {
// test_simple_string
m.def("string_roundtrip", [](const char *s) { return s; });
// test_unicode_conversion
// Some test characters in utf16 and utf32 encodings. The last one (the 𝐀) contains a null byte
char32_t a32 = 0x61 /*a*/, z32 = 0x7a /*z*/, ib32 = 0x203d /*‽*/, cake32 = 0x1f382 /*🎂*/, mathbfA32 = 0x1d400 /*𝐀*/;
char16_t b16 = 0x62 /*b*/, z16 = 0x7a, ib16 = 0x203d, cake16_1 = 0xd83c, cake16_2 = 0xdf82, mathbfA16_1 = 0xd835, mathbfA16_2 = 0xdc00;
std::wstring wstr;
wstr.push_back(0x61); // a
wstr.push_back(0x2e18); // ⸘
if (PYBIND11_SILENCE_MSVC_C4127(sizeof(wchar_t) == 2)) { wstr.push_back(mathbfA16_1); wstr.push_back(mathbfA16_2); } // 𝐀, utf16
else { wstr.push_back((wchar_t) mathbfA32); } // 𝐀, utf32
wstr.push_back(0x7a); // z
m.def("good_utf8_string", []() { return std::string((const char*)u8"Say utf8\u203d \U0001f382 \U0001d400"); }); // Say utf8‽ 🎂 𝐀
m.def("good_utf16_string", [=]() { return std::u16string({ b16, ib16, cake16_1, cake16_2, mathbfA16_1, mathbfA16_2, z16 }); }); // b‽🎂𝐀z
m.def("good_utf32_string", [=]() { return std::u32string({ a32, mathbfA32, cake32, ib32, z32 }); }); // a𝐀🎂‽z
m.def("good_wchar_string", [=]() { return wstr; }); // a‽𝐀z
m.def("bad_utf8_string", []() { return std::string("abc\xd0" "def"); });
m.def("bad_utf16_string", [=]() { return std::u16string({ b16, char16_t(0xd800), z16 }); });
#if PY_MAJOR_VERSION >= 3
// Under Python 2.7, invalid unicode UTF-32 characters don't appear to trigger UnicodeDecodeError
m.def("bad_utf32_string", [=]() { return std::u32string({ a32, char32_t(0xd800), z32 }); });
if (PYBIND11_SILENCE_MSVC_C4127(sizeof(wchar_t) == 2))
m.def("bad_wchar_string", [=]() { return std::wstring({ wchar_t(0x61), wchar_t(0xd800) }); });
#endif
m.def("u8_Z", []() -> char { return 'Z'; });
m.def("u8_eacute", []() -> char { return '\xe9'; });
m.def("u16_ibang", [=]() -> char16_t { return ib16; });
m.def("u32_mathbfA", [=]() -> char32_t { return mathbfA32; });
m.def("wchar_heart", []() -> wchar_t { return 0x2665; });
// test_single_char_arguments
m.attr("wchar_size") = py::cast(sizeof(wchar_t));
m.def("ord_char", [](char c) -> int { return static_cast<unsigned char>(c); });
m.def("ord_char_lv", [](char &c) -> int { return static_cast<unsigned char>(c); });
m.def("ord_char16", [](char16_t c) -> uint16_t { return c; });
m.def("ord_char16_lv", [](char16_t &c) -> uint16_t { return c; });
m.def("ord_char32", [](char32_t c) -> uint32_t { return c; });
m.def("ord_wchar", [](wchar_t c) -> int { return c; });
// test_bytes_to_string
m.def("strlen", [](char *s) { return strlen(s); });
m.def("string_length", [](const std::string &s) { return s.length(); });
#ifdef PYBIND11_HAS_U8STRING
m.attr("has_u8string") = true;
m.def("good_utf8_u8string", []() { return std::u8string(u8"Say utf8\u203d \U0001f382 \U0001d400"); }); // Say utf8‽ 🎂 𝐀
m.def("bad_utf8_u8string", []() { return std::u8string((const char8_t*)"abc\xd0" "def"); });
m.def("u8_char8_Z", []() -> char8_t { return u8'Z'; });
// test_single_char_arguments
m.def("ord_char8", [](char8_t c) -> int { return static_cast<unsigned char>(c); });
m.def("ord_char8_lv", [](char8_t &c) -> int { return static_cast<unsigned char>(c); });
#endif
// test_string_view
#ifdef PYBIND11_HAS_STRING_VIEW
m.attr("has_string_view") = true;
m.def("string_view_print", [](std::string_view s) { py::print(s, s.size()); });
m.def("string_view16_print", [](std::u16string_view s) { py::print(s, s.size()); });
m.def("string_view32_print", [](std::u32string_view s) { py::print(s, s.size()); });
m.def("string_view_chars", [](std::string_view s) { py::list l; for (auto c : s) l.append((std::uint8_t) c); return l; });
m.def("string_view16_chars", [](std::u16string_view s) { py::list l; for (auto c : s) l.append((int) c); return l; });
m.def("string_view32_chars", [](std::u32string_view s) { py::list l; for (auto c : s) l.append((int) c); return l; });
m.def("string_view_return", []() { return std::string_view((const char*)u8"utf8 secret \U0001f382"); });
m.def("string_view16_return", []() { return std::u16string_view(u"utf16 secret \U0001f382"); });
m.def("string_view32_return", []() { return std::u32string_view(U"utf32 secret \U0001f382"); });
# ifdef PYBIND11_HAS_U8STRING
m.def("string_view8_print", [](std::u8string_view s) { py::print(s, s.size()); });
m.def("string_view8_chars", [](std::u8string_view s) { py::list l; for (auto c : s) l.append((std::uint8_t) c); return l; });
m.def("string_view8_return", []() { return std::u8string_view(u8"utf8 secret \U0001f382"); });
# endif
#endif
// test_integer_casting
m.def("i32_str", [](std::int32_t v) { return std::to_string(v); });
m.def("u32_str", [](std::uint32_t v) { return std::to_string(v); });
m.def("i64_str", [](std::int64_t v) { return std::to_string(v); });
m.def("u64_str", [](std::uint64_t v) { return std::to_string(v); });
// test_int_convert
m.def("int_passthrough", [](int arg) { return arg; });
m.def("int_passthrough_noconvert", [](int arg) { return arg; }, py::arg{}.noconvert());
// test_tuple
m.def(
"pair_passthrough",
[](const std::pair<bool, std::string> &input) {
return std::make_pair(input.second, input.first);
},
"Return a pair in reversed order");
m.def("tuple_passthrough", [](std::tuple<bool, std::string, int> input) {
return std::make_tuple(std::get<2>(input), std::get<1>(input), std::get<0>(input));
}, "Return a triple in reversed order");
m.def("empty_tuple", []() { return std::tuple<>(); });
static std::pair<RValueCaster, RValueCaster> lvpair;
static std::tuple<RValueCaster, RValueCaster, RValueCaster> lvtuple;
static std::pair<RValueCaster, std::tuple<RValueCaster, std::pair<RValueCaster, RValueCaster>>> lvnested;
m.def("rvalue_pair", []() { return std::make_pair(RValueCaster{}, RValueCaster{}); });
m.def("lvalue_pair", []() -> const decltype(lvpair) & { return lvpair; });
m.def("rvalue_tuple", []() { return std::make_tuple(RValueCaster{}, RValueCaster{}, RValueCaster{}); });
m.def("lvalue_tuple", []() -> const decltype(lvtuple) & { return lvtuple; });
m.def("rvalue_nested", []() {
return std::make_pair(RValueCaster{}, std::make_tuple(RValueCaster{}, std::make_pair(RValueCaster{}, RValueCaster{}))); });
m.def("lvalue_nested", []() -> const decltype(lvnested) & { return lvnested; });
static std::pair<int, std::string> int_string_pair{2, "items"};
m.def("int_string_pair", []() { return &int_string_pair; });
// test_builtins_cast_return_none
m.def("return_none_string", []() -> std::string * { return nullptr; });
m.def("return_none_char", []() -> const char * { return nullptr; });
m.def("return_none_bool", []() -> bool * { return nullptr; });
m.def("return_none_int", []() -> int * { return nullptr; });
m.def("return_none_float", []() -> float * { return nullptr; });
m.def("return_none_pair", []() -> std::pair<int,int> * { return nullptr; });
// test_none_deferred
m.def("defer_none_cstring", [](char *) { return false; });
m.def("defer_none_cstring", [](const py::none &) { return true; });
m.def("defer_none_custom", [](UserType *) { return false; });
m.def("defer_none_custom", [](const py::none &) { return true; });
m.def("nodefer_none_void", [](void *) { return true; });
m.def("nodefer_none_void", [](const py::none &) { return false; });
// test_void_caster
m.def("load_nullptr_t", [](std::nullptr_t) {}); // not useful, but it should still compile
m.def("cast_nullptr_t", []() { return std::nullptr_t{}; });
// [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works.
// test_bool_caster
m.def("bool_passthrough", [](bool arg) { return arg; });
m.def("bool_passthrough_noconvert", [](bool arg) { return arg; }, py::arg{}.noconvert());
// TODO: This should be disabled and fixed in future Intel compilers
#if !defined(__INTEL_COMPILER)
// Test "bool_passthrough_noconvert" again, but using () instead of {} to construct py::arg
// When compiled with the Intel compiler, this results in segmentation faults when importing
// the module. Tested with icc (ICC) 2021.1 Beta 20200827, this should be tested again when
// a newer version of icc is available.
m.def("bool_passthrough_noconvert2", [](bool arg) { return arg; }, py::arg().noconvert());
#endif
// test_reference_wrapper
m.def("refwrap_builtin", [](std::reference_wrapper<int> p) { return 10 * p.get(); });
m.def("refwrap_usertype", [](std::reference_wrapper<UserType> p) { return p.get().value(); });
m.def("refwrap_usertype_const", [](std::reference_wrapper<const UserType> p) { return p.get().value(); });
m.def("refwrap_lvalue", []() -> std::reference_wrapper<UserType> {
static UserType x(1);
return std::ref(x);
});
m.def("refwrap_lvalue_const", []() -> std::reference_wrapper<const UserType> {
static UserType x(1);
return std::cref(x);
});
// Not currently supported (std::pair caster has return-by-value cast operator);
// triggers static_assert failure.
//m.def("refwrap_pair", [](std::reference_wrapper<std::pair<int, int>>) { });
m.def("refwrap_list", [](bool copy) {
static IncType x1(1), x2(2);
py::list l;
for (auto &f : {std::ref(x1), std::ref(x2)}) {
l.append(py::cast(f, copy ? py::return_value_policy::copy
: py::return_value_policy::reference));
}
return l;
}, "copy"_a);
m.def("refwrap_iiw", [](const IncType &w) { return w.value(); });
m.def("refwrap_call_iiw", [](IncType &w, const py::function &f) {
py::list l;
l.append(f(std::ref(w)));
l.append(f(std::cref(w)));
IncType x(w.value());
l.append(f(std::ref(x)));
IncType y(w.value());
auto r3 = std::ref(y);
l.append(f(r3));
return l;
});
// test_complex
m.def("complex_cast", [](float x) { return "{}"_s.format(x); });
m.def("complex_cast", [](std::complex<float> x) { return "({}, {})"_s.format(x.real(), x.imag()); });
// test int vs. long (Python 2)
m.def("int_cast", []() {return (int) 42;});
m.def("long_cast", []() {return (long) 42;});
m.def("longlong_cast", []() {return ULLONG_MAX;});
/// test void* cast operator
m.def("test_void_caster", []() -> bool {
void *v = (void *) 0xabcd;
py::object o = py::cast(v);
return py::cast<void *>(o) == v;
});
// Tests const/non-const propagation in cast_op.
m.def("takes", [](ConstRefCasted x) { return x.tag; });
m.def("takes_move", [](ConstRefCasted&& x) { return x.tag; });
m.def("takes_ptr", [](ConstRefCasted* x) { return x->tag; });
m.def("takes_ref", [](ConstRefCasted& x) { return x.tag; });
m.def("takes_ref_wrap", [](std::reference_wrapper<ConstRefCasted> x) { return x.get().tag; });
m.def("takes_const_ptr", [](const ConstRefCasted* x) { return x->tag; });
m.def("takes_const_ref", [](const ConstRefCasted& x) { return x.tag; });
m.def("takes_const_ref_wrap", [](std::reference_wrapper<const ConstRefCasted> x) { return x.get().tag; });
}