pybind11/tests/test_numpy_vectorize.cpp
Dean Moldovan 81511be341 Replace std::cout with py::print in tests
With this change both C++ and Python write to sys.stdout which resolves
the capture issues noted in #351. Therefore, the related workarounds are
removed.
2016-09-07 01:25:27 +02:00

42 lines
1.6 KiB
C++

/*
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
arguments
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include <pybind11/numpy.h>
double my_func(int x, float y, double z) {
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
return (float) x*y*z;
}
std::complex<double> my_func3(std::complex<double> c) {
return c * std::complex<double>(2.f);
}
test_initializer numpy_vectorize([](py::module &m) {
// Vectorize all arguments of a function (though non-vector arguments are also allowed)
m.def("vectorized_func", py::vectorize(my_func));
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
m.def("vectorized_func2",
[](py::array_t<int> x, py::array_t<float> y, float z) {
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
}
);
// Vectorize a complex-valued function
m.def("vectorized_func3", py::vectorize(my_func3));
/// Numpy function which only accepts specific data types
m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
});