pybind11/tests/test_virtual_functions.cpp
Wenzel Jakob 1ffce7422d Get pybind11 test suite to compile on the Intel compiler (more or less..)
- ICPC can't handle the NCVirt trampoline which returns a non-copyable
  type, which is likely due to a constexpr/SFINAE issue. This disables
  the test on that compiler so that at least the rest can be tested.
2016-08-25 01:43:35 +02:00

314 lines
12 KiB
C++

/*
tests/test_virtual_functions.cpp -- overriding virtual functions from Python
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/functional.h>
/* This is an example class that we'll want to be able to extend from Python */
class ExampleVirt {
public:
ExampleVirt(int state) : state(state) { print_created(this, state); }
ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); }
ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; }
~ExampleVirt() { print_destroyed(this); }
virtual int run(int value) {
std::cout << "Original implementation of ExampleVirt::run(state=" << state
<< ", value=" << value << ")" << std::endl;
return state + value;
}
virtual bool run_bool() = 0;
virtual void pure_virtual() = 0;
private:
int state;
};
/* This is a wrapper class that must be generated */
class PyExampleVirt : public ExampleVirt {
public:
using ExampleVirt::ExampleVirt; /* Inherit constructors */
virtual int run(int value) {
/* Generate wrapping code that enables native function overloading */
PYBIND11_OVERLOAD(
int, /* Return type */
ExampleVirt, /* Parent class */
run, /* Name of function */
value /* Argument(s) */
);
}
virtual bool run_bool() {
PYBIND11_OVERLOAD_PURE(
bool, /* Return type */
ExampleVirt, /* Parent class */
run_bool, /* Name of function */
/* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */
);
}
virtual void pure_virtual() {
PYBIND11_OVERLOAD_PURE(
void, /* Return type */
ExampleVirt, /* Parent class */
pure_virtual, /* Name of function */
/* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */
);
}
};
class NonCopyable {
public:
NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); }
NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); }
NonCopyable(const NonCopyable &) = delete;
NonCopyable() = delete;
void operator=(const NonCopyable &) = delete;
void operator=(NonCopyable &&) = delete;
std::string get_value() const {
if (value) return std::to_string(*value); else return "(null)";
}
~NonCopyable() { print_destroyed(this); }
private:
std::unique_ptr<int> value;
};
// This is like the above, but is both copy and movable. In effect this means it should get moved
// when it is not referenced elsewhere, but copied if it is still referenced.
class Movable {
public:
Movable(int a, int b) : value{a+b} { print_created(this, a, b); }
Movable(const Movable &m) { value = m.value; print_copy_created(this); }
Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); }
std::string get_value() const { return std::to_string(value); }
~Movable() { print_destroyed(this); }
private:
int value;
};
class NCVirt {
public:
virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); }
virtual Movable get_movable(int a, int b) = 0;
std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); }
std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); }
};
class NCVirtTrampoline : public NCVirt {
#if !defined(__INTEL_COMPILER)
virtual NonCopyable get_noncopyable(int a, int b) {
PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b);
}
#endif
virtual Movable get_movable(int a, int b) {
PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b);
}
};
int runExampleVirt(ExampleVirt *ex, int value) {
return ex->run(value);
}
bool runExampleVirtBool(ExampleVirt* ex) {
return ex->run_bool();
}
void runExampleVirtVirtual(ExampleVirt *ex) {
ex->pure_virtual();
}
// Inheriting virtual methods. We do two versions here: the repeat-everything version and the
// templated trampoline versions mentioned in docs/advanced.rst.
//
// These base classes are exactly the same, but we technically need distinct
// classes for this example code because we need to be able to bind them
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
// multiple python classes).
class A_Repeat {
#define A_METHODS \
public: \
virtual int unlucky_number() = 0; \
virtual std::string say_something(unsigned times) { \
std::string s = ""; \
for (unsigned i = 0; i < times; ++i) \
s += "hi"; \
return s; \
}
A_METHODS
};
class B_Repeat : public A_Repeat {
#define B_METHODS \
public: \
int unlucky_number() override { return 13; } \
std::string say_something(unsigned times) override { \
return "B says hi " + std::to_string(times) + " times"; \
} \
virtual double lucky_number() { return 7.0; }
B_METHODS
};
class C_Repeat : public B_Repeat {
#define C_METHODS \
public: \
int unlucky_number() override { return 4444; } \
double lucky_number() override { return 888; }
C_METHODS
};
class D_Repeat : public C_Repeat {
#define D_METHODS // Nothing overridden.
D_METHODS
};
// Base classes for templated inheritance trampolines. Identical to the repeat-everything version:
class A_Tpl { A_METHODS };
class B_Tpl : public A_Tpl { B_METHODS };
class C_Tpl : public B_Tpl { C_METHODS };
class D_Tpl : public C_Tpl { D_METHODS };
// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
class PyA_Repeat : public A_Repeat {
public:
using A_Repeat::A_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); }
};
class PyB_Repeat : public B_Repeat {
public:
using B_Repeat::B_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); }
};
class PyC_Repeat : public C_Repeat {
public:
using C_Repeat::C_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); }
};
class PyD_Repeat : public D_Repeat {
public:
using D_Repeat::D_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); }
};
// Inheritance approach 2: templated trampoline classes.
//
// Advantages:
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
// methods (repeat).
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
// properly inherit constructors.
//
// Disadvantage:
// - the compiler must still generate and compile 14 different methods (more, even, than the 11
// required for the repeat approach) instead of the 6 required for MI. (If there was no pure
// method (or no pure method override), the number would drop down to the same 11 as the repeat
// approach).
template <class Base = A_Tpl>
class PyA_Tpl : public Base {
public:
using Base::Base; // Inherit constructors
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); }
};
template <class Base = B_Tpl>
class PyB_Tpl : public PyA_Tpl<Base> {
public:
using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); }
double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); }
};
// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
/*
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
public:
using PyB_Tpl<Base>::PyB_Tpl;
};
template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
public:
using PyC_Tpl<Base>::PyC_Tpl;
};
*/
void initialize_inherited_virtuals(py::module &m) {
// Method 1: repeat
py::class_<A_Repeat, std::unique_ptr<A_Repeat>, PyA_Repeat>(m, "A_Repeat")
.def(py::init<>())
.def("unlucky_number", &A_Repeat::unlucky_number)
.def("say_something", &A_Repeat::say_something);
py::class_<B_Repeat, std::unique_ptr<B_Repeat>, PyB_Repeat>(m, "B_Repeat", py::base<A_Repeat>())
.def(py::init<>())
.def("lucky_number", &B_Repeat::lucky_number);
py::class_<C_Repeat, std::unique_ptr<C_Repeat>, PyC_Repeat>(m, "C_Repeat", py::base<B_Repeat>())
.def(py::init<>());
py::class_<D_Repeat, std::unique_ptr<D_Repeat>, PyD_Repeat>(m, "D_Repeat", py::base<C_Repeat>())
.def(py::init<>());
// Method 2: Templated trampolines
py::class_<A_Tpl, std::unique_ptr<A_Tpl>, PyA_Tpl<>>(m, "A_Tpl")
.def(py::init<>())
.def("unlucky_number", &A_Tpl::unlucky_number)
.def("say_something", &A_Tpl::say_something);
py::class_<B_Tpl, std::unique_ptr<B_Tpl>, PyB_Tpl<>>(m, "B_Tpl", py::base<A_Tpl>())
.def(py::init<>())
.def("lucky_number", &B_Tpl::lucky_number);
py::class_<C_Tpl, std::unique_ptr<C_Tpl>, PyB_Tpl<C_Tpl>>(m, "C_Tpl", py::base<B_Tpl>())
.def(py::init<>());
py::class_<D_Tpl, std::unique_ptr<D_Tpl>, PyB_Tpl<D_Tpl>>(m, "D_Tpl", py::base<C_Tpl>())
.def(py::init<>());
};
void init_ex_virtual_functions(py::module &m) {
/* Important: indicate the trampoline class PyExampleVirt using the third
argument to py::class_. The second argument with the unique pointer
is simply the default holder type used by pybind11. */
py::class_<ExampleVirt, std::unique_ptr<ExampleVirt>, PyExampleVirt>(m, "ExampleVirt")
.def(py::init<int>())
/* Reference original class in function definitions */
.def("run", &ExampleVirt::run)
.def("run_bool", &ExampleVirt::run_bool)
.def("pure_virtual", &ExampleVirt::pure_virtual);
py::class_<NonCopyable>(m, "NonCopyable")
.def(py::init<int, int>());
py::class_<Movable>(m, "Movable")
.def(py::init<int, int>());
#if !defined(__INTEL_COMPILER)
py::class_<NCVirt, std::unique_ptr<NCVirt>, NCVirtTrampoline>(m, "NCVirt")
.def(py::init<>())
.def("get_noncopyable", &NCVirt::get_noncopyable)
.def("get_movable", &NCVirt::get_movable)
.def("print_nc", &NCVirt::print_nc)
.def("print_movable", &NCVirt::print_movable);
#endif
m.def("runExampleVirt", &runExampleVirt);
m.def("runExampleVirtBool", &runExampleVirtBool);
m.def("runExampleVirtVirtual", &runExampleVirtVirtual);
m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>);
initialize_inherited_virtuals(m);
}