mirror of
https://github.com/pybind/pybind11.git
synced 2025-01-19 17:32:37 +00:00
103 lines
3.4 KiB
Python
103 lines
3.4 KiB
Python
#!/usr/bin/env python
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from example import (
|
|
create_rec_simple, create_rec_packed, create_rec_nested, print_format_descriptors,
|
|
print_rec_simple, print_rec_packed, print_rec_nested, print_dtypes, get_format_unbound,
|
|
create_rec_partial, create_rec_partial_nested, create_string_array, print_string_array,
|
|
test_array_ctors, test_dtype_ctors, test_dtype_methods
|
|
)
|
|
|
|
|
|
def check_eq(arr, data, dtype):
|
|
np.testing.assert_equal(arr, np.array(data, dtype=dtype))
|
|
|
|
try:
|
|
get_format_unbound()
|
|
raise Exception
|
|
except RuntimeError as e:
|
|
assert 'unsupported buffer format' in str(e)
|
|
|
|
print_format_descriptors()
|
|
print_dtypes()
|
|
|
|
simple_dtype = np.dtype({'names': ['x', 'y', 'z'],
|
|
'formats': ['?', 'u4', 'f4'],
|
|
'offsets': [0, 4, 8]})
|
|
packed_dtype = np.dtype([('x', '?'), ('y', 'u4'), ('z', 'f4')])
|
|
|
|
elements = [(False, 0, 0.0), (True, 1, 1.5), (False, 2, 3.0)]
|
|
|
|
for func, dtype in [(create_rec_simple, simple_dtype), (create_rec_packed, packed_dtype)]:
|
|
arr = func(0)
|
|
assert arr.dtype == dtype
|
|
check_eq(arr, [], simple_dtype)
|
|
check_eq(arr, [], packed_dtype)
|
|
|
|
arr = func(3)
|
|
assert arr.dtype == dtype
|
|
check_eq(arr, elements, simple_dtype)
|
|
check_eq(arr, elements, packed_dtype)
|
|
|
|
if dtype == simple_dtype:
|
|
print_rec_simple(arr)
|
|
else:
|
|
print_rec_packed(arr)
|
|
|
|
arr = create_rec_partial(3)
|
|
print(arr.dtype)
|
|
partial_dtype = arr.dtype
|
|
assert '' not in arr.dtype.fields
|
|
assert partial_dtype.itemsize > simple_dtype.itemsize
|
|
check_eq(arr, elements, simple_dtype)
|
|
check_eq(arr, elements, packed_dtype)
|
|
|
|
arr = create_rec_partial_nested(3)
|
|
print(arr.dtype)
|
|
assert '' not in arr.dtype.fields
|
|
assert '' not in arr.dtype.fields['a'][0].fields
|
|
assert arr.dtype.itemsize > partial_dtype.itemsize
|
|
np.testing.assert_equal(arr['a'], create_rec_partial(3))
|
|
|
|
nested_dtype = np.dtype([('a', simple_dtype), ('b', packed_dtype)])
|
|
|
|
arr = create_rec_nested(0)
|
|
assert arr.dtype == nested_dtype
|
|
check_eq(arr, [], nested_dtype)
|
|
|
|
arr = create_rec_nested(3)
|
|
assert arr.dtype == nested_dtype
|
|
check_eq(arr, [((False, 0, 0.0), (True, 1, 1.5)),
|
|
((True, 1, 1.5), (False, 2, 3.0)),
|
|
((False, 2, 3.0), (True, 3, 4.5))], nested_dtype)
|
|
print_rec_nested(arr)
|
|
|
|
assert create_rec_nested.__doc__.strip().endswith('numpy.ndarray[NestedStruct]')
|
|
|
|
arr = create_string_array(True)
|
|
print(arr.dtype)
|
|
print_string_array(arr)
|
|
dtype = arr.dtype
|
|
assert arr['a'].tolist() == [b'', b'a', b'ab', b'abc']
|
|
assert arr['b'].tolist() == [b'', b'a', b'ab', b'abc']
|
|
arr = create_string_array(False)
|
|
assert dtype == arr.dtype
|
|
|
|
data = np.arange(1, 7, dtype='int32')
|
|
for i in range(8):
|
|
np.testing.assert_array_equal(test_array_ctors(10 + i), data.reshape((3, 2)))
|
|
np.testing.assert_array_equal(test_array_ctors(20 + i), data.reshape((3, 2)))
|
|
for i in range(5):
|
|
np.testing.assert_array_equal(test_array_ctors(30 + i), data)
|
|
np.testing.assert_array_equal(test_array_ctors(40 + i), data)
|
|
|
|
d1 = np.dtype({'names': ['a', 'b'], 'formats': ['int32', 'float64'],
|
|
'offsets': [1, 10], 'itemsize': 20})
|
|
d2 = np.dtype([('a', 'i4'), ('b', 'f4')])
|
|
assert test_dtype_ctors() == [np.dtype('int32'), np.dtype('float64'),
|
|
np.dtype('bool'), d1, d1, np.dtype('uint32'), d2]
|
|
|
|
assert test_dtype_methods() == [np.dtype('int32'), simple_dtype, False, True,
|
|
np.dtype('int32').itemsize, simple_dtype.itemsize]
|