pybind11/docs/advanced/cast/stl.rst
myd7349 9b815ad2e9 Docs: Fix several errors of examples from the doc (#592)
* [Doc] Fix several errors of examples from the doc

* Add missing operator def.

* Added missing `()`

* Add missing `namespace`.
2017-01-13 11:15:52 +01:00

155 lines
5.2 KiB
ReStructuredText

STL containers
##############
Automatic conversion
====================
When including the additional header file :file:`pybind11/stl.h`, conversions
between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
and the Python ``list``, ``set`` and ``dict`` data structures are automatically
enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
out of the box with just the core :file:`pybind11/pybind11.h` header.
The major downside of these implicit conversions is that containers must be
converted (i.e. copied) on every Python->C++ and C++->Python transition, which
can have implications on the program semantics and performance. Please read the
next sections for more details and alternative approaches that avoid this.
.. note::
Arbitrary nesting of any of these types is possible.
.. seealso::
The file :file:`tests/test_python_types.cpp` contains a complete
example that demonstrates how to pass STL data types in more detail.
.. _opaque:
Making opaque types
===================
pybind11 heavily relies on a template matching mechanism to convert parameters
and return values that are constructed from STL data types such as vectors,
linked lists, hash tables, etc. This even works in a recursive manner, for
instance to deal with lists of hash maps of pairs of elementary and custom
types, etc.
However, a fundamental limitation of this approach is that internal conversions
between Python and C++ types involve a copy operation that prevents
pass-by-reference semantics. What does this mean?
Suppose we bind the following function
.. code-block:: cpp
void append_1(std::vector<int> &v) {
v.push_back(1);
}
and call it from Python, the following happens:
.. code-block:: pycon
>>> v = [5, 6]
>>> append_1(v)
>>> print(v)
[5, 6]
As you can see, when passing STL data structures by reference, modifications
are not propagated back the Python side. A similar situation arises when
exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
functions:
.. code-block:: cpp
/* ... definition ... */
class MyClass {
std::vector<int> contents;
};
/* ... binding code ... */
py::class_<MyClass>(m, "MyClass")
.def(py::init<>())
.def_readwrite("contents", &MyClass::contents);
In this case, properties can be read and written in their entirety. However, an
``append`` operation involving such a list type has no effect:
.. code-block:: pycon
>>> m = MyClass()
>>> m.contents = [5, 6]
>>> print(m.contents)
[5, 6]
>>> m.contents.append(7)
>>> print(m.contents)
[5, 6]
Finally, the involved copy operations can be costly when dealing with very
large lists. To deal with all of the above situations, pybind11 provides a
macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
conversion machinery of types, thus rendering them *opaque*. The contents of
opaque objects are never inspected or extracted, hence they *can* be passed by
reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
the declaration
.. code-block:: cpp
PYBIND11_MAKE_OPAQUE(std::vector<int>);
before any binding code (e.g. invocations to ``class_::def()``, etc.). This
macro must be specified at the top level (and outside of any namespaces), since
it instantiates a partial template overload. If your binding code consists of
multiple compilation units, it must be present in every file preceding any
usage of ``std::vector<int>``. Opaque types must also have a corresponding
``class_`` declaration to associate them with a name in Python, and to define a
set of available operations, e.g.:
.. code-block:: cpp
py::class_<std::vector<int>>(m, "IntVector")
.def(py::init<>())
.def("clear", &std::vector<int>::clear)
.def("pop_back", &std::vector<int>::pop_back)
.def("__len__", [](const std::vector<int> &v) { return v.size(); })
.def("__iter__", [](std::vector<int> &v) {
return py::make_iterator(v.begin(), v.end());
}, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
// ....
The ability to expose STL containers as native Python objects is a fairly
common request, hence pybind11 also provides an optional header file named
:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
to match the behavior of their native Python counterparts as much as possible.
The following example showcases usage of :file:`pybind11/stl_bind.h`:
.. code-block:: cpp
// Don't forget this
#include <pybind11/stl_bind.h>
PYBIND11_MAKE_OPAQUE(std::vector<int>);
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
// ...
// later in binding code:
py::bind_vector<std::vector<int>>(m, "VectorInt");
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
Please take a look at the :ref:`macro_notes` before using the
``PYBIND11_MAKE_OPAQUE`` macro.
.. seealso::
The file :file:`tests/test_opaque_types.cpp` contains a complete
example that demonstrates how to create and expose opaque types using
pybind11 in more detail.
The file :file:`tests/test_stl_binders.cpp` shows how to use the
convenience STL container wrappers.