pybind11/tests/test_issues.cpp
Jason Rhinelander c07ec31edf Don't construct unique_ptr around unowned pointers (#478)
If we need to initialize a holder around an unowned instance, and the
holder type is non-copyable (i.e. a unique_ptr), we currently construct
the holder type around the value pointer, but then never actually
destruct the holder: the holder destructor is called only for the
instance that actually has `inst->owned = true` set.

This seems no pointer, however, in creating such a holder around an
unowned instance: we never actually intend to use anything that the
unique_ptr gives us: and, in fact, do not want the unique_ptr (because
if it ever actually got destroyed, it would cause destruction of the
wrapped pointer, despite the fact that that wrapped pointer isn't
owned).

This commit changes the logic to only create a unique_ptr holder if we
actually own the instance, and to destruct via the constructed holder
whenever we have a constructed holder--which will now only be the case
for owned-unique-holder or shared-holder types.

Other changes include:

* Added test for non-movable holder constructor/destructor counts

The three alive assertions now pass, before #478 they fail with counts
of 2/2/1 respectively, because of the unique_ptr that we don't want and
don't destroy (because we don't *want* its destructor to run).

* Return cstats reference; fix ConstructStats doc

Small cleanup to the #478 test code, and fix to the ConstructStats
documentation (the static method definition should use `reference` not
`reference_internal`).

* Rename inst->constructed to inst->holder_constructed

This makes it clearer exactly what it's referring to.
2016-11-06 19:12:48 +01:00

356 lines
14 KiB
C++

/*
tests/test_issues.cpp -- collection of testcases for miscellaneous issues
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/stl.h>
#include <pybind11/operators.h>
#define TRACKERS(CLASS) CLASS() { print_default_created(this); } ~CLASS() { print_destroyed(this); }
struct NestABase { int value = -2; TRACKERS(NestABase) };
struct NestA : NestABase { int value = 3; NestA& operator+=(int i) { value += i; return *this; } TRACKERS(NestA) };
struct NestB { NestA a; int value = 4; NestB& operator-=(int i) { value -= i; return *this; } TRACKERS(NestB) };
struct NestC { NestB b; int value = 5; NestC& operator*=(int i) { value *= i; return *this; } TRACKERS(NestC) };
/// #393
class OpTest1 {};
class OpTest2 {};
OpTest1 operator+(const OpTest1 &, const OpTest1 &) {
py::print("Add OpTest1 with OpTest1");
return OpTest1();
}
OpTest2 operator+(const OpTest2 &, const OpTest2 &) {
py::print("Add OpTest2 with OpTest2");
return OpTest2();
}
OpTest2 operator+(const OpTest2 &, const OpTest1 &) {
py::print("Add OpTest2 with OpTest1");
return OpTest2();
}
// #461
class Dupe1 {
public:
Dupe1(int v) : v_{v} {}
int get_value() const { return v_; }
private:
int v_;
};
class Dupe2 {};
class Dupe3 {};
class DupeException : public std::runtime_error {};
// #478
template <typename T> class custom_unique_ptr {
public:
custom_unique_ptr() { print_default_created(this); }
custom_unique_ptr(T *ptr) : _ptr{ptr} { print_created(this, ptr); }
custom_unique_ptr(custom_unique_ptr<T> &&move) : _ptr{move._ptr} { move._ptr = nullptr; print_move_created(this); }
custom_unique_ptr &operator=(custom_unique_ptr<T> &&move) { print_move_assigned(this); if (_ptr) destruct_ptr(); _ptr = move._ptr; move._ptr = nullptr; return *this; }
custom_unique_ptr(const custom_unique_ptr<T> &) = delete;
void operator=(const custom_unique_ptr<T> &copy) = delete;
~custom_unique_ptr() { print_destroyed(this); if (_ptr) destruct_ptr(); }
private:
T *_ptr = nullptr;
void destruct_ptr() { delete _ptr; }
};
PYBIND11_DECLARE_HOLDER_TYPE(T, custom_unique_ptr<T>);
void init_issues(py::module &m) {
py::module m2 = m.def_submodule("issues");
#if !defined(_MSC_VER)
// Visual Studio 2015 currently cannot compile this test
// (see the comment in type_caster_base::make_copy_constructor)
// #70 compilation issue if operator new is not public
class NonConstructible { private: void *operator new(size_t bytes) throw(); };
py::class_<NonConstructible>(m, "Foo");
m2.def("getstmt", []() -> NonConstructible * { return nullptr; },
py::return_value_policy::reference);
#endif
// #137: const char* isn't handled properly
m2.def("print_cchar", [](const char *s) { return std::string(s); });
// #150: char bindings broken
m2.def("print_char", [](char c) { return std::string(1, c); });
// #159: virtual function dispatch has problems with similar-named functions
struct Base { virtual std::string dispatch() const {
/* for some reason MSVC2015 can't compile this if the function is pure virtual */
return {};
}; };
struct DispatchIssue : Base {
virtual std::string dispatch() const {
PYBIND11_OVERLOAD_PURE(std::string, Base, dispatch, /* no arguments */);
}
};
py::class_<Base, DispatchIssue>(m2, "DispatchIssue")
.def(py::init<>())
.def("dispatch", &Base::dispatch);
m2.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); });
struct Placeholder { int i; Placeholder(int i) : i(i) { } };
py::class_<Placeholder>(m2, "Placeholder")
.def(py::init<int>())
.def("__repr__", [](const Placeholder &p) { return "Placeholder[" + std::to_string(p.i) + "]"; });
// #171: Can't return reference wrappers (or STL datastructures containing them)
m2.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<Placeholder> p4) {
Placeholder *p1 = new Placeholder{1};
Placeholder *p2 = new Placeholder{2};
Placeholder *p3 = new Placeholder{3};
std::vector<std::reference_wrapper<Placeholder>> v;
v.push_back(std::ref(*p1));
v.push_back(std::ref(*p2));
v.push_back(std::ref(*p3));
v.push_back(p4);
return v;
});
// #181: iterator passthrough did not compile
m2.def("iterator_passthrough", [](py::iterator s) -> py::iterator {
return py::make_iterator(std::begin(s), std::end(s));
});
// #187: issue involving std::shared_ptr<> return value policy & garbage collection
struct ElementBase { virtual void foo() { } /* Force creation of virtual table */ };
struct ElementA : ElementBase {
ElementA(int v) : v(v) { }
int value() { return v; }
int v;
};
struct ElementList {
void add(std::shared_ptr<ElementBase> e) { l.push_back(e); }
std::vector<std::shared_ptr<ElementBase>> l;
};
py::class_<ElementBase, std::shared_ptr<ElementBase>> (m2, "ElementBase");
py::class_<ElementA, ElementBase, std::shared_ptr<ElementA>>(m2, "ElementA")
.def(py::init<int>())
.def("value", &ElementA::value);
py::class_<ElementList, std::shared_ptr<ElementList>>(m2, "ElementList")
.def(py::init<>())
.def("add", &ElementList::add)
.def("get", [](ElementList &el) {
py::list list;
for (auto &e : el.l)
list.append(py::cast(e));
return list;
});
// (no id): should not be able to pass 'None' to a reference argument
m2.def("get_element", [](ElementA &el) { return el.value(); });
// (no id): don't cast doubles to ints
m2.def("expect_float", [](float f) { return f; });
m2.def("expect_int", [](int i) { return i; });
try {
py::class_<Placeholder>(m2, "Placeholder");
throw std::logic_error("Expected an exception!");
} catch (std::runtime_error &) {
/* All good */
}
// Issue #283: __str__ called on uninitialized instance when constructor arguments invalid
class StrIssue {
public:
StrIssue(int i) : val{i} {}
StrIssue() : StrIssue(-1) {}
int value() const { return val; }
private:
int val;
};
py::class_<StrIssue> si(m2, "StrIssue");
si .def(py::init<int>())
.def(py::init<>())
.def("__str__", [](const StrIssue &si) { return "StrIssue[" + std::to_string(si.value()) + "]"; })
;
// Issue #328: first member in a class can't be used in operators
py::class_<NestABase>(m2, "NestABase").def(py::init<>()).def_readwrite("value", &NestABase::value);
py::class_<NestA>(m2, "NestA").def(py::init<>()).def(py::self += int())
.def("as_base", [](NestA &a) -> NestABase& { return (NestABase&) a; }, py::return_value_policy::reference_internal);
py::class_<NestB>(m2, "NestB").def(py::init<>()).def(py::self -= int()).def_readwrite("a", &NestB::a);
py::class_<NestC>(m2, "NestC").def(py::init<>()).def(py::self *= int()).def_readwrite("b", &NestC::b);
m2.def("get_NestA", [](const NestA &a) { return a.value; });
m2.def("get_NestB", [](const NestB &b) { return b.value; });
m2.def("get_NestC", [](const NestC &c) { return c.value; });
// Issue 389: r_v_p::move should fall-through to copy on non-movable objects
class MoveIssue1 {
public:
MoveIssue1(int v) : v{v} {}
MoveIssue1(const MoveIssue1 &c) { v = c.v; }
MoveIssue1(MoveIssue1 &&) = delete;
int v;
};
class MoveIssue2 {
public:
MoveIssue2(int v) : v{v} {}
MoveIssue2(MoveIssue2 &&) = default;
int v;
};
py::class_<MoveIssue1>(m2, "MoveIssue1").def(py::init<int>()).def_readwrite("value", &MoveIssue1::v);
py::class_<MoveIssue2>(m2, "MoveIssue2").def(py::init<int>()).def_readwrite("value", &MoveIssue2::v);
m2.def("get_moveissue1", [](int i) -> MoveIssue1 * { return new MoveIssue1(i); }, py::return_value_policy::move);
m2.def("get_moveissue2", [](int i) { return MoveIssue2(i); }, py::return_value_policy::move);
// Issues 392/397: overridding reference-returning functions
class OverrideTest {
public:
struct A { std::string value = "hi"; };
std::string v;
A a;
explicit OverrideTest(const std::string &v) : v{v} {}
virtual std::string str_value() { return v; }
virtual std::string &str_ref() { return v; }
virtual A A_value() { return a; }
virtual A &A_ref() { return a; }
};
class PyOverrideTest : public OverrideTest {
public:
using OverrideTest::OverrideTest;
std::string str_value() override { PYBIND11_OVERLOAD(std::string, OverrideTest, str_value); }
// Not allowed (uncommenting should hit a static_assert failure): we can't get a reference
// to a python numeric value, since we only copy values in the numeric type caster:
// std::string &str_ref() override { PYBIND11_OVERLOAD(std::string &, OverrideTest, str_ref); }
// But we can work around it like this:
private:
std::string _tmp;
std::string str_ref_helper() { PYBIND11_OVERLOAD(std::string, OverrideTest, str_ref); }
public:
std::string &str_ref() override { return _tmp = str_ref_helper(); }
A A_value() override { PYBIND11_OVERLOAD(A, OverrideTest, A_value); }
A &A_ref() override { PYBIND11_OVERLOAD(A &, OverrideTest, A_ref); }
};
py::class_<OverrideTest::A>(m2, "OverrideTest_A")
.def_readwrite("value", &OverrideTest::A::value);
py::class_<OverrideTest, PyOverrideTest>(m2, "OverrideTest")
.def(py::init<const std::string &>())
.def("str_value", &OverrideTest::str_value)
// .def("str_ref", &OverrideTest::str_ref)
.def("A_value", &OverrideTest::A_value)
.def("A_ref", &OverrideTest::A_ref);
/// Issue 393: need to return NotSupported to ensure correct arithmetic operator behavior
py::class_<OpTest1>(m2, "OpTest1")
.def(py::init<>())
.def(py::self + py::self);
py::class_<OpTest2>(m2, "OpTest2")
.def(py::init<>())
.def(py::self + py::self)
.def("__add__", [](const OpTest2& c2, const OpTest1& c1) { return c2 + c1; })
.def("__radd__", [](const OpTest2& c2, const OpTest1& c1) { return c2 + c1; });
// Issue 388: Can't make iterators via make_iterator() with different r/v policies
static std::vector<int> list = { 1, 2, 3 };
m2.def("make_iterator_1", []() { return py::make_iterator<py::return_value_policy::copy>(list); });
m2.def("make_iterator_2", []() { return py::make_iterator<py::return_value_policy::automatic>(list); });
static std::vector<std::string> nothrows;
// Issue 461: registering two things with the same name:
py::class_<Dupe1>(m2, "Dupe1")
.def("get_value", &Dupe1::get_value)
;
m2.def("dupe1_factory", [](int v) { return new Dupe1(v); });
py::class_<Dupe2>(m2, "Dupe2");
py::exception<DupeException>(m2, "DupeException");
try {
m2.def("Dupe1", [](int v) { return new Dupe1(v); });
nothrows.emplace_back("Dupe1");
}
catch (std::runtime_error &) {}
try {
py::class_<Dupe3>(m2, "dupe1_factory");
nothrows.emplace_back("dupe1_factory");
}
catch (std::runtime_error &) {}
try {
py::exception<Dupe3>(m2, "Dupe2");
nothrows.emplace_back("Dupe2");
}
catch (std::runtime_error &) {}
try {
m2.def("DupeException", []() { return 30; });
nothrows.emplace_back("DupeException1");
}
catch (std::runtime_error &) {}
try {
py::class_<DupeException>(m2, "DupeException");
nothrows.emplace_back("DupeException2");
}
catch (std::runtime_error &) {}
m2.def("dupe_exception_failures", []() {
py::list l;
for (auto &e : nothrows) l.append(py::cast(e));
return l;
});
/// Issue #471: shared pointer instance not dellocated
class SharedChild : public std::enable_shared_from_this<SharedChild> {
public:
SharedChild() { print_created(this); }
~SharedChild() { print_destroyed(this); }
};
class SharedParent {
public:
SharedParent() : child(std::make_shared<SharedChild>()) { }
const SharedChild &get_child() const { return *child; }
private:
std::shared_ptr<SharedChild> child;
};
py::class_<SharedChild, std::shared_ptr<SharedChild>>(m, "SharedChild");
py::class_<SharedParent, std::shared_ptr<SharedParent>>(m, "SharedParent")
.def(py::init<>())
.def("get_child", &SharedParent::get_child, py::return_value_policy::reference);
/// Issue/PR #478: unique ptrs constructed and freed without destruction
class SpecialHolderObj {
public:
int val = 0;
SpecialHolderObj *ch = nullptr;
SpecialHolderObj(int v, bool make_child = true) : val{v}, ch{make_child ? new SpecialHolderObj(val+1, false) : nullptr}
{ print_created(this, val); }
~SpecialHolderObj() { delete ch; print_destroyed(this); }
SpecialHolderObj *child() { return ch; }
};
py::class_<SpecialHolderObj, custom_unique_ptr<SpecialHolderObj>>(m, "SpecialHolderObj")
.def(py::init<int>())
.def("child", &SpecialHolderObj::child, pybind11::return_value_policy::reference_internal)
.def_readwrite("val", &SpecialHolderObj::val)
.def_static("holder_cstats", &ConstructorStats::get<custom_unique_ptr<SpecialHolderObj>>,
py::return_value_policy::reference)
;
};
// MSVC workaround: trying to use a lambda here crashes MSCV
test_initializer issues(&init_issues);