mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-25 22:52:01 +00:00
ec24786eab
* chore: add clang-format
* Removing check-style (Classic check-style)
Ported from @henryiii's 53056b1b0e
* Automatic clang-format changes (NO manual changes).
Co-authored-by: Henry Schreiner <henryschreineriii@gmail.com>
786 lines
26 KiB
C++
786 lines
26 KiB
C++
/*
|
|
pybind11/std_bind.h: Binding generators for STL data types
|
|
|
|
Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "detail/common.h"
|
|
#include "operators.h"
|
|
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
|
PYBIND11_NAMESPACE_BEGIN(detail)
|
|
|
|
/* SFINAE helper class used by 'is_comparable */
|
|
template <typename T>
|
|
struct container_traits {
|
|
template <typename T2>
|
|
static std::true_type
|
|
test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>()) *);
|
|
template <typename T2>
|
|
static std::false_type test_comparable(...);
|
|
template <typename T2>
|
|
static std::true_type test_value(typename T2::value_type *);
|
|
template <typename T2>
|
|
static std::false_type test_value(...);
|
|
template <typename T2>
|
|
static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
|
|
template <typename T2>
|
|
static std::false_type test_pair(...);
|
|
|
|
static constexpr const bool is_comparable
|
|
= std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
|
|
static constexpr const bool is_pair
|
|
= std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
|
|
static constexpr const bool is_vector
|
|
= std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
|
|
static constexpr const bool is_element = !is_pair && !is_vector;
|
|
};
|
|
|
|
/* Default: is_comparable -> std::false_type */
|
|
template <typename T, typename SFINAE = void>
|
|
struct is_comparable : std::false_type {};
|
|
|
|
/* For non-map data structures, check whether operator== can be instantiated */
|
|
template <typename T>
|
|
struct is_comparable<
|
|
T,
|
|
enable_if_t<container_traits<T>::is_element && container_traits<T>::is_comparable>>
|
|
: std::true_type {};
|
|
|
|
/* For a vector/map data structure, recursively check the value type
|
|
(which is std::pair for maps) */
|
|
template <typename T>
|
|
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> {
|
|
static constexpr const bool value = is_comparable<typename T::value_type>::value;
|
|
};
|
|
|
|
/* For pairs, recursively check the two data types */
|
|
template <typename T>
|
|
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
|
|
static constexpr const bool value = is_comparable<typename T::first_type>::value
|
|
&& is_comparable<typename T::second_type>::value;
|
|
};
|
|
|
|
/* Fallback functions */
|
|
template <typename, typename, typename... Args>
|
|
void vector_if_copy_constructible(const Args &...) {}
|
|
template <typename, typename, typename... Args>
|
|
void vector_if_equal_operator(const Args &...) {}
|
|
template <typename, typename, typename... Args>
|
|
void vector_if_insertion_operator(const Args &...) {}
|
|
template <typename, typename, typename... Args>
|
|
void vector_modifiers(const Args &...) {}
|
|
|
|
template <typename Vector, typename Class_>
|
|
void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
|
|
cl.def(init<const Vector &>(), "Copy constructor");
|
|
}
|
|
|
|
template <typename Vector, typename Class_>
|
|
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
|
|
using T = typename Vector::value_type;
|
|
|
|
cl.def(self == self);
|
|
cl.def(self != self);
|
|
|
|
cl.def(
|
|
"count",
|
|
[](const Vector &v, const T &x) { return std::count(v.begin(), v.end(), x); },
|
|
arg("x"),
|
|
"Return the number of times ``x`` appears in the list");
|
|
|
|
cl.def(
|
|
"remove",
|
|
[](Vector &v, const T &x) {
|
|
auto p = std::find(v.begin(), v.end(), x);
|
|
if (p != v.end()) {
|
|
v.erase(p);
|
|
} else {
|
|
throw value_error();
|
|
}
|
|
},
|
|
arg("x"),
|
|
"Remove the first item from the list whose value is x. "
|
|
"It is an error if there is no such item.");
|
|
|
|
cl.def(
|
|
"__contains__",
|
|
[](const Vector &v, const T &x) { return std::find(v.begin(), v.end(), x) != v.end(); },
|
|
arg("x"),
|
|
"Return true the container contains ``x``");
|
|
}
|
|
|
|
// Vector modifiers -- requires a copyable vector_type:
|
|
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it
|
|
// seems silly to allow deletion but not insertion, so include them here too.)
|
|
template <typename Vector, typename Class_>
|
|
void vector_modifiers(
|
|
enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
|
|
using T = typename Vector::value_type;
|
|
using SizeType = typename Vector::size_type;
|
|
using DiffType = typename Vector::difference_type;
|
|
|
|
auto wrap_i = [](DiffType i, SizeType n) {
|
|
if (i < 0) {
|
|
i += n;
|
|
}
|
|
if (i < 0 || (SizeType) i >= n) {
|
|
throw index_error();
|
|
}
|
|
return i;
|
|
};
|
|
|
|
cl.def(
|
|
"append",
|
|
[](Vector &v, const T &value) { v.push_back(value); },
|
|
arg("x"),
|
|
"Add an item to the end of the list");
|
|
|
|
cl.def(init([](const iterable &it) {
|
|
auto v = std::unique_ptr<Vector>(new Vector());
|
|
v->reserve(len_hint(it));
|
|
for (handle h : it) {
|
|
v->push_back(h.cast<T>());
|
|
}
|
|
return v.release();
|
|
}));
|
|
|
|
cl.def(
|
|
"clear", [](Vector &v) { v.clear(); }, "Clear the contents");
|
|
|
|
cl.def(
|
|
"extend",
|
|
[](Vector &v, const Vector &src) { v.insert(v.end(), src.begin(), src.end()); },
|
|
arg("L"),
|
|
"Extend the list by appending all the items in the given list");
|
|
|
|
cl.def(
|
|
"extend",
|
|
[](Vector &v, const iterable &it) {
|
|
const size_t old_size = v.size();
|
|
v.reserve(old_size + len_hint(it));
|
|
try {
|
|
for (handle h : it) {
|
|
v.push_back(h.cast<T>());
|
|
}
|
|
} catch (const cast_error &) {
|
|
v.erase(v.begin() + static_cast<typename Vector::difference_type>(old_size),
|
|
v.end());
|
|
try {
|
|
v.shrink_to_fit();
|
|
} catch (const std::exception &) {
|
|
// Do nothing
|
|
}
|
|
throw;
|
|
}
|
|
},
|
|
arg("L"),
|
|
"Extend the list by appending all the items in the given list");
|
|
|
|
cl.def(
|
|
"insert",
|
|
[](Vector &v, DiffType i, const T &x) {
|
|
// Can't use wrap_i; i == v.size() is OK
|
|
if (i < 0) {
|
|
i += v.size();
|
|
}
|
|
if (i < 0 || (SizeType) i > v.size()) {
|
|
throw index_error();
|
|
}
|
|
v.insert(v.begin() + i, x);
|
|
},
|
|
arg("i"),
|
|
arg("x"),
|
|
"Insert an item at a given position.");
|
|
|
|
cl.def(
|
|
"pop",
|
|
[](Vector &v) {
|
|
if (v.empty()) {
|
|
throw index_error();
|
|
}
|
|
T t = std::move(v.back());
|
|
v.pop_back();
|
|
return t;
|
|
},
|
|
"Remove and return the last item");
|
|
|
|
cl.def(
|
|
"pop",
|
|
[wrap_i](Vector &v, DiffType i) {
|
|
i = wrap_i(i, v.size());
|
|
T t = std::move(v[(SizeType) i]);
|
|
v.erase(std::next(v.begin(), i));
|
|
return t;
|
|
},
|
|
arg("i"),
|
|
"Remove and return the item at index ``i``");
|
|
|
|
cl.def("__setitem__", [wrap_i](Vector &v, DiffType i, const T &t) {
|
|
i = wrap_i(i, v.size());
|
|
v[(SizeType) i] = t;
|
|
});
|
|
|
|
/// Slicing protocol
|
|
cl.def(
|
|
"__getitem__",
|
|
[](const Vector &v, slice slice) -> Vector * {
|
|
size_t start = 0, stop = 0, step = 0, slicelength = 0;
|
|
|
|
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) {
|
|
throw error_already_set();
|
|
}
|
|
|
|
auto *seq = new Vector();
|
|
seq->reserve((size_t) slicelength);
|
|
|
|
for (size_t i = 0; i < slicelength; ++i) {
|
|
seq->push_back(v[start]);
|
|
start += step;
|
|
}
|
|
return seq;
|
|
},
|
|
arg("s"),
|
|
"Retrieve list elements using a slice object");
|
|
|
|
cl.def(
|
|
"__setitem__",
|
|
[](Vector &v, slice slice, const Vector &value) {
|
|
size_t start = 0, stop = 0, step = 0, slicelength = 0;
|
|
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) {
|
|
throw error_already_set();
|
|
}
|
|
|
|
if (slicelength != value.size()) {
|
|
throw std::runtime_error(
|
|
"Left and right hand size of slice assignment have different sizes!");
|
|
}
|
|
|
|
for (size_t i = 0; i < slicelength; ++i) {
|
|
v[start] = value[i];
|
|
start += step;
|
|
}
|
|
},
|
|
"Assign list elements using a slice object");
|
|
|
|
cl.def(
|
|
"__delitem__",
|
|
[wrap_i](Vector &v, DiffType i) {
|
|
i = wrap_i(i, v.size());
|
|
v.erase(v.begin() + i);
|
|
},
|
|
"Delete the list elements at index ``i``");
|
|
|
|
cl.def(
|
|
"__delitem__",
|
|
[](Vector &v, slice slice) {
|
|
size_t start = 0, stop = 0, step = 0, slicelength = 0;
|
|
|
|
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) {
|
|
throw error_already_set();
|
|
}
|
|
|
|
if (step == 1 && false) {
|
|
v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
|
|
} else {
|
|
for (size_t i = 0; i < slicelength; ++i) {
|
|
v.erase(v.begin() + DiffType(start));
|
|
start += step - 1;
|
|
}
|
|
}
|
|
},
|
|
"Delete list elements using a slice object");
|
|
}
|
|
|
|
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
|
|
// we have to access by copying; otherwise we return by reference.
|
|
template <typename Vector>
|
|
using vector_needs_copy
|
|
= negation<std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]),
|
|
typename Vector::value_type &>>;
|
|
|
|
// The usual case: access and iterate by reference
|
|
template <typename Vector, typename Class_>
|
|
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
|
|
using T = typename Vector::value_type;
|
|
using SizeType = typename Vector::size_type;
|
|
using DiffType = typename Vector::difference_type;
|
|
using ItType = typename Vector::iterator;
|
|
|
|
auto wrap_i = [](DiffType i, SizeType n) {
|
|
if (i < 0) {
|
|
i += n;
|
|
}
|
|
if (i < 0 || (SizeType) i >= n) {
|
|
throw index_error();
|
|
}
|
|
return i;
|
|
};
|
|
|
|
cl.def(
|
|
"__getitem__",
|
|
[wrap_i](Vector &v, DiffType i) -> T & {
|
|
i = wrap_i(i, v.size());
|
|
return v[(SizeType) i];
|
|
},
|
|
return_value_policy::reference_internal // ref + keepalive
|
|
);
|
|
|
|
cl.def(
|
|
"__iter__",
|
|
[](Vector &v) {
|
|
return make_iterator<return_value_policy::reference_internal, ItType, ItType, T &>(
|
|
v.begin(), v.end());
|
|
},
|
|
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
|
|
);
|
|
}
|
|
|
|
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
|
|
template <typename Vector, typename Class_>
|
|
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
|
|
using T = typename Vector::value_type;
|
|
using SizeType = typename Vector::size_type;
|
|
using DiffType = typename Vector::difference_type;
|
|
using ItType = typename Vector::iterator;
|
|
cl.def("__getitem__", [](const Vector &v, DiffType i) -> T {
|
|
if (i < 0 && (i += v.size()) < 0) {
|
|
throw index_error();
|
|
}
|
|
if ((SizeType) i >= v.size()) {
|
|
throw index_error();
|
|
}
|
|
return v[(SizeType) i];
|
|
});
|
|
|
|
cl.def(
|
|
"__iter__",
|
|
[](Vector &v) {
|
|
return make_iterator<return_value_policy::copy, ItType, ItType, T>(v.begin(), v.end());
|
|
},
|
|
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
|
|
);
|
|
}
|
|
|
|
template <typename Vector, typename Class_>
|
|
auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
|
|
-> decltype(std::declval<std::ostream &>() << std::declval<typename Vector::value_type>(),
|
|
void()) {
|
|
using size_type = typename Vector::size_type;
|
|
|
|
cl.def(
|
|
"__repr__",
|
|
[name](Vector &v) {
|
|
std::ostringstream s;
|
|
s << name << '[';
|
|
for (size_type i = 0; i < v.size(); ++i) {
|
|
s << v[i];
|
|
if (i != v.size() - 1) {
|
|
s << ", ";
|
|
}
|
|
}
|
|
s << ']';
|
|
return s.str();
|
|
},
|
|
"Return the canonical string representation of this list.");
|
|
}
|
|
|
|
// Provide the buffer interface for vectors if we have data() and we have a format for it
|
|
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data()
|
|
// is insufficient, we need to check it returns an appropriate pointer
|
|
template <typename Vector, typename = void>
|
|
struct vector_has_data_and_format : std::false_type {};
|
|
template <typename Vector>
|
|
struct vector_has_data_and_format<
|
|
Vector,
|
|
enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(),
|
|
std::declval<Vector>().data()),
|
|
typename Vector::value_type *>::value>> : std::true_type {};
|
|
|
|
// [workaround(intel)] Separate function required here
|
|
// Workaround as the Intel compiler does not compile the enable_if_t part below
|
|
// (tested with icc (ICC) 2021.1 Beta 20200827)
|
|
template <typename... Args>
|
|
constexpr bool args_any_are_buffer() {
|
|
return detail::any_of<std::is_same<Args, buffer_protocol>...>::value;
|
|
}
|
|
|
|
// [workaround(intel)] Separate function required here
|
|
// [workaround(msvc)] Can't use constexpr bool in return type
|
|
|
|
// Add the buffer interface to a vector
|
|
template <typename Vector, typename Class_, typename... Args>
|
|
void vector_buffer_impl(Class_ &cl, std::true_type) {
|
|
using T = typename Vector::value_type;
|
|
|
|
static_assert(vector_has_data_and_format<Vector>::value,
|
|
"There is not an appropriate format descriptor for this vector");
|
|
|
|
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard
|
|
// at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
|
|
format_descriptor<T>::format();
|
|
|
|
cl.def_buffer([](Vector &v) -> buffer_info {
|
|
return buffer_info(v.data(),
|
|
static_cast<ssize_t>(sizeof(T)),
|
|
format_descriptor<T>::format(),
|
|
1,
|
|
{v.size()},
|
|
{sizeof(T)});
|
|
});
|
|
|
|
cl.def(init([](const buffer &buf) {
|
|
auto info = buf.request();
|
|
if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T))) {
|
|
throw type_error("Only valid 1D buffers can be copied to a vector");
|
|
}
|
|
if (!detail::compare_buffer_info<T>::compare(info)
|
|
|| (ssize_t) sizeof(T) != info.itemsize) {
|
|
throw type_error("Format mismatch (Python: " + info.format
|
|
+ " C++: " + format_descriptor<T>::format() + ")");
|
|
}
|
|
|
|
T *p = static_cast<T *>(info.ptr);
|
|
ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
|
|
T *end = p + info.shape[0] * step;
|
|
if (step == 1) {
|
|
return Vector(p, end);
|
|
}
|
|
Vector vec;
|
|
vec.reserve((size_t) info.shape[0]);
|
|
for (; p != end; p += step) {
|
|
vec.push_back(*p);
|
|
}
|
|
return vec;
|
|
}));
|
|
|
|
return;
|
|
}
|
|
|
|
template <typename Vector, typename Class_, typename... Args>
|
|
void vector_buffer_impl(Class_ &, std::false_type) {}
|
|
|
|
template <typename Vector, typename Class_, typename... Args>
|
|
void vector_buffer(Class_ &cl) {
|
|
vector_buffer_impl<Vector, Class_, Args...>(
|
|
cl, detail::any_of<std::is_same<Args, buffer_protocol>...>{});
|
|
}
|
|
|
|
PYBIND11_NAMESPACE_END(detail)
|
|
|
|
//
|
|
// std::vector
|
|
//
|
|
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
|
|
class_<Vector, holder_type> bind_vector(handle scope, std::string const &name, Args &&...args) {
|
|
using Class_ = class_<Vector, holder_type>;
|
|
|
|
// If the value_type is unregistered (e.g. a converting type) or is itself registered
|
|
// module-local then make the vector binding module-local as well:
|
|
using vtype = typename Vector::value_type;
|
|
auto *vtype_info = detail::get_type_info(typeid(vtype));
|
|
bool local = !vtype_info || vtype_info->module_local;
|
|
|
|
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
|
|
|
|
// Declare the buffer interface if a buffer_protocol() is passed in
|
|
detail::vector_buffer<Vector, Class_, Args...>(cl);
|
|
|
|
cl.def(init<>());
|
|
|
|
// Register copy constructor (if possible)
|
|
detail::vector_if_copy_constructible<Vector, Class_>(cl);
|
|
|
|
// Register comparison-related operators and functions (if possible)
|
|
detail::vector_if_equal_operator<Vector, Class_>(cl);
|
|
|
|
// Register stream insertion operator (if possible)
|
|
detail::vector_if_insertion_operator<Vector, Class_>(cl, name);
|
|
|
|
// Modifiers require copyable vector value type
|
|
detail::vector_modifiers<Vector, Class_>(cl);
|
|
|
|
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
|
|
detail::vector_accessor<Vector, Class_>(cl);
|
|
|
|
cl.def(
|
|
"__bool__",
|
|
[](const Vector &v) -> bool { return !v.empty(); },
|
|
"Check whether the list is nonempty");
|
|
|
|
cl.def("__len__", &Vector::size);
|
|
|
|
#if 0
|
|
// C++ style functions deprecated, leaving it here as an example
|
|
cl.def(init<size_type>());
|
|
|
|
cl.def("resize",
|
|
(void (Vector::*) (size_type count)) & Vector::resize,
|
|
"changes the number of elements stored");
|
|
|
|
cl.def("erase",
|
|
[](Vector &v, SizeType i) {
|
|
if (i >= v.size())
|
|
throw index_error();
|
|
v.erase(v.begin() + i);
|
|
}, "erases element at index ``i``");
|
|
|
|
cl.def("empty", &Vector::empty, "checks whether the container is empty");
|
|
cl.def("size", &Vector::size, "returns the number of elements");
|
|
cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
|
|
cl.def("pop_back", &Vector::pop_back, "removes the last element");
|
|
|
|
cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements");
|
|
cl.def("reserve", &Vector::reserve, "reserves storage");
|
|
cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage");
|
|
cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");
|
|
|
|
cl.def("clear", &Vector::clear, "clears the contents");
|
|
cl.def("swap", &Vector::swap, "swaps the contents");
|
|
|
|
cl.def("front", [](Vector &v) {
|
|
if (v.size()) return v.front();
|
|
else throw index_error();
|
|
}, "access the first element");
|
|
|
|
cl.def("back", [](Vector &v) {
|
|
if (v.size()) return v.back();
|
|
else throw index_error();
|
|
}, "access the last element ");
|
|
|
|
#endif
|
|
|
|
return cl;
|
|
}
|
|
|
|
//
|
|
// std::map, std::unordered_map
|
|
//
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(detail)
|
|
|
|
/* Fallback functions */
|
|
template <typename, typename, typename... Args>
|
|
void map_if_insertion_operator(const Args &...) {}
|
|
template <typename, typename, typename... Args>
|
|
void map_assignment(const Args &...) {}
|
|
|
|
// Map assignment when copy-assignable: just copy the value
|
|
template <typename Map, typename Class_>
|
|
void map_assignment(
|
|
enable_if_t<is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
|
|
using KeyType = typename Map::key_type;
|
|
using MappedType = typename Map::mapped_type;
|
|
|
|
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) {
|
|
auto it = m.find(k);
|
|
if (it != m.end()) {
|
|
it->second = v;
|
|
} else {
|
|
m.emplace(k, v);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and
|
|
// reinserting
|
|
template <typename Map, typename Class_>
|
|
void map_assignment(enable_if_t<!is_copy_assignable<typename Map::mapped_type>::value
|
|
&& is_copy_constructible<typename Map::mapped_type>::value,
|
|
Class_> &cl) {
|
|
using KeyType = typename Map::key_type;
|
|
using MappedType = typename Map::mapped_type;
|
|
|
|
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) {
|
|
// We can't use m[k] = v; because value type might not be default constructable
|
|
auto r = m.emplace(k, v);
|
|
if (!r.second) {
|
|
// value type is not copy assignable so the only way to insert it is to erase it
|
|
// first...
|
|
m.erase(r.first);
|
|
m.emplace(k, v);
|
|
}
|
|
});
|
|
}
|
|
|
|
template <typename Map, typename Class_>
|
|
auto map_if_insertion_operator(Class_ &cl, std::string const &name)
|
|
-> decltype(std::declval<std::ostream &>() << std::declval<typename Map::key_type>()
|
|
<< std::declval<typename Map::mapped_type>(),
|
|
void()) {
|
|
|
|
cl.def(
|
|
"__repr__",
|
|
[name](Map &m) {
|
|
std::ostringstream s;
|
|
s << name << '{';
|
|
bool f = false;
|
|
for (auto const &kv : m) {
|
|
if (f) {
|
|
s << ", ";
|
|
}
|
|
s << kv.first << ": " << kv.second;
|
|
f = true;
|
|
}
|
|
s << '}';
|
|
return s.str();
|
|
},
|
|
"Return the canonical string representation of this map.");
|
|
}
|
|
|
|
template <typename Map>
|
|
struct keys_view {
|
|
Map ↦
|
|
};
|
|
|
|
template <typename Map>
|
|
struct values_view {
|
|
Map ↦
|
|
};
|
|
|
|
template <typename Map>
|
|
struct items_view {
|
|
Map ↦
|
|
};
|
|
|
|
PYBIND11_NAMESPACE_END(detail)
|
|
|
|
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
|
|
class_<Map, holder_type> bind_map(handle scope, const std::string &name, Args &&...args) {
|
|
using KeyType = typename Map::key_type;
|
|
using MappedType = typename Map::mapped_type;
|
|
using KeysView = detail::keys_view<Map>;
|
|
using ValuesView = detail::values_view<Map>;
|
|
using ItemsView = detail::items_view<Map>;
|
|
using Class_ = class_<Map, holder_type>;
|
|
|
|
// If either type is a non-module-local bound type then make the map binding non-local as well;
|
|
// otherwise (e.g. both types are either module-local or converting) the map will be
|
|
// module-local.
|
|
auto *tinfo = detail::get_type_info(typeid(MappedType));
|
|
bool local = !tinfo || tinfo->module_local;
|
|
if (local) {
|
|
tinfo = detail::get_type_info(typeid(KeyType));
|
|
local = !tinfo || tinfo->module_local;
|
|
}
|
|
|
|
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
|
|
class_<KeysView> keys_view(
|
|
scope, ("KeysView[" + name + "]").c_str(), pybind11::module_local(local));
|
|
class_<ValuesView> values_view(
|
|
scope, ("ValuesView[" + name + "]").c_str(), pybind11::module_local(local));
|
|
class_<ItemsView> items_view(
|
|
scope, ("ItemsView[" + name + "]").c_str(), pybind11::module_local(local));
|
|
|
|
cl.def(init<>());
|
|
|
|
// Register stream insertion operator (if possible)
|
|
detail::map_if_insertion_operator<Map, Class_>(cl, name);
|
|
|
|
cl.def(
|
|
"__bool__",
|
|
[](const Map &m) -> bool { return !m.empty(); },
|
|
"Check whether the map is nonempty");
|
|
|
|
cl.def(
|
|
"__iter__",
|
|
[](Map &m) { return make_key_iterator(m.begin(), m.end()); },
|
|
keep_alive<0, 1>() /* Essential: keep map alive while iterator exists */
|
|
);
|
|
|
|
cl.def(
|
|
"keys",
|
|
[](Map &m) { return KeysView{m}; },
|
|
keep_alive<0, 1>() /* Essential: keep map alive while view exists */
|
|
);
|
|
|
|
cl.def(
|
|
"values",
|
|
[](Map &m) { return ValuesView{m}; },
|
|
keep_alive<0, 1>() /* Essential: keep map alive while view exists */
|
|
);
|
|
|
|
cl.def(
|
|
"items",
|
|
[](Map &m) { return ItemsView{m}; },
|
|
keep_alive<0, 1>() /* Essential: keep map alive while view exists */
|
|
);
|
|
|
|
cl.def(
|
|
"__getitem__",
|
|
[](Map &m, const KeyType &k) -> MappedType & {
|
|
auto it = m.find(k);
|
|
if (it == m.end()) {
|
|
throw key_error();
|
|
}
|
|
return it->second;
|
|
},
|
|
return_value_policy::reference_internal // ref + keepalive
|
|
);
|
|
|
|
cl.def("__contains__", [](Map &m, const KeyType &k) -> bool {
|
|
auto it = m.find(k);
|
|
if (it == m.end()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
// Fallback for when the object is not of the key type
|
|
cl.def("__contains__", [](Map &, const object &) -> bool { return false; });
|
|
|
|
// Assignment provided only if the type is copyable
|
|
detail::map_assignment<Map, Class_>(cl);
|
|
|
|
cl.def("__delitem__", [](Map &m, const KeyType &k) {
|
|
auto it = m.find(k);
|
|
if (it == m.end()) {
|
|
throw key_error();
|
|
}
|
|
m.erase(it);
|
|
});
|
|
|
|
cl.def("__len__", &Map::size);
|
|
|
|
keys_view.def("__len__", [](KeysView &view) { return view.map.size(); });
|
|
keys_view.def(
|
|
"__iter__",
|
|
[](KeysView &view) { return make_key_iterator(view.map.begin(), view.map.end()); },
|
|
keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */
|
|
);
|
|
keys_view.def("__contains__", [](KeysView &view, const KeyType &k) -> bool {
|
|
auto it = view.map.find(k);
|
|
if (it == view.map.end()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
// Fallback for when the object is not of the key type
|
|
keys_view.def("__contains__", [](KeysView &, const object &) -> bool { return false; });
|
|
|
|
values_view.def("__len__", [](ValuesView &view) { return view.map.size(); });
|
|
values_view.def(
|
|
"__iter__",
|
|
[](ValuesView &view) { return make_value_iterator(view.map.begin(), view.map.end()); },
|
|
keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */
|
|
);
|
|
|
|
items_view.def("__len__", [](ItemsView &view) { return view.map.size(); });
|
|
items_view.def(
|
|
"__iter__",
|
|
[](ItemsView &view) { return make_iterator(view.map.begin(), view.map.end()); },
|
|
keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */
|
|
);
|
|
|
|
return cl;
|
|
}
|
|
|
|
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|