mirror of
https://github.com/pybind/pybind11.git
synced 2024-12-01 01:17:10 +00:00
c715c70e0a
The `py::args` or `py::kwargs` arguments aren't properly referenced when added to the function_call arguments list: their reference counts drop to zero if the first (non-converting) function call fails, which means they might be cleaned up before the second pass call runs. This commit adds a couple of extra `object`s to the `function_call` where we can stash a reference to them when needed to tie their lifetime to the function_call object's lifetime. (Credit to YannickJadoul for catching and proposing a fix in #1223).
2061 lines
84 KiB
C++
2061 lines
84 KiB
C++
/*
|
|
pybind11/cast.h: Partial template specializations to cast between
|
|
C++ and Python types
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "pytypes.h"
|
|
#include "detail/typeid.h"
|
|
#include "detail/descr.h"
|
|
#include "detail/internals.h"
|
|
#include <array>
|
|
#include <limits>
|
|
#include <tuple>
|
|
|
|
#if defined(PYBIND11_CPP17)
|
|
# if defined(__has_include)
|
|
# if __has_include(<string_view>)
|
|
# define PYBIND11_HAS_STRING_VIEW
|
|
# endif
|
|
# elif defined(_MSC_VER)
|
|
# define PYBIND11_HAS_STRING_VIEW
|
|
# endif
|
|
#endif
|
|
#ifdef PYBIND11_HAS_STRING_VIEW
|
|
#include <string_view>
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
/// A life support system for temporary objects created by `type_caster::load()`.
|
|
/// Adding a patient will keep it alive up until the enclosing function returns.
|
|
class loader_life_support {
|
|
public:
|
|
/// A new patient frame is created when a function is entered
|
|
loader_life_support() {
|
|
get_internals().loader_patient_stack.push_back(nullptr);
|
|
}
|
|
|
|
/// ... and destroyed after it returns
|
|
~loader_life_support() {
|
|
auto &stack = get_internals().loader_patient_stack;
|
|
if (stack.empty())
|
|
pybind11_fail("loader_life_support: internal error");
|
|
|
|
auto ptr = stack.back();
|
|
stack.pop_back();
|
|
Py_CLEAR(ptr);
|
|
|
|
// A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
|
|
if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
|
|
stack.shrink_to_fit();
|
|
}
|
|
|
|
/// This can only be used inside a pybind11-bound function, either by `argument_loader`
|
|
/// at argument preparation time or by `py::cast()` at execution time.
|
|
PYBIND11_NOINLINE static void add_patient(handle h) {
|
|
auto &stack = get_internals().loader_patient_stack;
|
|
if (stack.empty())
|
|
throw cast_error("When called outside a bound function, py::cast() cannot "
|
|
"do Python -> C++ conversions which require the creation "
|
|
"of temporary values");
|
|
|
|
auto &list_ptr = stack.back();
|
|
if (list_ptr == nullptr) {
|
|
list_ptr = PyList_New(1);
|
|
if (!list_ptr)
|
|
pybind11_fail("loader_life_support: error allocating list");
|
|
PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
|
|
} else {
|
|
auto result = PyList_Append(list_ptr, h.ptr());
|
|
if (result == -1)
|
|
pybind11_fail("loader_life_support: error adding patient");
|
|
}
|
|
}
|
|
};
|
|
|
|
// Gets the cache entry for the given type, creating it if necessary. The return value is the pair
|
|
// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
|
|
// just created.
|
|
inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
|
|
|
|
// Populates a just-created cache entry.
|
|
PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
|
|
std::vector<PyTypeObject *> check;
|
|
for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
|
|
check.push_back((PyTypeObject *) parent.ptr());
|
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
|
for (size_t i = 0; i < check.size(); i++) {
|
|
auto type = check[i];
|
|
// Ignore Python2 old-style class super type:
|
|
if (!PyType_Check((PyObject *) type)) continue;
|
|
|
|
// Check `type` in the current set of registered python types:
|
|
auto it = type_dict.find(type);
|
|
if (it != type_dict.end()) {
|
|
// We found a cache entry for it, so it's either pybind-registered or has pre-computed
|
|
// pybind bases, but we have to make sure we haven't already seen the type(s) before: we
|
|
// want to follow Python/virtual C++ rules that there should only be one instance of a
|
|
// common base.
|
|
for (auto *tinfo : it->second) {
|
|
// NB: Could use a second set here, rather than doing a linear search, but since
|
|
// having a large number of immediate pybind11-registered types seems fairly
|
|
// unlikely, that probably isn't worthwhile.
|
|
bool found = false;
|
|
for (auto *known : bases) {
|
|
if (known == tinfo) { found = true; break; }
|
|
}
|
|
if (!found) bases.push_back(tinfo);
|
|
}
|
|
}
|
|
else if (type->tp_bases) {
|
|
// It's some python type, so keep follow its bases classes to look for one or more
|
|
// registered types
|
|
if (i + 1 == check.size()) {
|
|
// When we're at the end, we can pop off the current element to avoid growing
|
|
// `check` when adding just one base (which is typical--i.e. when there is no
|
|
// multiple inheritance)
|
|
check.pop_back();
|
|
i--;
|
|
}
|
|
for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
|
|
check.push_back((PyTypeObject *) parent.ptr());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will
|
|
* be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
|
|
* derived class that uses single inheritance. Will contain as many types as required for a Python
|
|
* class that uses multiple inheritance to inherit (directly or indirectly) from multiple
|
|
* pybind-registered classes. Will be empty if neither the type nor any base classes are
|
|
* pybind-registered.
|
|
*
|
|
* The value is cached for the lifetime of the Python type.
|
|
*/
|
|
inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
|
|
auto ins = all_type_info_get_cache(type);
|
|
if (ins.second)
|
|
// New cache entry: populate it
|
|
all_type_info_populate(type, ins.first->second);
|
|
|
|
return ins.first->second;
|
|
}
|
|
|
|
/**
|
|
* Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any
|
|
* ancestors are pybind11-registered. Throws an exception if there are multiple bases--use
|
|
* `all_type_info` instead if you want to support multiple bases.
|
|
*/
|
|
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
|
|
auto &bases = all_type_info(type);
|
|
if (bases.size() == 0)
|
|
return nullptr;
|
|
if (bases.size() > 1)
|
|
pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
|
|
return bases.front();
|
|
}
|
|
|
|
inline detail::type_info *get_local_type_info(const std::type_index &tp) {
|
|
auto &locals = registered_local_types_cpp();
|
|
auto it = locals.find(tp);
|
|
if (it != locals.end())
|
|
return it->second;
|
|
return nullptr;
|
|
}
|
|
|
|
inline detail::type_info *get_global_type_info(const std::type_index &tp) {
|
|
auto &types = get_internals().registered_types_cpp;
|
|
auto it = types.find(tp);
|
|
if (it != types.end())
|
|
return it->second;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
|
|
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
|
|
bool throw_if_missing = false) {
|
|
if (auto ltype = get_local_type_info(tp))
|
|
return ltype;
|
|
if (auto gtype = get_global_type_info(tp))
|
|
return gtype;
|
|
|
|
if (throw_if_missing) {
|
|
std::string tname = tp.name();
|
|
detail::clean_type_id(tname);
|
|
pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
|
|
detail::type_info *type_info = get_type_info(tp, throw_if_missing);
|
|
return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
|
|
}
|
|
|
|
struct value_and_holder {
|
|
instance *inst;
|
|
size_t index;
|
|
const detail::type_info *type;
|
|
void **vh;
|
|
|
|
// Main constructor for a found value/holder:
|
|
value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
|
|
inst{i}, index{index}, type{type},
|
|
vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
|
|
{}
|
|
|
|
// Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
|
|
value_and_holder() : inst{nullptr} {}
|
|
|
|
// Used for past-the-end iterator
|
|
value_and_holder(size_t index) : index{index} {}
|
|
|
|
template <typename V = void> V *&value_ptr() const {
|
|
return reinterpret_cast<V *&>(vh[0]);
|
|
}
|
|
// True if this `value_and_holder` has a non-null value pointer
|
|
explicit operator bool() const { return value_ptr(); }
|
|
|
|
template <typename H> H &holder() const {
|
|
return reinterpret_cast<H &>(vh[1]);
|
|
}
|
|
bool holder_constructed() const {
|
|
return inst->simple_layout
|
|
? inst->simple_holder_constructed
|
|
: inst->nonsimple.status[index] & instance::status_holder_constructed;
|
|
}
|
|
void set_holder_constructed(bool v = true) {
|
|
if (inst->simple_layout)
|
|
inst->simple_holder_constructed = v;
|
|
else if (v)
|
|
inst->nonsimple.status[index] |= instance::status_holder_constructed;
|
|
else
|
|
inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
|
|
}
|
|
bool instance_registered() const {
|
|
return inst->simple_layout
|
|
? inst->simple_instance_registered
|
|
: inst->nonsimple.status[index] & instance::status_instance_registered;
|
|
}
|
|
void set_instance_registered(bool v = true) {
|
|
if (inst->simple_layout)
|
|
inst->simple_instance_registered = v;
|
|
else if (v)
|
|
inst->nonsimple.status[index] |= instance::status_instance_registered;
|
|
else
|
|
inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
|
|
}
|
|
};
|
|
|
|
// Container for accessing and iterating over an instance's values/holders
|
|
struct values_and_holders {
|
|
private:
|
|
instance *inst;
|
|
using type_vec = std::vector<detail::type_info *>;
|
|
const type_vec &tinfo;
|
|
|
|
public:
|
|
values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
|
|
|
|
struct iterator {
|
|
private:
|
|
instance *inst;
|
|
const type_vec *types;
|
|
value_and_holder curr;
|
|
friend struct values_and_holders;
|
|
iterator(instance *inst, const type_vec *tinfo)
|
|
: inst{inst}, types{tinfo},
|
|
curr(inst /* instance */,
|
|
types->empty() ? nullptr : (*types)[0] /* type info */,
|
|
0, /* vpos: (non-simple types only): the first vptr comes first */
|
|
0 /* index */)
|
|
{}
|
|
// Past-the-end iterator:
|
|
iterator(size_t end) : curr(end) {}
|
|
public:
|
|
bool operator==(const iterator &other) { return curr.index == other.curr.index; }
|
|
bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
|
|
iterator &operator++() {
|
|
if (!inst->simple_layout)
|
|
curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
|
|
++curr.index;
|
|
curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
|
|
return *this;
|
|
}
|
|
value_and_holder &operator*() { return curr; }
|
|
value_and_holder *operator->() { return &curr; }
|
|
};
|
|
|
|
iterator begin() { return iterator(inst, &tinfo); }
|
|
iterator end() { return iterator(tinfo.size()); }
|
|
|
|
iterator find(const type_info *find_type) {
|
|
auto it = begin(), endit = end();
|
|
while (it != endit && it->type != find_type) ++it;
|
|
return it;
|
|
}
|
|
|
|
size_t size() { return tinfo.size(); }
|
|
};
|
|
|
|
/**
|
|
* Extracts C++ value and holder pointer references from an instance (which may contain multiple
|
|
* values/holders for python-side multiple inheritance) that match the given type. Throws an error
|
|
* if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If
|
|
* `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
|
|
* regardless of type (and the resulting .type will be nullptr).
|
|
*
|
|
* The returned object should be short-lived: in particular, it must not outlive the called-upon
|
|
* instance.
|
|
*/
|
|
PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
|
|
// Optimize common case:
|
|
if (!find_type || Py_TYPE(this) == find_type->type)
|
|
return value_and_holder(this, find_type, 0, 0);
|
|
|
|
detail::values_and_holders vhs(this);
|
|
auto it = vhs.find(find_type);
|
|
if (it != vhs.end())
|
|
return *it;
|
|
|
|
if (!throw_if_missing)
|
|
return value_and_holder();
|
|
|
|
#if defined(NDEBUG)
|
|
pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
|
|
"type is not a pybind11 base of the given instance "
|
|
"(compile in debug mode for type details)");
|
|
#else
|
|
pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
|
|
std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
|
|
std::string(Py_TYPE(this)->tp_name) + "' instance");
|
|
#endif
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline void instance::allocate_layout() {
|
|
auto &tinfo = all_type_info(Py_TYPE(this));
|
|
|
|
const size_t n_types = tinfo.size();
|
|
|
|
if (n_types == 0)
|
|
pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
|
|
|
|
simple_layout =
|
|
n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
|
|
|
|
// Simple path: no python-side multiple inheritance, and a small-enough holder
|
|
if (simple_layout) {
|
|
simple_value_holder[0] = nullptr;
|
|
simple_holder_constructed = false;
|
|
simple_instance_registered = false;
|
|
}
|
|
else { // multiple base types or a too-large holder
|
|
// Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
|
|
// [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
|
|
// values that tracks whether each associated holder has been initialized. Each [block] is
|
|
// padded, if necessary, to an integer multiple of sizeof(void *).
|
|
size_t space = 0;
|
|
for (auto t : tinfo) {
|
|
space += 1; // value pointer
|
|
space += t->holder_size_in_ptrs; // holder instance
|
|
}
|
|
size_t flags_at = space;
|
|
space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
|
|
|
|
// Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
|
|
// in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6
|
|
// they default to using pymalloc, which is designed to be efficient for small allocations
|
|
// like the one we're doing here; in earlier versions (and for larger allocations) they are
|
|
// just wrappers around malloc.
|
|
#if PY_VERSION_HEX >= 0x03050000
|
|
nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
|
|
if (!nonsimple.values_and_holders) throw std::bad_alloc();
|
|
#else
|
|
nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
|
|
if (!nonsimple.values_and_holders) throw std::bad_alloc();
|
|
std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
|
|
#endif
|
|
nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
|
|
}
|
|
owned = true;
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline void instance::deallocate_layout() {
|
|
if (!simple_layout)
|
|
PyMem_Free(nonsimple.values_and_holders);
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
|
|
handle type = detail::get_type_handle(tp, false);
|
|
if (!type)
|
|
return false;
|
|
return isinstance(obj, type);
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline std::string error_string() {
|
|
if (!PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
|
|
return "Unknown internal error occurred";
|
|
}
|
|
|
|
error_scope scope; // Preserve error state
|
|
|
|
std::string errorString;
|
|
if (scope.type) {
|
|
errorString += handle(scope.type).attr("__name__").cast<std::string>();
|
|
errorString += ": ";
|
|
}
|
|
if (scope.value)
|
|
errorString += (std::string) str(scope.value);
|
|
|
|
PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
|
|
|
|
#if PY_MAJOR_VERSION >= 3
|
|
if (scope.trace != nullptr)
|
|
PyException_SetTraceback(scope.value, scope.trace);
|
|
#endif
|
|
|
|
#if !defined(PYPY_VERSION)
|
|
if (scope.trace) {
|
|
PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
|
|
|
|
/* Get the deepest trace possible */
|
|
while (trace->tb_next)
|
|
trace = trace->tb_next;
|
|
|
|
PyFrameObject *frame = trace->tb_frame;
|
|
errorString += "\n\nAt:\n";
|
|
while (frame) {
|
|
int lineno = PyFrame_GetLineNumber(frame);
|
|
errorString +=
|
|
" " + handle(frame->f_code->co_filename).cast<std::string>() +
|
|
"(" + std::to_string(lineno) + "): " +
|
|
handle(frame->f_code->co_name).cast<std::string>() + "\n";
|
|
frame = frame->f_back;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return errorString;
|
|
}
|
|
|
|
PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
|
|
auto &instances = get_internals().registered_instances;
|
|
auto range = instances.equal_range(ptr);
|
|
for (auto it = range.first; it != range.second; ++it) {
|
|
for (auto vh : values_and_holders(it->second)) {
|
|
if (vh.type == type)
|
|
return handle((PyObject *) it->second);
|
|
}
|
|
}
|
|
return handle();
|
|
}
|
|
|
|
inline PyThreadState *get_thread_state_unchecked() {
|
|
#if defined(PYPY_VERSION)
|
|
return PyThreadState_GET();
|
|
#elif PY_VERSION_HEX < 0x03000000
|
|
return _PyThreadState_Current;
|
|
#elif PY_VERSION_HEX < 0x03050000
|
|
return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
|
|
#elif PY_VERSION_HEX < 0x03050200
|
|
return (PyThreadState*) _PyThreadState_Current.value;
|
|
#else
|
|
return _PyThreadState_UncheckedGet();
|
|
#endif
|
|
}
|
|
|
|
// Forward declarations
|
|
inline void keep_alive_impl(handle nurse, handle patient);
|
|
inline PyObject *make_new_instance(PyTypeObject *type);
|
|
|
|
class type_caster_generic {
|
|
public:
|
|
PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
|
|
: typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
|
|
|
|
type_caster_generic(const type_info *typeinfo)
|
|
: typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
|
|
|
|
bool load(handle src, bool convert) {
|
|
return load_impl<type_caster_generic>(src, convert);
|
|
}
|
|
|
|
PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
|
|
const detail::type_info *tinfo,
|
|
void *(*copy_constructor)(const void *),
|
|
void *(*move_constructor)(const void *),
|
|
const void *existing_holder = nullptr) {
|
|
if (!tinfo) // no type info: error will be set already
|
|
return handle();
|
|
|
|
void *src = const_cast<void *>(_src);
|
|
if (src == nullptr)
|
|
return none().release();
|
|
|
|
auto it_instances = get_internals().registered_instances.equal_range(src);
|
|
for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
|
|
for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
|
|
if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
|
|
return handle((PyObject *) it_i->second).inc_ref();
|
|
}
|
|
}
|
|
|
|
auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
|
|
auto wrapper = reinterpret_cast<instance *>(inst.ptr());
|
|
wrapper->owned = false;
|
|
void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
|
|
|
|
switch (policy) {
|
|
case return_value_policy::automatic:
|
|
case return_value_policy::take_ownership:
|
|
valueptr = src;
|
|
wrapper->owned = true;
|
|
break;
|
|
|
|
case return_value_policy::automatic_reference:
|
|
case return_value_policy::reference:
|
|
valueptr = src;
|
|
wrapper->owned = false;
|
|
break;
|
|
|
|
case return_value_policy::copy:
|
|
if (copy_constructor)
|
|
valueptr = copy_constructor(src);
|
|
else
|
|
throw cast_error("return_value_policy = copy, but the "
|
|
"object is non-copyable!");
|
|
wrapper->owned = true;
|
|
break;
|
|
|
|
case return_value_policy::move:
|
|
if (move_constructor)
|
|
valueptr = move_constructor(src);
|
|
else if (copy_constructor)
|
|
valueptr = copy_constructor(src);
|
|
else
|
|
throw cast_error("return_value_policy = move, but the "
|
|
"object is neither movable nor copyable!");
|
|
wrapper->owned = true;
|
|
break;
|
|
|
|
case return_value_policy::reference_internal:
|
|
valueptr = src;
|
|
wrapper->owned = false;
|
|
keep_alive_impl(inst, parent);
|
|
break;
|
|
|
|
default:
|
|
throw cast_error("unhandled return_value_policy: should not happen!");
|
|
}
|
|
|
|
tinfo->init_instance(wrapper, existing_holder);
|
|
|
|
return inst.release();
|
|
}
|
|
|
|
// Base methods for generic caster; there are overridden in copyable_holder_caster
|
|
void load_value(value_and_holder &&v_h) {
|
|
auto *&vptr = v_h.value_ptr();
|
|
// Lazy allocation for unallocated values:
|
|
if (vptr == nullptr) {
|
|
auto *type = v_h.type ? v_h.type : typeinfo;
|
|
vptr = type->operator_new(type->type_size);
|
|
}
|
|
value = vptr;
|
|
}
|
|
bool try_implicit_casts(handle src, bool convert) {
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
type_caster_generic sub_caster(*cast.first);
|
|
if (sub_caster.load(src, convert)) {
|
|
value = cast.second(sub_caster.value);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
bool try_direct_conversions(handle src) {
|
|
for (auto &converter : *typeinfo->direct_conversions) {
|
|
if (converter(src.ptr(), value))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
void check_holder_compat() {}
|
|
|
|
PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
|
|
auto caster = type_caster_generic(ti);
|
|
if (caster.load(src, false))
|
|
return caster.value;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to load with foreign typeinfo, if available. Used when there is no
|
|
/// native typeinfo, or when the native one wasn't able to produce a value.
|
|
PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
|
|
constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
|
|
const auto pytype = src.get_type();
|
|
if (!hasattr(pytype, local_key))
|
|
return false;
|
|
|
|
type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
|
|
// Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
|
|
if (foreign_typeinfo->module_local_load == &local_load
|
|
|| (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
|
|
return false;
|
|
|
|
if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
|
|
value = result;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
|
|
// bits of code between here and copyable_holder_caster where the two classes need different
|
|
// logic (without having to resort to virtual inheritance).
|
|
template <typename ThisT>
|
|
PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
|
|
if (!src) return false;
|
|
if (!typeinfo) return try_load_foreign_module_local(src);
|
|
if (src.is_none()) {
|
|
// Defer accepting None to other overloads (if we aren't in convert mode):
|
|
if (!convert) return false;
|
|
value = nullptr;
|
|
return true;
|
|
}
|
|
|
|
auto &this_ = static_cast<ThisT &>(*this);
|
|
this_.check_holder_compat();
|
|
|
|
PyTypeObject *srctype = Py_TYPE(src.ptr());
|
|
|
|
// Case 1: If src is an exact type match for the target type then we can reinterpret_cast
|
|
// the instance's value pointer to the target type:
|
|
if (srctype == typeinfo->type) {
|
|
this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
|
|
return true;
|
|
}
|
|
// Case 2: We have a derived class
|
|
else if (PyType_IsSubtype(srctype, typeinfo->type)) {
|
|
auto &bases = all_type_info(srctype);
|
|
bool no_cpp_mi = typeinfo->simple_type;
|
|
|
|
// Case 2a: the python type is a Python-inherited derived class that inherits from just
|
|
// one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
|
|
// the right type and we can use reinterpret_cast.
|
|
// (This is essentially the same as case 2b, but because not using multiple inheritance
|
|
// is extremely common, we handle it specially to avoid the loop iterator and type
|
|
// pointer lookup overhead)
|
|
if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
|
|
this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
|
|
return true;
|
|
}
|
|
// Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if
|
|
// we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
|
|
// can safely reinterpret_cast to the relevant pointer.
|
|
else if (bases.size() > 1) {
|
|
for (auto base : bases) {
|
|
if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
|
|
this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
|
|
// in the registered bases, above, so try implicit casting (needed for proper C++ casting
|
|
// when MI is involved).
|
|
if (this_.try_implicit_casts(src, convert))
|
|
return true;
|
|
}
|
|
|
|
// Perform an implicit conversion
|
|
if (convert) {
|
|
for (auto &converter : typeinfo->implicit_conversions) {
|
|
auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
|
|
if (load_impl<ThisT>(temp, false)) {
|
|
loader_life_support::add_patient(temp);
|
|
return true;
|
|
}
|
|
}
|
|
if (this_.try_direct_conversions(src))
|
|
return true;
|
|
}
|
|
|
|
// Failed to match local typeinfo. Try again with global.
|
|
if (typeinfo->module_local) {
|
|
if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
|
|
typeinfo = gtype;
|
|
return load(src, false);
|
|
}
|
|
}
|
|
|
|
// Global typeinfo has precedence over foreign module_local
|
|
return try_load_foreign_module_local(src);
|
|
}
|
|
|
|
|
|
// Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
|
|
// isn't needed or can't be used. If the type is unknown, sets the error and returns a pair
|
|
// with .second = nullptr. (p.first = nullptr is not an error: it becomes None).
|
|
PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
|
|
const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
|
|
if (auto *tpi = get_type_info(cast_type))
|
|
return {src, const_cast<const type_info *>(tpi)};
|
|
|
|
// Not found, set error:
|
|
std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
|
|
detail::clean_type_id(tname);
|
|
std::string msg = "Unregistered type : " + tname;
|
|
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
const type_info *typeinfo = nullptr;
|
|
const std::type_info *cpptype = nullptr;
|
|
void *value = nullptr;
|
|
};
|
|
|
|
/**
|
|
* Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster
|
|
* needs to provide `operator T*()` and `operator T&()` operators.
|
|
*
|
|
* If the type supports moving the value away via an `operator T&&() &&` method, it should use
|
|
* `movable_cast_op_type` instead.
|
|
*/
|
|
template <typename T>
|
|
using cast_op_type =
|
|
conditional_t<std::is_pointer<remove_reference_t<T>>::value,
|
|
typename std::add_pointer<intrinsic_t<T>>::type,
|
|
typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
|
|
|
|
/**
|
|
* Determine suitable casting operator for a type caster with a movable value. Such a type caster
|
|
* needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be
|
|
* called in appropriate contexts where the value can be moved rather than copied.
|
|
*
|
|
* These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
|
|
*/
|
|
template <typename T>
|
|
using movable_cast_op_type =
|
|
conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
|
|
typename std::add_pointer<intrinsic_t<T>>::type,
|
|
conditional_t<std::is_rvalue_reference<T>::value,
|
|
typename std::add_rvalue_reference<intrinsic_t<T>>::type,
|
|
typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
|
|
|
|
// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
|
|
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
|
|
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
|
|
|
|
// Specialization for types that appear to be copy constructible but also look like stl containers
|
|
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
|
|
// so, copy constructability depends on whether the value_type is copy constructible.
|
|
template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
|
|
std::is_copy_constructible<Container>,
|
|
std::is_same<typename Container::value_type &, typename Container::reference>
|
|
>::value>> : is_copy_constructible<typename Container::value_type> {};
|
|
|
|
#if !defined(PYBIND11_CPP17)
|
|
// Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
|
|
// two types aren't themselves copy constructible).
|
|
template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
|
|
: all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
|
|
#endif
|
|
|
|
/// Generic type caster for objects stored on the heap
|
|
template <typename type> class type_caster_base : public type_caster_generic {
|
|
using itype = intrinsic_t<type>;
|
|
public:
|
|
static PYBIND11_DESCR name() { return type_descr(_<type>()); }
|
|
|
|
type_caster_base() : type_caster_base(typeid(type)) { }
|
|
explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
|
|
|
|
static handle cast(const itype &src, return_value_policy policy, handle parent) {
|
|
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
|
|
policy = return_value_policy::copy;
|
|
return cast(&src, policy, parent);
|
|
}
|
|
|
|
static handle cast(itype &&src, return_value_policy, handle parent) {
|
|
return cast(&src, return_value_policy::move, parent);
|
|
}
|
|
|
|
// Returns a (pointer, type_info) pair taking care of necessary RTTI type lookup for a
|
|
// polymorphic type. If the instance isn't derived, returns the non-RTTI base version.
|
|
template <typename T = itype, enable_if_t<std::is_polymorphic<T>::value, int> = 0>
|
|
static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
|
|
const void *vsrc = src;
|
|
auto &cast_type = typeid(itype);
|
|
const std::type_info *instance_type = nullptr;
|
|
if (vsrc) {
|
|
instance_type = &typeid(*src);
|
|
if (!same_type(cast_type, *instance_type)) {
|
|
// This is a base pointer to a derived type; if it is a pybind11-registered type, we
|
|
// can get the correct derived pointer (which may be != base pointer) by a
|
|
// dynamic_cast to most derived type:
|
|
if (auto *tpi = get_type_info(*instance_type))
|
|
return {dynamic_cast<const void *>(src), const_cast<const type_info *>(tpi)};
|
|
}
|
|
}
|
|
// Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
|
|
// don't do a cast
|
|
return type_caster_generic::src_and_type(vsrc, cast_type, instance_type);
|
|
}
|
|
|
|
// Non-polymorphic type, so no dynamic casting; just call the generic version directly
|
|
template <typename T = itype, enable_if_t<!std::is_polymorphic<T>::value, int> = 0>
|
|
static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
|
|
return type_caster_generic::src_and_type(src, typeid(itype));
|
|
}
|
|
|
|
static handle cast(const itype *src, return_value_policy policy, handle parent) {
|
|
auto st = src_and_type(src);
|
|
return type_caster_generic::cast(
|
|
st.first, policy, parent, st.second,
|
|
make_copy_constructor(src), make_move_constructor(src));
|
|
}
|
|
|
|
static handle cast_holder(const itype *src, const void *holder) {
|
|
auto st = src_and_type(src);
|
|
return type_caster_generic::cast(
|
|
st.first, return_value_policy::take_ownership, {}, st.second,
|
|
nullptr, nullptr, holder);
|
|
}
|
|
|
|
template <typename T> using cast_op_type = cast_op_type<T>;
|
|
|
|
operator itype*() { return (type *) value; }
|
|
operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
|
|
|
|
protected:
|
|
using Constructor = void *(*)(const void *);
|
|
|
|
/* Only enabled when the types are {copy,move}-constructible *and* when the type
|
|
does not have a private operator new implementation. */
|
|
template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
|
|
static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
|
|
return [](const void *arg) -> void * {
|
|
return new T(*reinterpret_cast<const T *>(arg));
|
|
};
|
|
}
|
|
|
|
template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
|
|
static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
|
|
return [](const void *arg) -> void * {
|
|
return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
|
|
};
|
|
}
|
|
|
|
static Constructor make_copy_constructor(...) { return nullptr; }
|
|
static Constructor make_move_constructor(...) { return nullptr; }
|
|
};
|
|
|
|
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
|
|
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
|
|
|
|
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
|
|
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
|
|
return caster.operator typename make_caster<T>::template cast_op_type<T>();
|
|
}
|
|
template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
|
|
cast_op(make_caster<T> &&caster) {
|
|
return std::move(caster).operator
|
|
typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
|
|
}
|
|
|
|
template <typename type> class type_caster<std::reference_wrapper<type>> {
|
|
private:
|
|
using caster_t = make_caster<type>;
|
|
caster_t subcaster;
|
|
using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
|
|
static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
|
|
"std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
|
|
public:
|
|
bool load(handle src, bool convert) { return subcaster.load(src, convert); }
|
|
static PYBIND11_DESCR name() { return caster_t::name(); }
|
|
static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
|
|
// It is definitely wrong to take ownership of this pointer, so mask that rvp
|
|
if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
|
|
policy = return_value_policy::automatic_reference;
|
|
return caster_t::cast(&src.get(), policy, parent);
|
|
}
|
|
template <typename T> using cast_op_type = std::reference_wrapper<type>;
|
|
operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
|
|
};
|
|
|
|
#define PYBIND11_TYPE_CASTER(type, py_name) \
|
|
protected: \
|
|
type value; \
|
|
public: \
|
|
static PYBIND11_DESCR name() { return type_descr(py_name); } \
|
|
template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
|
|
static handle cast(T_ *src, return_value_policy policy, handle parent) { \
|
|
if (!src) return none().release(); \
|
|
if (policy == return_value_policy::take_ownership) { \
|
|
auto h = cast(std::move(*src), policy, parent); delete src; return h; \
|
|
} else { \
|
|
return cast(*src, policy, parent); \
|
|
} \
|
|
} \
|
|
operator type*() { return &value; } \
|
|
operator type&() { return value; } \
|
|
operator type&&() && { return std::move(value); } \
|
|
template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
|
|
|
|
|
|
template <typename CharT> using is_std_char_type = any_of<
|
|
std::is_same<CharT, char>, /* std::string */
|
|
std::is_same<CharT, char16_t>, /* std::u16string */
|
|
std::is_same<CharT, char32_t>, /* std::u32string */
|
|
std::is_same<CharT, wchar_t> /* std::wstring */
|
|
>;
|
|
|
|
template <typename T>
|
|
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
|
|
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
|
|
using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
|
|
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
|
|
public:
|
|
|
|
bool load(handle src, bool convert) {
|
|
py_type py_value;
|
|
|
|
if (!src)
|
|
return false;
|
|
|
|
if (std::is_floating_point<T>::value) {
|
|
if (convert || PyFloat_Check(src.ptr()))
|
|
py_value = (py_type) PyFloat_AsDouble(src.ptr());
|
|
else
|
|
return false;
|
|
} else if (PyFloat_Check(src.ptr())) {
|
|
return false;
|
|
} else if (std::is_unsigned<py_type>::value) {
|
|
py_value = as_unsigned<py_type>(src.ptr());
|
|
} else { // signed integer:
|
|
py_value = sizeof(T) <= sizeof(long)
|
|
? (py_type) PyLong_AsLong(src.ptr())
|
|
: (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
|
|
}
|
|
|
|
bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
|
|
if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
|
|
(py_value < (py_type) std::numeric_limits<T>::min() ||
|
|
py_value > (py_type) std::numeric_limits<T>::max()))) {
|
|
bool type_error = py_err && PyErr_ExceptionMatches(
|
|
#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
|
|
PyExc_SystemError
|
|
#else
|
|
PyExc_TypeError
|
|
#endif
|
|
);
|
|
PyErr_Clear();
|
|
if (type_error && convert && PyNumber_Check(src.ptr())) {
|
|
auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
|
|
? PyNumber_Float(src.ptr())
|
|
: PyNumber_Long(src.ptr()));
|
|
PyErr_Clear();
|
|
return load(tmp, false);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
value = (T) py_value;
|
|
return true;
|
|
}
|
|
|
|
static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
|
|
if (std::is_floating_point<T>::value) {
|
|
return PyFloat_FromDouble((double) src);
|
|
} else if (sizeof(T) <= sizeof(long)) {
|
|
if (std::is_signed<T>::value)
|
|
return PyLong_FromLong((long) src);
|
|
else
|
|
return PyLong_FromUnsignedLong((unsigned long) src);
|
|
} else {
|
|
if (std::is_signed<T>::value)
|
|
return PyLong_FromLongLong((long long) src);
|
|
else
|
|
return PyLong_FromUnsignedLongLong((unsigned long long) src);
|
|
}
|
|
}
|
|
|
|
PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
|
|
};
|
|
|
|
template<typename T> struct void_caster {
|
|
public:
|
|
bool load(handle src, bool) {
|
|
if (src && src.is_none())
|
|
return true;
|
|
return false;
|
|
}
|
|
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
|
|
return none().inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(T, _("None"));
|
|
};
|
|
|
|
template <> class type_caster<void_type> : public void_caster<void_type> {};
|
|
|
|
template <> class type_caster<void> : public type_caster<void_type> {
|
|
public:
|
|
using type_caster<void_type>::cast;
|
|
|
|
bool load(handle h, bool) {
|
|
if (!h) {
|
|
return false;
|
|
} else if (h.is_none()) {
|
|
value = nullptr;
|
|
return true;
|
|
}
|
|
|
|
/* Check if this is a capsule */
|
|
if (isinstance<capsule>(h)) {
|
|
value = reinterpret_borrow<capsule>(h);
|
|
return true;
|
|
}
|
|
|
|
/* Check if this is a C++ type */
|
|
auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
|
|
if (bases.size() == 1) { // Only allowing loading from a single-value type
|
|
value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
|
|
return true;
|
|
}
|
|
|
|
/* Fail */
|
|
return false;
|
|
}
|
|
|
|
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
|
|
if (ptr)
|
|
return capsule(ptr).release();
|
|
else
|
|
return none().inc_ref();
|
|
}
|
|
|
|
template <typename T> using cast_op_type = void*&;
|
|
operator void *&() { return value; }
|
|
static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
|
|
private:
|
|
void *value = nullptr;
|
|
};
|
|
|
|
template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
|
|
|
|
template <> class type_caster<bool> {
|
|
public:
|
|
bool load(handle src, bool convert) {
|
|
if (!src) return false;
|
|
else if (src.ptr() == Py_True) { value = true; return true; }
|
|
else if (src.ptr() == Py_False) { value = false; return true; }
|
|
else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
|
|
// (allow non-implicit conversion for numpy booleans)
|
|
|
|
Py_ssize_t res = -1;
|
|
if (src.is_none()) {
|
|
res = 0; // None is implicitly converted to False
|
|
}
|
|
#if defined(PYPY_VERSION)
|
|
// On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
|
|
else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
|
|
res = PyObject_IsTrue(src.ptr());
|
|
}
|
|
#else
|
|
// Alternate approach for CPython: this does the same as the above, but optimized
|
|
// using the CPython API so as to avoid an unneeded attribute lookup.
|
|
else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
|
|
if (PYBIND11_NB_BOOL(tp_as_number)) {
|
|
res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
|
|
}
|
|
}
|
|
#endif
|
|
if (res == 0 || res == 1) {
|
|
value = (bool) res;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
|
|
return handle(src ? Py_True : Py_False).inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(bool, _("bool"));
|
|
};
|
|
|
|
// Helper class for UTF-{8,16,32} C++ stl strings:
|
|
template <typename StringType, bool IsView = false> struct string_caster {
|
|
using CharT = typename StringType::value_type;
|
|
|
|
// Simplify life by being able to assume standard char sizes (the standard only guarantees
|
|
// minimums, but Python requires exact sizes)
|
|
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
|
|
static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
|
|
static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
|
|
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
|
|
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
|
|
"Unsupported wchar_t size != 2/4");
|
|
static constexpr size_t UTF_N = 8 * sizeof(CharT);
|
|
|
|
bool load(handle src, bool) {
|
|
#if PY_MAJOR_VERSION < 3
|
|
object temp;
|
|
#endif
|
|
handle load_src = src;
|
|
if (!src) {
|
|
return false;
|
|
} else if (!PyUnicode_Check(load_src.ptr())) {
|
|
#if PY_MAJOR_VERSION >= 3
|
|
return load_bytes(load_src);
|
|
#else
|
|
if (sizeof(CharT) == 1) {
|
|
return load_bytes(load_src);
|
|
}
|
|
|
|
// The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
|
|
if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
|
|
return false;
|
|
|
|
temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
|
|
if (!temp) { PyErr_Clear(); return false; }
|
|
load_src = temp;
|
|
#endif
|
|
}
|
|
|
|
object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
|
|
load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
|
|
if (!utfNbytes) { PyErr_Clear(); return false; }
|
|
|
|
const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
|
|
size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
|
|
if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
|
|
value = StringType(buffer, length);
|
|
|
|
// If we're loading a string_view we need to keep the encoded Python object alive:
|
|
if (IsView)
|
|
loader_life_support::add_patient(utfNbytes);
|
|
|
|
return true;
|
|
}
|
|
|
|
static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
|
|
const char *buffer = reinterpret_cast<const char *>(src.data());
|
|
ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
|
|
handle s = decode_utfN(buffer, nbytes);
|
|
if (!s) throw error_already_set();
|
|
return s;
|
|
}
|
|
|
|
PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
|
|
|
|
private:
|
|
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
|
|
#if !defined(PYPY_VERSION)
|
|
return
|
|
UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
|
|
UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
|
|
PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
|
|
#else
|
|
// PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
|
|
// sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
|
|
// non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
|
|
// passing the encoding as a string value, which works properly:
|
|
return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
|
|
#endif
|
|
}
|
|
|
|
// When loading into a std::string or char*, accept a bytes object as-is (i.e.
|
|
// without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
|
|
// which supports loading a unicode from a str, doesn't take this path.
|
|
template <typename C = CharT>
|
|
bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
|
|
if (PYBIND11_BYTES_CHECK(src.ptr())) {
|
|
// We were passed a Python 3 raw bytes; accept it into a std::string or char*
|
|
// without any encoding attempt.
|
|
const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
|
|
if (bytes) {
|
|
value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename C = CharT>
|
|
bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
|
|
};
|
|
|
|
template <typename CharT, class Traits, class Allocator>
|
|
struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
|
|
: string_caster<std::basic_string<CharT, Traits, Allocator>> {};
|
|
|
|
#ifdef PYBIND11_HAS_STRING_VIEW
|
|
template <typename CharT, class Traits>
|
|
struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
|
|
: string_caster<std::basic_string_view<CharT, Traits>, true> {};
|
|
#endif
|
|
|
|
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
|
|
// ability to use None as a nullptr char* (which the string caster doesn't allow).
|
|
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
|
|
using StringType = std::basic_string<CharT>;
|
|
using StringCaster = type_caster<StringType>;
|
|
StringCaster str_caster;
|
|
bool none = false;
|
|
CharT one_char = 0;
|
|
public:
|
|
bool load(handle src, bool convert) {
|
|
if (!src) return false;
|
|
if (src.is_none()) {
|
|
// Defer accepting None to other overloads (if we aren't in convert mode):
|
|
if (!convert) return false;
|
|
none = true;
|
|
return true;
|
|
}
|
|
return str_caster.load(src, convert);
|
|
}
|
|
|
|
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
|
|
if (src == nullptr) return pybind11::none().inc_ref();
|
|
return StringCaster::cast(StringType(src), policy, parent);
|
|
}
|
|
|
|
static handle cast(CharT src, return_value_policy policy, handle parent) {
|
|
if (std::is_same<char, CharT>::value) {
|
|
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
|
|
if (!s) throw error_already_set();
|
|
return s;
|
|
}
|
|
return StringCaster::cast(StringType(1, src), policy, parent);
|
|
}
|
|
|
|
operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
|
|
operator CharT&() {
|
|
if (none)
|
|
throw value_error("Cannot convert None to a character");
|
|
|
|
auto &value = static_cast<StringType &>(str_caster);
|
|
size_t str_len = value.size();
|
|
if (str_len == 0)
|
|
throw value_error("Cannot convert empty string to a character");
|
|
|
|
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
|
|
// is too high, and one for multiple unicode characters (caught later), so we need to figure
|
|
// out how long the first encoded character is in bytes to distinguish between these two
|
|
// errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
|
|
// can fit into a single char value.
|
|
if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
|
|
unsigned char v0 = static_cast<unsigned char>(value[0]);
|
|
size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
|
|
(v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
|
|
(v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
|
|
4; // 0b11110xxx - start of 4-byte sequence
|
|
|
|
if (char0_bytes == str_len) {
|
|
// If we have a 128-255 value, we can decode it into a single char:
|
|
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
|
|
one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
|
|
return one_char;
|
|
}
|
|
// Otherwise we have a single character, but it's > U+00FF
|
|
throw value_error("Character code point not in range(0x100)");
|
|
}
|
|
}
|
|
|
|
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
|
|
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
|
|
// string was too long" error).
|
|
else if (StringCaster::UTF_N == 16 && str_len == 2) {
|
|
one_char = static_cast<CharT>(value[0]);
|
|
if (one_char >= 0xD800 && one_char < 0xE000)
|
|
throw value_error("Character code point not in range(0x10000)");
|
|
}
|
|
|
|
if (str_len != 1)
|
|
throw value_error("Expected a character, but multi-character string found");
|
|
|
|
one_char = value[0];
|
|
return one_char;
|
|
}
|
|
|
|
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
|
|
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
|
|
};
|
|
|
|
// Base implementation for std::tuple and std::pair
|
|
template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
|
|
using type = Tuple<Ts...>;
|
|
static constexpr auto size = sizeof...(Ts);
|
|
using indices = make_index_sequence<size>;
|
|
public:
|
|
|
|
bool load(handle src, bool convert) {
|
|
if (!isinstance<sequence>(src))
|
|
return false;
|
|
const auto seq = reinterpret_borrow<sequence>(src);
|
|
if (seq.size() != size)
|
|
return false;
|
|
return load_impl(seq, convert, indices{});
|
|
}
|
|
|
|
template <typename T>
|
|
static handle cast(T &&src, return_value_policy policy, handle parent) {
|
|
return cast_impl(std::forward<T>(src), policy, parent, indices{});
|
|
}
|
|
|
|
static PYBIND11_DESCR name() {
|
|
return type_descr(_("Tuple[") + detail::concat(make_caster<Ts>::name()...) + _("]"));
|
|
}
|
|
|
|
template <typename T> using cast_op_type = type;
|
|
|
|
operator type() & { return implicit_cast(indices{}); }
|
|
operator type() && { return std::move(*this).implicit_cast(indices{}); }
|
|
|
|
protected:
|
|
template <size_t... Is>
|
|
type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
|
|
template <size_t... Is>
|
|
type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
|
|
|
|
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
|
|
|
|
template <size_t... Is>
|
|
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
|
|
for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
|
|
if (!r)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Implementation: Convert a C++ tuple into a Python tuple */
|
|
template <typename T, size_t... Is>
|
|
static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
|
|
std::array<object, size> entries{{
|
|
reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
|
|
}};
|
|
for (const auto &entry: entries)
|
|
if (!entry)
|
|
return handle();
|
|
tuple result(size);
|
|
int counter = 0;
|
|
for (auto & entry: entries)
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
|
|
return result.release();
|
|
}
|
|
|
|
Tuple<make_caster<Ts>...> subcasters;
|
|
};
|
|
|
|
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
|
|
: public tuple_caster<std::pair, T1, T2> {};
|
|
|
|
template <typename... Ts> class type_caster<std::tuple<Ts...>>
|
|
: public tuple_caster<std::tuple, Ts...> {};
|
|
|
|
/// Helper class which abstracts away certain actions. Users can provide specializations for
|
|
/// custom holders, but it's only necessary if the type has a non-standard interface.
|
|
template <typename T>
|
|
struct holder_helper {
|
|
static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
|
|
};
|
|
|
|
/// Type caster for holder types like std::shared_ptr, etc.
|
|
template <typename type, typename holder_type>
|
|
struct copyable_holder_caster : public type_caster_base<type> {
|
|
public:
|
|
using base = type_caster_base<type>;
|
|
static_assert(std::is_base_of<base, type_caster<type>>::value,
|
|
"Holder classes are only supported for custom types");
|
|
using base::base;
|
|
using base::cast;
|
|
using base::typeinfo;
|
|
using base::value;
|
|
|
|
bool load(handle src, bool convert) {
|
|
return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
|
|
}
|
|
|
|
explicit operator type*() { return this->value; }
|
|
explicit operator type&() { return *(this->value); }
|
|
explicit operator holder_type*() { return &holder; }
|
|
|
|
// Workaround for Intel compiler bug
|
|
// see pybind11 issue 94
|
|
#if defined(__ICC) || defined(__INTEL_COMPILER)
|
|
operator holder_type&() { return holder; }
|
|
#else
|
|
explicit operator holder_type&() { return holder; }
|
|
#endif
|
|
|
|
static handle cast(const holder_type &src, return_value_policy, handle) {
|
|
const auto *ptr = holder_helper<holder_type>::get(src);
|
|
return type_caster_base<type>::cast_holder(ptr, &src);
|
|
}
|
|
|
|
protected:
|
|
friend class type_caster_generic;
|
|
void check_holder_compat() {
|
|
if (typeinfo->default_holder)
|
|
throw cast_error("Unable to load a custom holder type from a default-holder instance");
|
|
}
|
|
|
|
bool load_value(value_and_holder &&v_h) {
|
|
if (v_h.holder_constructed()) {
|
|
value = v_h.value_ptr();
|
|
holder = v_h.template holder<holder_type>();
|
|
return true;
|
|
} else {
|
|
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
|
|
#if defined(NDEBUG)
|
|
"(compile in debug mode for type information)");
|
|
#else
|
|
"of type '" + type_id<holder_type>() + "''");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
bool try_implicit_casts(handle, bool) { return false; }
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
bool try_implicit_casts(handle src, bool convert) {
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
copyable_holder_caster sub_caster(*cast.first);
|
|
if (sub_caster.load(src, convert)) {
|
|
value = cast.second(sub_caster.value);
|
|
holder = holder_type(sub_caster.holder, (type *) value);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool try_direct_conversions(handle) { return false; }
|
|
|
|
|
|
holder_type holder;
|
|
};
|
|
|
|
/// Specialize for the common std::shared_ptr, so users don't need to
|
|
template <typename T>
|
|
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
|
|
|
|
template <typename type, typename holder_type>
|
|
struct move_only_holder_caster {
|
|
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
|
|
"Holder classes are only supported for custom types");
|
|
|
|
static handle cast(holder_type &&src, return_value_policy, handle) {
|
|
auto *ptr = holder_helper<holder_type>::get(src);
|
|
return type_caster_base<type>::cast_holder(ptr, &src);
|
|
}
|
|
static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
|
|
};
|
|
|
|
template <typename type, typename deleter>
|
|
class type_caster<std::unique_ptr<type, deleter>>
|
|
: public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
|
|
|
|
template <typename type, typename holder_type>
|
|
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
|
|
copyable_holder_caster<type, holder_type>,
|
|
move_only_holder_caster<type, holder_type>>;
|
|
|
|
template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
|
|
|
|
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
|
|
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
|
|
namespace pybind11 { namespace detail { \
|
|
template <typename type> \
|
|
struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
|
|
template <typename type> \
|
|
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
|
|
: public type_caster_holder<type, holder_type> { }; \
|
|
}}
|
|
|
|
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
|
|
template <typename base, typename holder> struct is_holder_type :
|
|
std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
|
|
// Specialization for always-supported unique_ptr holders:
|
|
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
|
|
std::true_type {};
|
|
|
|
template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
|
|
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
|
|
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
|
|
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
|
|
|
|
template <typename type>
|
|
struct pyobject_caster {
|
|
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
|
|
bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
|
|
|
|
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
|
|
bool load(handle src, bool /* convert */) {
|
|
if (!isinstance<type>(src))
|
|
return false;
|
|
value = reinterpret_borrow<type>(src);
|
|
return true;
|
|
}
|
|
|
|
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
|
|
return src.inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
|
|
};
|
|
|
|
template <typename T>
|
|
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
|
|
|
|
// Our conditions for enabling moving are quite restrictive:
|
|
// At compile time:
|
|
// - T needs to be a non-const, non-pointer, non-reference type
|
|
// - type_caster<T>::operator T&() must exist
|
|
// - the type must be move constructible (obviously)
|
|
// At run-time:
|
|
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
|
|
// must have ref_count() == 1)h
|
|
// If any of the above are not satisfied, we fall back to copying.
|
|
template <typename T> using move_is_plain_type = satisfies_none_of<T,
|
|
std::is_void, std::is_pointer, std::is_reference, std::is_const
|
|
>;
|
|
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
|
|
template <typename T> struct move_always<T, enable_if_t<all_of<
|
|
move_is_plain_type<T>,
|
|
negation<is_copy_constructible<T>>,
|
|
std::is_move_constructible<T>,
|
|
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
|
|
>::value>> : std::true_type {};
|
|
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
|
|
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
|
|
move_is_plain_type<T>,
|
|
negation<move_always<T>>,
|
|
std::is_move_constructible<T>,
|
|
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
|
|
>::value>> : std::true_type {};
|
|
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
|
|
|
|
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
|
|
// reference or pointer to a local variable of the type_caster. Basically, only
|
|
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
|
|
// everything else returns a reference/pointer to a local variable.
|
|
template <typename type> using cast_is_temporary_value_reference = bool_constant<
|
|
(std::is_reference<type>::value || std::is_pointer<type>::value) &&
|
|
!std::is_base_of<type_caster_generic, make_caster<type>>::value
|
|
>;
|
|
|
|
// When a value returned from a C++ function is being cast back to Python, we almost always want to
|
|
// force `policy = move`, regardless of the return value policy the function/method was declared
|
|
// with. Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
|
|
// specializing this struct.
|
|
template <typename Return, typename SFINAE = void> struct return_value_policy_override {
|
|
static return_value_policy policy(return_value_policy p) {
|
|
return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
|
|
? return_value_policy::move : p;
|
|
}
|
|
};
|
|
|
|
// Basic python -> C++ casting; throws if casting fails
|
|
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
|
|
if (!conv.load(handle, true)) {
|
|
#if defined(NDEBUG)
|
|
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
|
|
#else
|
|
throw cast_error("Unable to cast Python instance of type " +
|
|
(std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "'");
|
|
#endif
|
|
}
|
|
return conv;
|
|
}
|
|
// Wrapper around the above that also constructs and returns a type_caster
|
|
template <typename T> make_caster<T> load_type(const handle &handle) {
|
|
make_caster<T> conv;
|
|
load_type(conv, handle);
|
|
return conv;
|
|
}
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
// pytype -> C++ type
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
T cast(const handle &handle) {
|
|
using namespace detail;
|
|
static_assert(!cast_is_temporary_value_reference<T>::value,
|
|
"Unable to cast type to reference: value is local to type caster");
|
|
return cast_op<T>(load_type<T>(handle));
|
|
}
|
|
|
|
// pytype -> pytype (calls converting constructor)
|
|
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
|
|
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
|
|
|
|
// C++ type -> py::object
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
|
|
handle parent = handle()) {
|
|
if (policy == return_value_policy::automatic)
|
|
policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
|
|
else if (policy == return_value_policy::automatic_reference)
|
|
policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
|
|
return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
|
|
}
|
|
|
|
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
|
|
template <> inline void handle::cast() const { return; }
|
|
|
|
template <typename T>
|
|
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
|
|
if (obj.ref_count() > 1)
|
|
#if defined(NDEBUG)
|
|
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
|
|
" (compile in debug mode for details)");
|
|
#else
|
|
throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
|
|
" instance to C++ " + type_id<T>() + " instance: instance has multiple references");
|
|
#endif
|
|
|
|
// Move into a temporary and return that, because the reference may be a local value of `conv`
|
|
T ret = std::move(detail::load_type<T>(obj).operator T&());
|
|
return ret;
|
|
}
|
|
|
|
// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
|
|
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
|
|
// object has multiple references, but trying to copy will fail to compile.
|
|
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
|
|
// - Otherwise (not movable), copy.
|
|
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
|
|
return move<T>(std::move(object));
|
|
}
|
|
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
|
|
if (object.ref_count() > 1)
|
|
return cast<T>(object);
|
|
else
|
|
return move<T>(std::move(object));
|
|
}
|
|
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
|
|
return cast<T>(object);
|
|
}
|
|
|
|
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
|
|
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
|
|
template <> inline void object::cast() const & { return; }
|
|
template <> inline void object::cast() && { return; }
|
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
// Declared in pytypes.h:
|
|
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
|
|
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
|
|
|
|
struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
|
|
template <typename ret_type> using overload_caster_t = conditional_t<
|
|
cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
|
|
|
|
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
|
|
// store the result in the given variable. For other types, this is a no-op.
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
|
|
return cast_op<T>(load_type(caster, o));
|
|
}
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
|
|
pybind11_fail("Internal error: cast_ref fallback invoked"); }
|
|
|
|
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
|
|
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
|
|
// cases where pybind11::cast is valid.
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
|
|
return pybind11::cast<T>(std::move(o)); }
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
|
|
pybind11_fail("Internal error: cast_safe fallback invoked"); }
|
|
template <> inline void cast_safe<void>(object &&) {}
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
template <return_value_policy policy = return_value_policy::automatic_reference,
|
|
typename... Args> tuple make_tuple(Args&&... args_) {
|
|
constexpr size_t size = sizeof...(Args);
|
|
std::array<object, size> args {
|
|
{ reinterpret_steal<object>(detail::make_caster<Args>::cast(
|
|
std::forward<Args>(args_), policy, nullptr))... }
|
|
};
|
|
for (size_t i = 0; i < args.size(); i++) {
|
|
if (!args[i]) {
|
|
#if defined(NDEBUG)
|
|
throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
|
|
#else
|
|
std::array<std::string, size> argtypes { {type_id<Args>()...} };
|
|
throw cast_error("make_tuple(): unable to convert argument of type '" +
|
|
argtypes[i] + "' to Python object");
|
|
#endif
|
|
}
|
|
}
|
|
tuple result(size);
|
|
int counter = 0;
|
|
for (auto &arg_value : args)
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
|
|
return result;
|
|
}
|
|
|
|
/// \ingroup annotations
|
|
/// Annotation for arguments
|
|
struct arg {
|
|
/// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
|
|
constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
|
|
/// Assign a value to this argument
|
|
template <typename T> arg_v operator=(T &&value) const;
|
|
/// Indicate that the type should not be converted in the type caster
|
|
arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
|
|
/// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
|
|
arg &none(bool flag = true) { flag_none = flag; return *this; }
|
|
|
|
const char *name; ///< If non-null, this is a named kwargs argument
|
|
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
|
|
bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
|
|
};
|
|
|
|
/// \ingroup annotations
|
|
/// Annotation for arguments with values
|
|
struct arg_v : arg {
|
|
private:
|
|
template <typename T>
|
|
arg_v(arg &&base, T &&x, const char *descr = nullptr)
|
|
: arg(base),
|
|
value(reinterpret_steal<object>(
|
|
detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
|
|
)),
|
|
descr(descr)
|
|
#if !defined(NDEBUG)
|
|
, type(type_id<T>())
|
|
#endif
|
|
{ }
|
|
|
|
public:
|
|
/// Direct construction with name, default, and description
|
|
template <typename T>
|
|
arg_v(const char *name, T &&x, const char *descr = nullptr)
|
|
: arg_v(arg(name), std::forward<T>(x), descr) { }
|
|
|
|
/// Called internally when invoking `py::arg("a") = value`
|
|
template <typename T>
|
|
arg_v(const arg &base, T &&x, const char *descr = nullptr)
|
|
: arg_v(arg(base), std::forward<T>(x), descr) { }
|
|
|
|
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
|
|
arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
|
|
|
|
/// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
|
|
arg_v &none(bool flag = true) { arg::none(flag); return *this; }
|
|
|
|
/// The default value
|
|
object value;
|
|
/// The (optional) description of the default value
|
|
const char *descr;
|
|
#if !defined(NDEBUG)
|
|
/// The C++ type name of the default value (only available when compiled in debug mode)
|
|
std::string type;
|
|
#endif
|
|
};
|
|
|
|
template <typename T>
|
|
arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
|
|
|
|
/// Alias for backward compatibility -- to be removed in version 2.0
|
|
template <typename /*unused*/> using arg_t = arg_v;
|
|
|
|
inline namespace literals {
|
|
/** \rst
|
|
String literal version of `arg`
|
|
\endrst */
|
|
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
|
|
}
|
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
// forward declaration (definition in attr.h)
|
|
struct function_record;
|
|
|
|
/// Internal data associated with a single function call
|
|
struct function_call {
|
|
function_call(function_record &f, handle p); // Implementation in attr.h
|
|
|
|
/// The function data:
|
|
const function_record &func;
|
|
|
|
/// Arguments passed to the function:
|
|
std::vector<handle> args;
|
|
|
|
/// The `convert` value the arguments should be loaded with
|
|
std::vector<bool> args_convert;
|
|
|
|
/// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
|
|
/// present, are also in `args` but without a reference).
|
|
object args_ref, kwargs_ref;
|
|
|
|
/// The parent, if any
|
|
handle parent;
|
|
|
|
/// If this is a call to an initializer, this argument contains `self`
|
|
handle init_self;
|
|
};
|
|
|
|
|
|
/// Helper class which loads arguments for C++ functions called from Python
|
|
template <typename... Args>
|
|
class argument_loader {
|
|
using indices = make_index_sequence<sizeof...(Args)>;
|
|
|
|
template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
|
|
template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
|
|
// Get args/kwargs argument positions relative to the end of the argument list:
|
|
static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
|
|
kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
|
|
|
|
static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
|
|
|
|
static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
|
|
|
|
public:
|
|
static constexpr bool has_kwargs = kwargs_pos < 0;
|
|
static constexpr bool has_args = args_pos < 0;
|
|
|
|
static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }
|
|
|
|
bool load_args(function_call &call) {
|
|
return load_impl_sequence(call, indices{});
|
|
}
|
|
|
|
template <typename Return, typename Guard, typename Func>
|
|
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
|
|
return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
|
|
}
|
|
|
|
template <typename Return, typename Guard, typename Func>
|
|
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
|
|
std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
|
|
return void_type();
|
|
}
|
|
|
|
private:
|
|
|
|
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
|
|
|
|
template <size_t... Is>
|
|
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
|
|
for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
|
|
if (!r)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
template <typename Return, typename Func, size_t... Is, typename Guard>
|
|
Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
|
|
return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
|
|
}
|
|
|
|
std::tuple<make_caster<Args>...> argcasters;
|
|
};
|
|
|
|
/// Helper class which collects only positional arguments for a Python function call.
|
|
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
|
|
template <return_value_policy policy>
|
|
class simple_collector {
|
|
public:
|
|
template <typename... Ts>
|
|
explicit simple_collector(Ts &&...values)
|
|
: m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
dict kwargs() const { return {}; }
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
object call(PyObject *ptr) const {
|
|
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
|
|
if (!result)
|
|
throw error_already_set();
|
|
return reinterpret_steal<object>(result);
|
|
}
|
|
|
|
private:
|
|
tuple m_args;
|
|
};
|
|
|
|
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
|
|
template <return_value_policy policy>
|
|
class unpacking_collector {
|
|
public:
|
|
template <typename... Ts>
|
|
explicit unpacking_collector(Ts &&...values) {
|
|
// Tuples aren't (easily) resizable so a list is needed for collection,
|
|
// but the actual function call strictly requires a tuple.
|
|
auto args_list = list();
|
|
int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
|
|
ignore_unused(_);
|
|
|
|
m_args = std::move(args_list);
|
|
}
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
const dict &kwargs() const & { return m_kwargs; }
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
dict kwargs() && { return std::move(m_kwargs); }
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
object call(PyObject *ptr) const {
|
|
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
|
|
if (!result)
|
|
throw error_already_set();
|
|
return reinterpret_steal<object>(result);
|
|
}
|
|
|
|
private:
|
|
template <typename T>
|
|
void process(list &args_list, T &&x) {
|
|
auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
|
|
if (!o) {
|
|
#if defined(NDEBUG)
|
|
argument_cast_error();
|
|
#else
|
|
argument_cast_error(std::to_string(args_list.size()), type_id<T>());
|
|
#endif
|
|
}
|
|
args_list.append(o);
|
|
}
|
|
|
|
void process(list &args_list, detail::args_proxy ap) {
|
|
for (const auto &a : ap)
|
|
args_list.append(a);
|
|
}
|
|
|
|
void process(list &/*args_list*/, arg_v a) {
|
|
if (!a.name)
|
|
#if defined(NDEBUG)
|
|
nameless_argument_error();
|
|
#else
|
|
nameless_argument_error(a.type);
|
|
#endif
|
|
|
|
if (m_kwargs.contains(a.name)) {
|
|
#if defined(NDEBUG)
|
|
multiple_values_error();
|
|
#else
|
|
multiple_values_error(a.name);
|
|
#endif
|
|
}
|
|
if (!a.value) {
|
|
#if defined(NDEBUG)
|
|
argument_cast_error();
|
|
#else
|
|
argument_cast_error(a.name, a.type);
|
|
#endif
|
|
}
|
|
m_kwargs[a.name] = a.value;
|
|
}
|
|
|
|
void process(list &/*args_list*/, detail::kwargs_proxy kp) {
|
|
if (!kp)
|
|
return;
|
|
for (const auto &k : reinterpret_borrow<dict>(kp)) {
|
|
if (m_kwargs.contains(k.first)) {
|
|
#if defined(NDEBUG)
|
|
multiple_values_error();
|
|
#else
|
|
multiple_values_error(str(k.first));
|
|
#endif
|
|
}
|
|
m_kwargs[k.first] = k.second;
|
|
}
|
|
}
|
|
|
|
[[noreturn]] static void nameless_argument_error() {
|
|
throw type_error("Got kwargs without a name; only named arguments "
|
|
"may be passed via py::arg() to a python function call. "
|
|
"(compile in debug mode for details)");
|
|
}
|
|
[[noreturn]] static void nameless_argument_error(std::string type) {
|
|
throw type_error("Got kwargs without a name of type '" + type + "'; only named "
|
|
"arguments may be passed via py::arg() to a python function call. ");
|
|
}
|
|
[[noreturn]] static void multiple_values_error() {
|
|
throw type_error("Got multiple values for keyword argument "
|
|
"(compile in debug mode for details)");
|
|
}
|
|
|
|
[[noreturn]] static void multiple_values_error(std::string name) {
|
|
throw type_error("Got multiple values for keyword argument '" + name + "'");
|
|
}
|
|
|
|
[[noreturn]] static void argument_cast_error() {
|
|
throw cast_error("Unable to convert call argument to Python object "
|
|
"(compile in debug mode for details)");
|
|
}
|
|
|
|
[[noreturn]] static void argument_cast_error(std::string name, std::string type) {
|
|
throw cast_error("Unable to convert call argument '" + name
|
|
+ "' of type '" + type + "' to Python object");
|
|
}
|
|
|
|
private:
|
|
tuple m_args;
|
|
dict m_kwargs;
|
|
};
|
|
|
|
/// Collect only positional arguments for a Python function call
|
|
template <return_value_policy policy, typename... Args,
|
|
typename = enable_if_t<all_of<is_positional<Args>...>::value>>
|
|
simple_collector<policy> collect_arguments(Args &&...args) {
|
|
return simple_collector<policy>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
|
|
template <return_value_policy policy, typename... Args,
|
|
typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
|
|
unpacking_collector<policy> collect_arguments(Args &&...args) {
|
|
// Following argument order rules for generalized unpacking according to PEP 448
|
|
static_assert(
|
|
constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
|
|
&& constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
|
|
"Invalid function call: positional args must precede keywords and ** unpacking; "
|
|
"* unpacking must precede ** unpacking"
|
|
);
|
|
return unpacking_collector<policy>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <typename Derived>
|
|
template <return_value_policy policy, typename... Args>
|
|
object object_api<Derived>::operator()(Args &&...args) const {
|
|
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
|
|
}
|
|
|
|
template <typename Derived>
|
|
template <return_value_policy policy, typename... Args>
|
|
object object_api<Derived>::call(Args &&...args) const {
|
|
return operator()<policy>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
#define PYBIND11_MAKE_OPAQUE(Type) \
|
|
namespace pybind11 { namespace detail { \
|
|
template<> class type_caster<Type> : public type_caster_base<Type> { }; \
|
|
}}
|
|
|
|
NAMESPACE_END(PYBIND11_NAMESPACE)
|