mirror of
https://github.com/pybind/pybind11.git
synced 2025-01-19 09:25:51 +00:00
e955753c1b
``` mypy.....................................................................Failed - hook id: mypy - exit code: 1 ubench/holder_comparison.py:12: error: Unused "type: ignore" comment, use narrower [import-not-found] instead of [import] code [unused-ignore] ```
145 lines
5.3 KiB
Python
145 lines
5.3 KiB
Python
"""Simple comparison of holder performances, relative to unique_ptr holder."""
|
|
|
|
# ruff: noqa
|
|
# This code has no unit tests.
|
|
# ruff cleanup deferred until the next time this code is actually used.
|
|
|
|
import collections
|
|
import sys
|
|
import time
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
import pybind11_ubench_holder_comparison as m # type: ignore[import-not-found]
|
|
|
|
number_bucket_pc = None
|
|
|
|
|
|
def pflush(*args: Any, **kwargs: Any) -> None:
|
|
print(*args, **kwargs)
|
|
# Using "file" here because it is the name of the built-in keyword argument.
|
|
file = kwargs.get("file", sys.stdout) # pylint: disable=redefined-builtin
|
|
file.flush() # file object must have a flush method.
|
|
|
|
|
|
def run(args: List[str]) -> None:
|
|
if not args:
|
|
size_exponent_min = 0
|
|
size_exponent_max = 16
|
|
size_exponent_step = 4
|
|
call_repetitions_first_pass = 100
|
|
call_repetitions_target_elapsed_secs = 0.1
|
|
num_samples = 10
|
|
selected_holder_type = "all"
|
|
else:
|
|
assert len(args) == 7, (
|
|
"size_exponent_min size_exponent_max size_exponent_step"
|
|
" call_repetitions_first_pass call_repetitions_target_elapsed_secs"
|
|
" num_samples selected_holder_type"
|
|
)
|
|
size_exponent_min = int(args[0])
|
|
size_exponent_max = int(args[1])
|
|
size_exponent_step = int(args[2])
|
|
call_repetitions_first_pass = int(args[3])
|
|
call_repetitions_target_elapsed_secs = float(args[4])
|
|
num_samples = int(args[5])
|
|
selected_holder_type = args[6]
|
|
pflush(
|
|
"command-line arguments:",
|
|
size_exponent_min,
|
|
size_exponent_max,
|
|
size_exponent_step,
|
|
call_repetitions_first_pass,
|
|
"%.3f" % call_repetitions_target_elapsed_secs,
|
|
num_samples,
|
|
selected_holder_type,
|
|
)
|
|
pflush("sizeof_smart_holder:", m.sizeof_smart_holder())
|
|
|
|
def find_call_repetitions(
|
|
callable: Callable[[int], float],
|
|
time_delta_floor: float = 1.0e-6,
|
|
target_elapsed_secs_multiplier: float = 1.05, # Empirical.
|
|
target_elapsed_secs_tolerance: float = 0.05,
|
|
max_iterations: int = 100,
|
|
) -> int:
|
|
td_target = (
|
|
call_repetitions_target_elapsed_secs * target_elapsed_secs_multiplier
|
|
)
|
|
crd = call_repetitions_first_pass
|
|
for _ in range(max_iterations):
|
|
td = callable(crd)
|
|
crd = max(1, int(td_target * crd / max(td, time_delta_floor)))
|
|
if abs(td - td_target) / td_target < target_elapsed_secs_tolerance:
|
|
return crd
|
|
raise RuntimeError("find_call_repetitions failure: max_iterations exceeded.")
|
|
|
|
for size_exponent in range(
|
|
size_exponent_min, size_exponent_max + 1, size_exponent_step
|
|
):
|
|
data_size = 2**size_exponent
|
|
pflush(data_size, "data_size")
|
|
ratios: Dict[str, List[float]] = collections.defaultdict(list)
|
|
call_repetitions = None
|
|
for _ in range(num_samples):
|
|
row_0 = None
|
|
for nb_label, nb_type in [
|
|
("up", m.number_bucket_up),
|
|
("sp", m.number_bucket_sp),
|
|
("pu", m.number_bucket_pu),
|
|
("sh", m.number_bucket_sh),
|
|
("pc", number_bucket_pc),
|
|
]:
|
|
if nb_label == "pc" and nb_type is None:
|
|
continue
|
|
if selected_holder_type != "all" and nb_label != selected_holder_type:
|
|
continue
|
|
nb1 = nb_type(data_size) # type: ignore[misc]
|
|
nb2 = nb_type(data_size) # type: ignore[misc]
|
|
|
|
def many_sum(call_repetitions: int) -> float:
|
|
assert int(round(nb1.sum())) == data_size
|
|
t0 = time.time()
|
|
for _ in range(call_repetitions):
|
|
nb1.sum()
|
|
return time.time() - t0
|
|
|
|
def many_add(call_repetitions: int) -> float:
|
|
assert nb1.add(nb2) == data_size
|
|
t0 = time.time()
|
|
for _ in range(call_repetitions):
|
|
nb1.add(nb2)
|
|
return time.time() - t0
|
|
|
|
if call_repetitions is None:
|
|
call_repetitions = find_call_repetitions(many_sum)
|
|
pflush(call_repetitions, "call_repetitions")
|
|
|
|
td_sum = many_sum(call_repetitions)
|
|
td_add = many_add(call_repetitions)
|
|
row = [td_sum, td_add]
|
|
if row_0 is None:
|
|
pflush(" Sum Add ratS ratA")
|
|
row_0 = row
|
|
else:
|
|
for curr, prev in zip(row, row_0): # type: ignore[unreachable]
|
|
if prev:
|
|
rat = curr / prev
|
|
else:
|
|
rat = -1
|
|
row.append(curr / prev)
|
|
ratios[nb_label + "_ratS"].append(row[-2])
|
|
ratios[nb_label + "_ratA"].append(row[-1])
|
|
pflush(nb_label, " ".join(["%.3f" % v for v in row]))
|
|
pflush(" Min Mean Max")
|
|
for key, rat in ratios.items():
|
|
print(
|
|
key,
|
|
"{:5.3f} {:5.3f} {:5.3f}".format(
|
|
min(rat), sum(rat) / len(rat), max(rat)
|
|
),
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run(args=sys.argv[1:])
|