pybind11/tests/test_factory_constructors.cpp
Ralf W. Grosse-Kunstleve 6abf2baa62
CodeHealth: Enabling clang-tidy google-explicit-constructor (#3250)
* Adding google-explicit-constructor to .clang-tidy

* clang-tidy explicit attr.h (all automatic)

* clang-tidy explicit cast.h (all automatic)

* clang-tidy detail/init.h (1 NOLINT)

* clang-tidy detail/type_caster_base.h (2 NOLINT)

* clang-tidy pybind11.h (7 NOLINT)

* clang-tidy detail/common.h (3 NOLINT)

* clang-tidy detail/descr.h (2 NOLINT)

* clang-tidy pytypes.h (23 NOLINT, only 1 explicit)

* clang-tidy eigen.h (7 NOLINT, 0 explicit)

* Adding 2 explicit in functional.h

* Adding 4 explicit in iostream.h

* clang-tidy numpy.h (1 NOLINT, 1 explicit)

* clang-tidy embed.h (0 NOLINT, 1 explicit)

* clang-tidy tests/local_bindings.h (0 NOLINT, 4 explicit)

* clang-tidy tests/pybind11_cross_module_tests.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/pybind11_tests.h (0 NOLINT, 2 explicit)

* clang-tidy tests/test_buffers.cpp (0 NOLINT, 2 explicit)

* clang-tidy tests/test_builtin_casters.cpp (0 NOLINT, 4 explicit)

* clang-tidy tests/test_class.cpp (0 NOLINT, 6 explicit)

* clang-tidy tests/test_copy_move.cpp (0 NOLINT, 7 explicit)

* clang-tidy tests/test_embed/external_module.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/test_embed/test_interpreter.cpp (0 NOLINT, 1 explicit)

* clang-tidy tests/object.h (0 NOLINT, 2 explicit)

* clang-tidy batch of fully automatic fixes.

* Workaround for MSVC 19.16.27045.0 C++17 Python 2 C++ syntax error.
2021-09-08 18:53:38 -07:00

398 lines
17 KiB
C++

/*
tests/test_factory_constructors.cpp -- tests construction from a factory function
via py::init_factory()
Copyright (c) 2017 Jason Rhinelander <jason@imaginary.ca>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "constructor_stats.h"
#include "pybind11_tests.h"
#include <cmath>
#include <new>
#include <utility>
// Classes for testing python construction via C++ factory function:
// Not publicly constructible, copyable, or movable:
class TestFactory1 {
friend class TestFactoryHelper;
TestFactory1() : value("(empty)") { print_default_created(this); }
explicit TestFactory1(int v) : value(std::to_string(v)) { print_created(this, value); }
explicit TestFactory1(std::string v) : value(std::move(v)) { print_created(this, value); }
public:
std::string value;
TestFactory1(TestFactory1 &&) = delete;
TestFactory1(const TestFactory1 &) = delete;
TestFactory1 &operator=(TestFactory1 &&) = delete;
TestFactory1 &operator=(const TestFactory1 &) = delete;
~TestFactory1() { print_destroyed(this); }
};
// Non-public construction, but moveable:
class TestFactory2 {
friend class TestFactoryHelper;
TestFactory2() : value("(empty2)") { print_default_created(this); }
explicit TestFactory2(int v) : value(std::to_string(v)) { print_created(this, value); }
explicit TestFactory2(std::string v) : value(std::move(v)) { print_created(this, value); }
public:
TestFactory2(TestFactory2 &&m) noexcept {
value = std::move(m.value);
print_move_created(this);
}
TestFactory2 &operator=(TestFactory2 &&m) noexcept {
value = std::move(m.value);
print_move_assigned(this);
return *this;
}
std::string value;
~TestFactory2() { print_destroyed(this); }
};
// Mixed direct/factory construction:
class TestFactory3 {
protected:
friend class TestFactoryHelper;
TestFactory3() : value("(empty3)") { print_default_created(this); }
explicit TestFactory3(int v) : value(std::to_string(v)) { print_created(this, value); }
public:
explicit TestFactory3(std::string v) : value(std::move(v)) { print_created(this, value); }
TestFactory3(TestFactory3 &&m) noexcept {
value = std::move(m.value);
print_move_created(this);
}
TestFactory3 &operator=(TestFactory3 &&m) noexcept {
value = std::move(m.value);
print_move_assigned(this);
return *this;
}
std::string value;
virtual ~TestFactory3() { print_destroyed(this); }
};
// Inheritance test
class TestFactory4 : public TestFactory3 {
public:
TestFactory4() : TestFactory3() { print_default_created(this); }
explicit TestFactory4(int v) : TestFactory3(v) { print_created(this, v); }
~TestFactory4() override { print_destroyed(this); }
};
// Another class for an invalid downcast test
class TestFactory5 : public TestFactory3 {
public:
explicit TestFactory5(int i) : TestFactory3(i) { print_created(this, i); }
~TestFactory5() override { print_destroyed(this); }
};
class TestFactory6 {
protected:
int value;
bool alias = false;
public:
explicit TestFactory6(int i) : value{i} { print_created(this, i); }
TestFactory6(TestFactory6 &&f) noexcept {
print_move_created(this);
value = f.value;
alias = f.alias;
}
TestFactory6(const TestFactory6 &f) { print_copy_created(this); value = f.value; alias = f.alias; }
virtual ~TestFactory6() { print_destroyed(this); }
virtual int get() { return value; }
bool has_alias() const { return alias; }
};
class PyTF6 : public TestFactory6 {
public:
// Special constructor that allows the factory to construct a PyTF6 from a TestFactory6 only
// when an alias is needed:
explicit PyTF6(TestFactory6 &&base) : TestFactory6(std::move(base)) {
alias = true;
print_created(this, "move", value);
}
explicit PyTF6(int i) : TestFactory6(i) {
alias = true;
print_created(this, i);
}
PyTF6(PyTF6 &&f) noexcept : TestFactory6(std::move(f)) { print_move_created(this); }
PyTF6(const PyTF6 &f) : TestFactory6(f) { print_copy_created(this); }
explicit PyTF6(std::string s) : TestFactory6((int) s.size()) {
alias = true;
print_created(this, s);
}
~PyTF6() override { print_destroyed(this); }
int get() override { PYBIND11_OVERRIDE(int, TestFactory6, get, /*no args*/); }
};
class TestFactory7 {
protected:
int value;
bool alias = false;
public:
explicit TestFactory7(int i) : value{i} { print_created(this, i); }
TestFactory7(TestFactory7 &&f) noexcept {
print_move_created(this);
value = f.value;
alias = f.alias;
}
TestFactory7(const TestFactory7 &f) { print_copy_created(this); value = f.value; alias = f.alias; }
virtual ~TestFactory7() { print_destroyed(this); }
virtual int get() { return value; }
bool has_alias() const { return alias; }
};
class PyTF7 : public TestFactory7 {
public:
explicit PyTF7(int i) : TestFactory7(i) {
alias = true;
print_created(this, i);
}
PyTF7(PyTF7 &&f) noexcept : TestFactory7(std::move(f)) { print_move_created(this); }
PyTF7(const PyTF7 &f) : TestFactory7(f) { print_copy_created(this); }
~PyTF7() override { print_destroyed(this); }
int get() override { PYBIND11_OVERRIDE(int, TestFactory7, get, /*no args*/); }
};
class TestFactoryHelper {
public:
// Non-movable, non-copyable type:
// Return via pointer:
static TestFactory1 *construct1() { return new TestFactory1(); }
// Holder:
static std::unique_ptr<TestFactory1> construct1(int a) { return std::unique_ptr<TestFactory1>(new TestFactory1(a)); }
// pointer again
static TestFactory1 *construct1_string(std::string a) {
return new TestFactory1(std::move(a));
}
// Moveable type:
// pointer:
static TestFactory2 *construct2() { return new TestFactory2(); }
// holder:
static std::unique_ptr<TestFactory2> construct2(int a) { return std::unique_ptr<TestFactory2>(new TestFactory2(a)); }
// by value moving:
static TestFactory2 construct2(std::string a) { return TestFactory2(std::move(a)); }
// shared_ptr holder type:
// pointer:
static TestFactory3 *construct3() { return new TestFactory3(); }
// holder:
static std::shared_ptr<TestFactory3> construct3(int a) { return std::shared_ptr<TestFactory3>(new TestFactory3(a)); }
};
TEST_SUBMODULE(factory_constructors, m) {
// Define various trivial types to allow simpler overload resolution:
py::module_ m_tag = m.def_submodule("tag");
#define MAKE_TAG_TYPE(Name) \
struct Name##_tag {}; \
py::class_<Name##_tag>(m_tag, #Name "_tag").def(py::init<>()); \
m_tag.attr(#Name) = py::cast(Name##_tag{})
MAKE_TAG_TYPE(pointer);
MAKE_TAG_TYPE(unique_ptr);
MAKE_TAG_TYPE(move);
MAKE_TAG_TYPE(shared_ptr);
MAKE_TAG_TYPE(derived);
MAKE_TAG_TYPE(TF4);
MAKE_TAG_TYPE(TF5);
MAKE_TAG_TYPE(null_ptr);
MAKE_TAG_TYPE(null_unique_ptr);
MAKE_TAG_TYPE(null_shared_ptr);
MAKE_TAG_TYPE(base);
MAKE_TAG_TYPE(invalid_base);
MAKE_TAG_TYPE(alias);
MAKE_TAG_TYPE(unaliasable);
MAKE_TAG_TYPE(mixed);
// test_init_factory_basic, test_bad_type
py::class_<TestFactory1>(m, "TestFactory1")
.def(py::init([](unique_ptr_tag, int v) { return TestFactoryHelper::construct1(v); }))
.def(py::init(&TestFactoryHelper::construct1_string)) // raw function pointer
.def(py::init([](pointer_tag) { return TestFactoryHelper::construct1(); }))
.def(py::init([](py::handle, int v, py::handle) { return TestFactoryHelper::construct1(v); }))
.def_readwrite("value", &TestFactory1::value)
;
py::class_<TestFactory2>(m, "TestFactory2")
.def(py::init([](pointer_tag, int v) { return TestFactoryHelper::construct2(v); }))
.def(py::init([](unique_ptr_tag, std::string v) {
return TestFactoryHelper::construct2(std::move(v));
}))
.def(py::init([](move_tag) { return TestFactoryHelper::construct2(); }))
.def_readwrite("value", &TestFactory2::value);
// Stateful & reused:
int c = 1;
auto c4a = [c](pointer_tag, TF4_tag, int a) { (void) c; return new TestFactory4(a);};
// test_init_factory_basic, test_init_factory_casting
py::class_<TestFactory3, std::shared_ptr<TestFactory3>> pyTestFactory3(m, "TestFactory3");
pyTestFactory3
.def(py::init([](pointer_tag, int v) { return TestFactoryHelper::construct3(v); }))
.def(py::init([](shared_ptr_tag) { return TestFactoryHelper::construct3(); }));
ignoreOldStyleInitWarnings([&pyTestFactory3]() {
pyTestFactory3.def("__init__", [](TestFactory3 &self, std::string v) {
new (&self) TestFactory3(std::move(v));
}); // placement-new ctor
});
pyTestFactory3
// factories returning a derived type:
.def(py::init(c4a)) // derived ptr
.def(py::init([](pointer_tag, TF5_tag, int a) { return new TestFactory5(a); }))
// derived shared ptr:
.def(py::init([](shared_ptr_tag, TF4_tag, int a) { return std::make_shared<TestFactory4>(a); }))
.def(py::init([](shared_ptr_tag, TF5_tag, int a) { return std::make_shared<TestFactory5>(a); }))
// Returns nullptr:
.def(py::init([](null_ptr_tag) { return (TestFactory3 *) nullptr; }))
.def(py::init([](null_unique_ptr_tag) { return std::unique_ptr<TestFactory3>(); }))
.def(py::init([](null_shared_ptr_tag) { return std::shared_ptr<TestFactory3>(); }))
.def_readwrite("value", &TestFactory3::value)
;
// test_init_factory_casting
py::class_<TestFactory4, TestFactory3, std::shared_ptr<TestFactory4>>(m, "TestFactory4")
.def(py::init(c4a)) // pointer
;
// Doesn't need to be registered, but registering makes getting ConstructorStats easier:
py::class_<TestFactory5, TestFactory3, std::shared_ptr<TestFactory5>>(m, "TestFactory5");
// test_init_factory_alias
// Alias testing
py::class_<TestFactory6, PyTF6>(m, "TestFactory6")
.def(py::init([](base_tag, int i) { return TestFactory6(i); }))
.def(py::init([](alias_tag, int i) { return PyTF6(i); }))
.def(py::init([](alias_tag, std::string s) { return PyTF6(std::move(s)); }))
.def(py::init([](alias_tag, pointer_tag, int i) { return new PyTF6(i); }))
.def(py::init([](base_tag, pointer_tag, int i) { return new TestFactory6(i); }))
.def(py::init(
[](base_tag, alias_tag, pointer_tag, int i) { return (TestFactory6 *) new PyTF6(i); }))
.def("get", &TestFactory6::get)
.def("has_alias", &TestFactory6::has_alias)
.def_static(
"get_cstats", &ConstructorStats::get<TestFactory6>, py::return_value_policy::reference)
.def_static(
"get_alias_cstats", &ConstructorStats::get<PyTF6>, py::return_value_policy::reference);
// test_init_factory_dual
// Separate alias constructor testing
py::class_<TestFactory7, PyTF7, std::shared_ptr<TestFactory7>>(m, "TestFactory7")
.def(py::init([](int i) { return TestFactory7(i); }, [](int i) { return PyTF7(i); }))
.def(py::init([](pointer_tag, int i) { return new TestFactory7(i); },
[](pointer_tag, int i) { return new PyTF7(i); }))
.def(py::init([](mixed_tag, int i) { return new TestFactory7(i); },
[](mixed_tag, int i) { return PyTF7(i); }))
.def(py::init([](mixed_tag, const std::string &s) { return TestFactory7((int) s.size()); },
[](mixed_tag, const std::string &s) { return new PyTF7((int) s.size()); }))
.def(py::init([](base_tag, pointer_tag, int i) { return new TestFactory7(i); },
[](base_tag, pointer_tag, int i) { return (TestFactory7 *) new PyTF7(i); }))
.def(py::init([](alias_tag, pointer_tag, int i) { return new PyTF7(i); },
[](alias_tag, pointer_tag, int i) { return new PyTF7(10 * i); }))
.def(py::init(
[](shared_ptr_tag, base_tag, int i) { return std::make_shared<TestFactory7>(i); },
[](shared_ptr_tag, base_tag, int i) {
auto *p = new PyTF7(i);
return std::shared_ptr<TestFactory7>(p);
}))
.def(py::init([](shared_ptr_tag,
invalid_base_tag,
int i) { return std::make_shared<TestFactory7>(i); },
[](shared_ptr_tag, invalid_base_tag, int i) {
return std::make_shared<TestFactory7>(i);
})) // <-- invalid alias factory
.def("get", &TestFactory7::get)
.def("has_alias", &TestFactory7::has_alias)
.def_static(
"get_cstats", &ConstructorStats::get<TestFactory7>, py::return_value_policy::reference)
.def_static(
"get_alias_cstats", &ConstructorStats::get<PyTF7>, py::return_value_policy::reference);
// test_placement_new_alternative
// Class with a custom new operator but *without* a placement new operator (issue #948)
class NoPlacementNew {
public:
explicit NoPlacementNew(int i) : i(i) {}
static void *operator new(std::size_t s) {
auto *p = ::operator new(s);
py::print("operator new called, returning", reinterpret_cast<uintptr_t>(p));
return p;
}
static void operator delete(void *p) {
py::print("operator delete called on", reinterpret_cast<uintptr_t>(p));
::operator delete(p);
}
int i;
};
// As of 2.2, `py::init<args>` no longer requires placement new
py::class_<NoPlacementNew>(m, "NoPlacementNew")
.def(py::init<int>())
.def(py::init([]() { return new NoPlacementNew(100); }))
.def_readwrite("i", &NoPlacementNew::i)
;
// test_reallocations
// Class that has verbose operator_new/operator_delete calls
struct NoisyAlloc {
NoisyAlloc(const NoisyAlloc &) = default;
explicit NoisyAlloc(int i) { py::print(py::str("NoisyAlloc(int {})").format(i)); }
explicit NoisyAlloc(double d) { py::print(py::str("NoisyAlloc(double {})").format(d)); }
~NoisyAlloc() { py::print("~NoisyAlloc()"); }
static void *operator new(size_t s) { py::print("noisy new"); return ::operator new(s); }
static void *operator new(size_t, void *p) { py::print("noisy placement new"); return p; }
static void operator delete(void *p, size_t) { py::print("noisy delete"); ::operator delete(p); }
static void operator delete(void *, void *) { py::print("noisy placement delete"); }
#if defined(_MSC_VER) && _MSC_VER < 1910
// MSVC 2015 bug: the above "noisy delete" isn't invoked (fixed in MSVC 2017)
static void operator delete(void *p) { py::print("noisy delete"); ::operator delete(p); }
#endif
};
py::class_<NoisyAlloc> pyNoisyAlloc(m, "NoisyAlloc");
// Since these overloads have the same number of arguments, the dispatcher will try each of
// them until the arguments convert. Thus we can get a pre-allocation here when passing a
// single non-integer:
ignoreOldStyleInitWarnings([&pyNoisyAlloc]() {
pyNoisyAlloc.def("__init__", [](NoisyAlloc *a, int i) { new (a) NoisyAlloc(i); }); // Regular constructor, runs first, requires preallocation
});
pyNoisyAlloc.def(py::init([](double d) { return new NoisyAlloc(d); }));
// The two-argument version: first the factory pointer overload.
pyNoisyAlloc.def(py::init([](int i, int) { return new NoisyAlloc(i); }));
// Return-by-value:
pyNoisyAlloc.def(py::init([](double d, int) { return NoisyAlloc(d); }));
// Old-style placement new init; requires preallocation
ignoreOldStyleInitWarnings([&pyNoisyAlloc]() {
pyNoisyAlloc.def("__init__", [](NoisyAlloc &a, double d, double) { new (&a) NoisyAlloc(d); });
});
// Requires deallocation of previous overload preallocated value:
pyNoisyAlloc.def(py::init([](int i, double) { return new NoisyAlloc(i); }));
// Regular again: requires yet another preallocation
ignoreOldStyleInitWarnings([&pyNoisyAlloc]() {
pyNoisyAlloc.def(
"__init__", [](NoisyAlloc &a, int i, const std::string &) { new (&a) NoisyAlloc(i); });
});
// static_assert testing (the following def's should all fail with appropriate compilation errors):
#if 0
struct BadF1Base {};
struct BadF1 : BadF1Base {};
struct PyBadF1 : BadF1 {};
py::class_<BadF1, PyBadF1, std::shared_ptr<BadF1>> bf1(m, "BadF1");
// wrapped factory function must return a compatible pointer, holder, or value
bf1.def(py::init([]() { return 3; }));
// incompatible factory function pointer return type
bf1.def(py::init([]() { static int three = 3; return &three; }));
// incompatible factory function std::shared_ptr<T> return type: cannot convert shared_ptr<T> to holder
// (non-polymorphic base)
bf1.def(py::init([]() { return std::shared_ptr<BadF1Base>(new BadF1()); }));
#endif
}