pybind11/include/pybind11/cast.h
Jason Rhinelander 5aa85be26e Added pybind11::make_key_iterator for map iteration
This allows exposing a dict-like interface to python code, allowing
iteration over keys via:

    for k in custommapping:
        ...

while still allowing iteration over pairs, so that you can also
implement 'dict.items()' functionality which returns a pair iterator,
allowing:

    for k, v in custommapping.items():
        ...

example-sequences-and-iterators is updated with a custom class providing
both types of iteration.
2016-08-11 21:22:05 -04:00

984 lines
40 KiB
C++

/*
pybind11/cast.h: Partial template specializations to cast between
C++ and Python types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pytypes.h"
#include "typeid.h"
#include "descr.h"
#include <array>
#include <limits>
#include <iostream>
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/// Additional type information which does not fit into the PyTypeObject
struct type_info {
PyTypeObject *type;
size_t type_size;
void (*init_holder)(PyObject *, const void *);
std::vector<PyObject *(*)(PyObject *, PyTypeObject *) > implicit_conversions;
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
void *get_buffer_data = nullptr;
};
PYBIND11_NOINLINE inline internals &get_internals() {
static internals *internals_ptr = nullptr;
if (internals_ptr)
return *internals_ptr;
handle builtins(PyEval_GetBuiltins());
const char *id = PYBIND11_INTERNALS_ID;
capsule caps(builtins[id]);
if (caps.check()) {
internals_ptr = caps;
} else {
internals_ptr = new internals();
#if defined(WITH_THREAD)
PyEval_InitThreads();
PyThreadState *tstate = PyThreadState_Get();
internals_ptr->tstate = PyThread_create_key();
PyThread_set_key_value(internals_ptr->tstate, tstate);
internals_ptr->istate = tstate->interp;
#endif
builtins[id] = capsule(internals_ptr);
internals_ptr->registered_exception_translators.push_front(
[](std::exception_ptr p) -> void {
try {
if (p) std::rethrow_exception(p);
} catch (const error_already_set &) { return;
} catch (const index_error &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
} catch (const key_error &e) { PyErr_SetString(PyExc_KeyError, e.what()); return;
} catch (const value_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const stop_iteration &e) { PyErr_SetString(PyExc_StopIteration, e.what()); return;
} catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
} catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
} catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
} catch (...) {
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
return;
}
}
);
}
return *internals_ptr;
}
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type, bool throw_if_missing = true) {
auto const &type_dict = get_internals().registered_types_py;
do {
auto it = type_dict.find(type);
if (it != type_dict.end())
return (detail::type_info *) it->second;
type = type->tp_base;
if (!type) {
if (throw_if_missing)
pybind11_fail("pybind11::detail::get_type_info: unable to find type object!");
return nullptr;
}
} while (true);
}
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp) {
auto &types = get_internals().registered_types_cpp;
auto it = types.find(std::type_index(tp));
if (it != types.end())
return (detail::type_info *) it->second;
return nullptr;
}
PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp) {
detail::type_info *type_info = get_type_info(tp);
return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
}
PYBIND11_NOINLINE inline std::string error_string() {
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);
std::string errorString;
if (type) {
errorString += (std::string) handle(type).str();
errorString += ": ";
}
if (value)
errorString += (std::string) handle(value).str();
PyErr_Restore(type, value, traceback);
return errorString;
}
PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
auto &instances = get_internals().registered_instances;
auto range = instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
auto instance_type = detail::get_type_info(Py_TYPE(it->second), false);
if (instance_type && instance_type == type)
return handle((PyObject *) it->second);
}
return handle();
}
inline PyThreadState *get_thread_state_unchecked() {
#if PY_VERSION_HEX < 0x03000000
return _PyThreadState_Current;
#elif PY_VERSION_HEX < 0x03050000
return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
#elif PY_VERSION_HEX < 0x03050200
return (PyThreadState*) _PyThreadState_Current.value;
#else
return _PyThreadState_UncheckedGet();
#endif
}
// Forward declaration
inline void keep_alive_impl(handle nurse, handle patient);
class type_caster_generic {
public:
PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
: typeinfo(get_type_info(type_info)) { }
PYBIND11_NOINLINE bool load(handle src, bool convert) {
if (!src || !typeinfo)
return false;
if (src.ptr() == Py_None) {
value = nullptr;
return true;
} else if (PyType_IsSubtype(Py_TYPE(src.ptr()), typeinfo->type)) {
value = ((instance<void> *) src.ptr())->value;
return true;
}
if (convert) {
for (auto &converter : typeinfo->implicit_conversions) {
temp = object(converter(src.ptr(), typeinfo->type), false);
if (load(temp, false))
return true;
}
}
return false;
}
PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
const std::type_info *type_info,
const std::type_info *type_info_backup,
void *(*copy_constructor)(const void *),
void *(*move_constructor)(const void *),
const void *existing_holder = nullptr) {
void *src = const_cast<void *>(_src);
if (src == nullptr)
return handle(Py_None).inc_ref();
auto &internals = get_internals();
auto it = internals.registered_types_cpp.find(std::type_index(*type_info));
if (it == internals.registered_types_cpp.end()) {
type_info = type_info_backup;
it = internals.registered_types_cpp.find(std::type_index(*type_info));
}
if (it == internals.registered_types_cpp.end()) {
std::string tname = type_info->name();
detail::clean_type_id(tname);
std::string msg = "Unregistered type : " + tname;
PyErr_SetString(PyExc_TypeError, msg.c_str());
return handle();
}
auto tinfo = (const detail::type_info *) it->second;
auto it_instances = internals.registered_instances.equal_range(src);
for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
auto instance_type = detail::get_type_info(Py_TYPE(it_i->second), false);
if (instance_type && instance_type == tinfo)
return handle((PyObject *) it_i->second).inc_ref();
}
object inst(PyType_GenericAlloc(tinfo->type, 0), false);
auto wrapper = (instance<void> *) inst.ptr();
wrapper->value = src;
wrapper->owned = true;
if (policy == return_value_policy::automatic)
policy = return_value_policy::take_ownership;
else if (policy == return_value_policy::automatic_reference)
policy = return_value_policy::reference;
if (policy == return_value_policy::copy) {
wrapper->value = copy_constructor(wrapper->value);
if (wrapper->value == nullptr)
throw cast_error("return_value_policy = copy, but the object is non-copyable!");
} else if (policy == return_value_policy::move) {
wrapper->value = move_constructor(wrapper->value);
if (wrapper->value == nullptr)
wrapper->value = copy_constructor(wrapper->value);
if (wrapper->value == nullptr)
throw cast_error("return_value_policy = move, but the object is neither movable nor copyable!");
} else if (policy == return_value_policy::reference) {
wrapper->owned = false;
} else if (policy == return_value_policy::reference_internal) {
wrapper->owned = false;
detail::keep_alive_impl(inst, parent);
}
tinfo->init_holder(inst.ptr(), existing_holder);
internals.registered_instances.emplace(wrapper->value, inst.ptr());
return inst.release();
}
protected:
const type_info *typeinfo = nullptr;
void *value = nullptr;
object temp;
};
/* Determine suitable casting operator */
template <typename T>
using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value,
typename std::add_pointer<typename intrinsic_type<T>::type>::type,
typename std::add_lvalue_reference<typename intrinsic_type<T>::type>::type>::type;
/// Generic type caster for objects stored on the heap
template <typename type> class type_caster_base : public type_caster_generic {
public:
static PYBIND11_DESCR name() { return type_descr(_<type>()); }
type_caster_base() : type_caster_generic(typeid(type)) { }
static handle cast(const type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
policy = return_value_policy::copy;
return cast(&src, policy, parent);
}
static handle cast(type &&src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
policy = return_value_policy::move;
return cast(&src, policy, parent);
}
static handle cast(const type *src, return_value_policy policy, handle parent) {
return type_caster_generic::cast(
src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type),
make_copy_constructor(src), make_move_constructor(src));
}
template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>;
operator type*() { return (type *) value; }
operator type&() { if (!value) throw reference_cast_error(); return *((type *) value); }
protected:
typedef void *(*Constructor)(const void *stream);
#if !defined(_MSC_VER)
/* Only enabled when the types are {copy,move}-constructible *and* when the type
does not have a private operator new implementaton. */
template <typename T = type> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) {
return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; }
template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) {
return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *) arg))); }; }
#else
/* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations.
Use a workaround that only tests for constructibility for now. */
template <typename T = type, typename = typename std::enable_if<std::is_copy_constructible<T>::value>::type>
static Constructor make_copy_constructor(const T *value) {
return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; }
template <typename T = type, typename = typename std::enable_if<std::is_move_constructible<T>::value>::type>
static Constructor make_move_constructor(const T *value) {
return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; }
#endif
static Constructor make_copy_constructor(...) { return nullptr; }
static Constructor make_move_constructor(...) { return nullptr; }
};
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> {
public:
static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
return type_caster_base<type>::cast(&src.get(), policy, parent);
}
template <typename T> using cast_op_type = std::reference_wrapper<type>;
operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); }
};
#define PYBIND11_TYPE_CASTER(type, py_name) \
protected: \
type value; \
public: \
static PYBIND11_DESCR name() { return type_descr(py_name); } \
static handle cast(const type *src, return_value_policy policy, handle parent) { \
return cast(*src, policy, parent); \
} \
operator type*() { return &value; } \
operator type&() { return value; } \
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type) \
namespace pybind11 { namespace detail { \
template <typename type> class type_caster<holder_type> \
: public type_caster_holder<type, holder_type> { }; \
}}
template <typename T>
struct type_caster<
T, typename std::enable_if<std::is_integral<T>::value ||
std::is_floating_point<T>::value>::type> {
typedef typename std::conditional<sizeof(T) <= sizeof(long), long, long long>::type _py_type_0;
typedef typename std::conditional<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>::type _py_type_1;
typedef typename std::conditional<std::is_floating_point<T>::value, double, _py_type_1>::type py_type;
public:
bool load(handle src, bool) {
py_type py_value;
if (!src) {
return false;
} if (std::is_floating_point<T>::value) {
py_value = (py_type) PyFloat_AsDouble(src.ptr());
} else if (sizeof(T) <= sizeof(long)) {
if (PyFloat_Check(src.ptr()))
return false;
if (std::is_signed<T>::value)
py_value = (py_type) PyLong_AsLong(src.ptr());
else
py_value = (py_type) PyLong_AsUnsignedLong(src.ptr());
} else {
if (PyFloat_Check(src.ptr()))
return false;
if (std::is_signed<T>::value)
py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
else
py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr());
}
if ((py_value == (py_type) -1 && PyErr_Occurred()) ||
(std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
(py_value < (py_type) std::numeric_limits<T>::min() ||
py_value > (py_type) std::numeric_limits<T>::max()))) {
PyErr_Clear();
return false;
}
value = (T) py_value;
return true;
}
static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
if (std::is_floating_point<T>::value) {
return PyFloat_FromDouble((double) src);
} else if (sizeof(T) <= sizeof(long)) {
if (std::is_signed<T>::value)
return PyLong_FromLong((long) src);
else
return PyLong_FromUnsignedLong((unsigned long) src);
} else {
if (std::is_signed<T>::value)
return PyLong_FromLongLong((long long) src);
else
return PyLong_FromUnsignedLongLong((unsigned long long) src);
}
}
PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
};
template <> class type_caster<void_type> {
public:
bool load(handle, bool) { return false; }
static handle cast(void_type, return_value_policy /* policy */, handle /* parent */) {
return handle(Py_None).inc_ref();
}
PYBIND11_TYPE_CASTER(void_type, _("None"));
};
template <> class type_caster<void> : public type_caster<void_type> {
public:
using type_caster<void_type>::cast;
bool load(handle h, bool) {
if (!h) {
return false;
} else if (h.ptr() == Py_None) {
value = nullptr;
return true;
}
/* Check if this is a capsule */
capsule c(h, true);
if (c.check()) {
value = (void *) c;
return true;
}
/* Check if this is a C++ type */
if (get_type_info((PyTypeObject *) h.get_type().ptr(), false)) {
value = ((instance<void> *) h.ptr())->value;
return true;
}
/* Fail */
return false;
}
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
if (ptr)
return capsule(ptr).release();
else
return handle(Py_None).inc_ref();
}
template <typename T> using cast_op_type = void*&;
operator void *&() { return value; }
static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
private:
void *value = nullptr;
};
template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { };
template <> class type_caster<bool> {
public:
bool load(handle src, bool) {
if (!src) return false;
else if (src.ptr() == Py_True) { value = true; return true; }
else if (src.ptr() == Py_False) { value = false; return true; }
else return false;
}
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
return handle(src ? Py_True : Py_False).inc_ref();
}
PYBIND11_TYPE_CASTER(bool, _("bool"));
};
template <> class type_caster<std::string> {
public:
bool load(handle src, bool) {
object temp;
handle load_src = src;
if (!src) {
return false;
} else if (PyUnicode_Check(load_src.ptr())) {
temp = object(PyUnicode_AsUTF8String(load_src.ptr()), false);
if (!temp) { PyErr_Clear(); return false; } // UnicodeEncodeError
load_src = temp;
}
char *buffer;
ssize_t length;
int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(load_src.ptr(), &buffer, &length);
if (err == -1) { PyErr_Clear(); return false; } // TypeError
value = std::string(buffer, (size_t) length);
success = true;
return true;
}
static handle cast(const std::string &src, return_value_policy /* policy */, handle /* parent */) {
return PyUnicode_FromStringAndSize(src.c_str(), (ssize_t) src.length());
}
PYBIND11_TYPE_CASTER(std::string, _(PYBIND11_STRING_NAME));
protected:
bool success = false;
};
template <typename type> class type_caster<std::unique_ptr<type>> {
public:
static handle cast(std::unique_ptr<type> &&src, return_value_policy policy, handle parent) {
handle result = type_caster_base<type>::cast(src.get(), policy, parent);
if (result)
src.release();
return result;
}
static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
};
template <> class type_caster<std::wstring> {
public:
bool load(handle src, bool) {
object temp;
handle load_src = src;
if (!src) {
return false;
} else if (!PyUnicode_Check(load_src.ptr())) {
temp = object(PyUnicode_FromObject(load_src.ptr()), false);
if (!temp) { PyErr_Clear(); return false; }
load_src = temp;
}
wchar_t *buffer = nullptr;
ssize_t length = -1;
#if PY_MAJOR_VERSION >= 3
buffer = PyUnicode_AsWideCharString(load_src.ptr(), &length);
#else
temp = object(
sizeof(wchar_t) == sizeof(short)
? PyUnicode_AsUTF16String(load_src.ptr())
: PyUnicode_AsUTF32String(load_src.ptr()), false);
if (temp) {
int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), (char **) &buffer, &length);
if (err == -1) { buffer = nullptr; } // TypeError
length = length / (ssize_t) sizeof(wchar_t) - 1; ++buffer; // Skip BOM
}
#endif
if (!buffer) { PyErr_Clear(); return false; }
value = std::wstring(buffer, (size_t) length);
success = true;
return true;
}
static handle cast(const std::wstring &src, return_value_policy /* policy */, handle /* parent */) {
return PyUnicode_FromWideChar(src.c_str(), (ssize_t) src.length());
}
PYBIND11_TYPE_CASTER(std::wstring, _(PYBIND11_STRING_NAME));
protected:
bool success = false;
};
template <> class type_caster<char> : public type_caster<std::string> {
public:
bool load(handle src, bool convert) {
if (src.ptr() == Py_None) return true;
return type_caster<std::string>::load(src, convert);
}
static handle cast(const char *src, return_value_policy /* policy */, handle /* parent */) {
if (src == nullptr) return handle(Py_None).inc_ref();
return PyUnicode_FromString(src);
}
static handle cast(char src, return_value_policy /* policy */, handle /* parent */) {
char str[2] = { src, '\0' };
return PyUnicode_DecodeLatin1(str, 1, nullptr);
}
operator char*() { return success ? (char *) value.c_str() : nullptr; }
operator char&() { return value[0]; }
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
};
template <> class type_caster<wchar_t> : public type_caster<std::wstring> {
public:
bool load(handle src, bool convert) {
if (src.ptr() == Py_None) return true;
return type_caster<std::wstring>::load(src, convert);
}
static handle cast(const wchar_t *src, return_value_policy /* policy */, handle /* parent */) {
if (src == nullptr) return handle(Py_None).inc_ref();
return PyUnicode_FromWideChar(src, (ssize_t) wcslen(src));
}
static handle cast(wchar_t src, return_value_policy /* policy */, handle /* parent */) {
wchar_t wstr[2] = { src, L'\0' };
return PyUnicode_FromWideChar(wstr, 1);
}
operator wchar_t*() { return success ? (wchar_t *) value.c_str() : nullptr; }
operator wchar_t&() { return value[0]; }
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
};
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> {
typedef std::pair<T1, T2> type;
public:
bool load(handle src, bool convert) {
if (!src)
return false;
else if (!PyTuple_Check(src.ptr()) || PyTuple_Size(src.ptr()) != 2)
return false;
return first.load(PyTuple_GET_ITEM(src.ptr(), 0), convert) &&
second.load(PyTuple_GET_ITEM(src.ptr(), 1), convert);
}
static handle cast(const type &src, return_value_policy policy, handle parent) {
object o1 = object(type_caster<typename intrinsic_type<T1>::type>::cast(src.first, policy, parent), false);
object o2 = object(type_caster<typename intrinsic_type<T2>::type>::cast(src.second, policy, parent), false);
if (!o1 || !o2)
return handle();
tuple result(2);
PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr());
PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr());
return result.release();
}
static PYBIND11_DESCR name() {
return type_descr(
_("Tuple[") + type_caster<typename intrinsic_type<T1>::type>::name() +
_(", ") + type_caster<typename intrinsic_type<T2>::type>::name() + _("]"));
}
template <typename T> using cast_op_type = type;
operator type() {
return type(first .operator typename type_caster<typename intrinsic_type<T1>::type>::template cast_op_type<T1>(),
second.operator typename type_caster<typename intrinsic_type<T2>::type>::template cast_op_type<T2>());
}
protected:
type_caster<typename intrinsic_type<T1>::type> first;
type_caster<typename intrinsic_type<T2>::type> second;
};
template <typename... Tuple> class type_caster<std::tuple<Tuple...>> {
typedef std::tuple<Tuple...> type;
typedef std::tuple<typename intrinsic_type<Tuple>::type...> itype;
typedef std::tuple<args> args_type;
typedef std::tuple<args, kwargs> args_kwargs_type;
public:
enum { size = sizeof...(Tuple) };
static constexpr const bool has_kwargs = std::is_same<itype, args_kwargs_type>::value;
static constexpr const bool has_args = has_kwargs || std::is_same<itype, args_type>::value;
bool load(handle src, bool convert) {
if (!src || !PyTuple_Check(src.ptr()) || PyTuple_GET_SIZE(src.ptr()) != size)
return false;
return load(src, convert, typename make_index_sequence<sizeof...(Tuple)>::type());
}
template <typename T = itype, typename std::enable_if<
!std::is_same<T, args_type>::value &&
!std::is_same<T, args_kwargs_type>::value, int>::type = 0>
bool load_args(handle args, handle, bool convert) {
return load(args, convert, typename make_index_sequence<sizeof...(Tuple)>::type());
}
template <typename T = itype, typename std::enable_if<std::is_same<T, args_type>::value, int>::type = 0>
bool load_args(handle args, handle, bool convert) {
std::get<0>(value).load(args, convert);
return true;
}
template <typename T = itype, typename std::enable_if<std::is_same<T, args_kwargs_type>::value, int>::type = 0>
bool load_args(handle args, handle kwargs, bool convert) {
std::get<0>(value).load(args, convert);
std::get<1>(value).load(kwargs, convert);
return true;
}
static handle cast(const type &src, return_value_policy policy, handle parent) {
return cast(src, policy, parent, typename make_index_sequence<size>::type());
}
static PYBIND11_DESCR element_names() {
return detail::concat(type_caster<typename intrinsic_type<Tuple>::type>::name()...);
}
static PYBIND11_DESCR name() {
return type_descr(_("Tuple[") + element_names() + _("]"));
}
template <typename ReturnValue, typename Func> typename std::enable_if<!std::is_void<ReturnValue>::value, ReturnValue>::type call(Func &&f) {
return call<ReturnValue>(std::forward<Func>(f), typename make_index_sequence<sizeof...(Tuple)>::type());
}
template <typename ReturnValue, typename Func> typename std::enable_if<std::is_void<ReturnValue>::value, void_type>::type call(Func &&f) {
call<ReturnValue>(std::forward<Func>(f), typename make_index_sequence<sizeof...(Tuple)>::type());
return void_type();
}
template <typename T> using cast_op_type = type;
operator type() {
return cast(typename make_index_sequence<sizeof...(Tuple)>::type());
}
protected:
template <typename ReturnValue, typename Func, size_t ... Index> ReturnValue call(Func &&f, index_sequence<Index...>) {
return f(std::get<Index>(value)
.operator typename type_caster<typename intrinsic_type<Tuple>::type>::template cast_op_type<Tuple>()...);
}
template <size_t ... Index> type cast(index_sequence<Index...>) {
return type(std::get<Index>(value)
.operator typename type_caster<typename intrinsic_type<Tuple>::type>::template cast_op_type<Tuple>()...);
}
template <size_t ... Indices> bool load(handle src, bool convert, index_sequence<Indices...>) {
std::array<bool, size> success {{
std::get<Indices>(value).load(PyTuple_GET_ITEM(src.ptr(), Indices), convert)...
}};
(void) convert; /* avoid a warning when the tuple is empty */
for (bool r : success)
if (!r)
return false;
return true;
}
/* Implementation: Convert a C++ tuple into a Python tuple */
template <size_t ... Indices> static handle cast(const type &src, return_value_policy policy, handle parent, index_sequence<Indices...>) {
std::array<object, size> entries {{
object(type_caster<typename intrinsic_type<Tuple>::type>::cast(std::get<Indices>(src), policy, parent), false)...
}};
for (const auto &entry: entries)
if (!entry)
return handle();
tuple result(size);
int counter = 0;
for (auto & entry: entries)
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
return result.release();
}
protected:
std::tuple<type_caster<typename intrinsic_type<Tuple>::type>...> value;
};
/// Type caster for holder types like std::shared_ptr, etc.
template <typename type, typename holder_type> class type_caster_holder : public type_caster_base<type> {
public:
using type_caster_base<type>::cast;
using type_caster_base<type>::typeinfo;
using type_caster_base<type>::value;
using type_caster_base<type>::temp;
bool load(handle src, bool convert) {
if (!src || !typeinfo) {
return false;
} else if (src.ptr() == Py_None) {
value = nullptr;
return true;
} else if (PyType_IsSubtype(Py_TYPE(src.ptr()), typeinfo->type)) {
auto inst = (instance<type, holder_type> *) src.ptr();
value = (void *) inst->value;
holder = inst->holder;
return true;
}
if (convert) {
for (auto &converter : typeinfo->implicit_conversions) {
temp = object(converter(src.ptr(), typeinfo->type), false);
if (load(temp, false))
return true;
}
}
return false;
}
explicit operator type*() { return this->value; }
explicit operator type&() { return *(this->value); }
explicit operator holder_type*() { return &holder; }
// Workaround for Intel compiler bug
// see pybind11 issue 94
#if defined(__ICC) || defined(__INTEL_COMPILER)
operator holder_type&() { return holder; }
#else
explicit operator holder_type&() { return holder; }
#endif
static handle cast(const holder_type &src, return_value_policy, handle) {
return type_caster_generic::cast(
src.get(), return_value_policy::take_ownership, handle(),
src.get() ? &typeid(*src.get()) : nullptr, &typeid(type),
nullptr, nullptr, &src);
}
protected:
holder_type holder;
};
template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
template <typename type>
struct type_caster<type, typename std::enable_if<std::is_base_of<handle, type>::value>::type> {
public:
template <typename T = type, typename std::enable_if<!std::is_base_of<object, T>::value, int>::type = 0>
bool load(handle src, bool /* convert */) { value = type(src); return value.check(); }
template <typename T = type, typename std::enable_if<std::is_base_of<object, T>::value, int>::type = 0>
bool load(handle src, bool /* convert */) { value = type(src, true); return value.check(); }
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
return src.inc_ref();
}
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
};
// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
// must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T, typename SFINAE = void> struct move_is_plain_type : std::false_type {};
template <typename T> struct move_is_plain_type<T, typename std::enable_if<
!std::is_void<T>::value && !std::is_pointer<T>::value && !std::is_reference<T>::value && !std::is_const<T>::value
>::type> : std::true_type {};
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
template <typename T> struct move_always<T, typename std::enable_if<
move_is_plain_type<T>::value &&
!std::is_copy_constructible<T>::value && std::is_move_constructible<T>::value &&
std::is_same<decltype(std::declval<type_caster<T>>().operator T&()), T&>::value
>::type> : std::true_type {};
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
template <typename T> struct move_if_unreferenced<T, typename std::enable_if<
move_is_plain_type<T>::value &&
!move_always<T>::value && std::is_move_constructible<T>::value &&
std::is_same<decltype(std::declval<type_caster<T>>().operator T&()), T&>::value
>::type> : std::true_type {};
template <typename T> using move_never = std::integral_constant<bool, !move_always<T>::value && !move_if_unreferenced<T>::value>;
NAMESPACE_END(detail)
template <typename T> T cast(const handle &handle) {
typedef detail::type_caster<typename detail::intrinsic_type<T>::type> type_caster;
type_caster conv;
if (!conv.load(handle, true)) {
#if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
#else
throw cast_error("Unable to cast Python instance of type " +
(std::string) handle.get_type().str() + " to C++ type '" + type_id<T>() + "''");
#endif
}
return conv.operator typename type_caster::template cast_op_type<T>();
}
template <typename T> object cast(const T &value,
return_value_policy policy = return_value_policy::automatic_reference,
handle parent = handle()) {
if (policy == return_value_policy::automatic)
policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
else if (policy == return_value_policy::automatic_reference)
policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
return object(detail::type_caster<typename detail::intrinsic_type<T>::type>::cast(value, policy, parent), false);
}
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
template <> inline void handle::cast() const { return; }
template <typename T>
typename std::enable_if<detail::move_always<T>::value || detail::move_if_unreferenced<T>::value, T>::type move(object &&obj) {
if (obj.ref_count() > 1)
#if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
" (compile in debug mode for details)");
#else
throw cast_error("Unable to move from Python " + (std::string) obj.get_type().str() +
" instance to C++ " + type_id<T>() + " instance: instance has multiple references");
#endif
typedef detail::type_caster<T> type_caster;
type_caster conv;
if (!conv.load(obj, true))
#if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
#else
throw cast_error("Unable to cast Python instance of type " +
(std::string) obj.get_type().str() + " to C++ type '" + type_id<T>() + "''");
#endif
// Move into a temporary and return that, because the reference may be a local value of `conv`
T ret = std::move(conv.operator T&());
return ret;
}
// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
// object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T> typename std::enable_if<detail::move_always<T>::value, T>::type cast(object &&object) {
return move<T>(std::move(object));
}
template <typename T> typename std::enable_if<detail::move_if_unreferenced<T>::value, T>::type cast(object &&object) {
if (object.ref_count() > 1)
return cast<T>(object);
else
return move<T>(std::move(object));
}
template <typename T> typename std::enable_if<detail::move_never<T>::value, T>::type cast(object &&object) {
return cast<T>(object);
}
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
template <> inline void object::cast() const & { return; }
template <> inline void object::cast() && { return; }
template <return_value_policy policy = return_value_policy::automatic_reference,
typename... Args> tuple make_tuple(Args&&... args_) {
const size_t size = sizeof...(Args);
std::array<object, size> args {
{ object(detail::type_caster<typename detail::intrinsic_type<Args>::type>::cast(
std::forward<Args>(args_), policy, nullptr), false)... }
};
for (auto &arg_value : args) {
if (!arg_value) {
#if defined(NDEBUG)
throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
#else
throw cast_error("make_tuple(): unable to convert arguments of types '" +
(std::string) type_id<std::tuple<Args...>>() + "' to Python object");
#endif
}
}
tuple result(size);
int counter = 0;
for (auto &arg_value : args)
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
return result;
}
template <return_value_policy policy,
typename... Args> object handle::operator()(Args&&... args) const {
tuple args_tuple = pybind11::make_tuple<policy>(std::forward<Args>(args)...);
object result(PyObject_CallObject(m_ptr, args_tuple.ptr()), false);
if (!result)
throw error_already_set();
return result;
}
template <return_value_policy policy,
typename... Args> object handle::call(Args &&... args) const {
return operator()<policy>(std::forward<Args>(args)...);
}
inline object handle::operator()(detail::args_proxy args) const {
object result(PyObject_CallObject(m_ptr, args.ptr()), false);
if (!result)
throw error_already_set();
return result;
}
inline object handle::operator()(detail::args_proxy args, detail::kwargs_proxy kwargs) const {
object result(PyObject_Call(m_ptr, args.ptr(), kwargs.ptr()), false);
if (!result)
throw error_already_set();
return result;
}
#define PYBIND11_MAKE_OPAQUE(Type) \
namespace pybind11 { namespace detail { \
template<> class type_caster<Type> : public type_caster_base<Type> { }; \
}}
NAMESPACE_END(pybind11)