mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-26 07:02:11 +00:00
d9d224f288
Currently when we do a conversion between a numpy array and an Eigen Vector, we allow the conversion only if the Eigen type is a compile-time vector (i.e. at least one dimension is fixed at 1 at compile time), or if the type is dynamic on *both* dimensions. This means we can run into cases where MatrixXd allow things that conforming, compile-time sizes does not: for example, `Matrix<double,4,Dynamic>` is currently not allowed, even when assigning from a 4-element vector, but it *is* allowed for a `Matrix<double,Dynamic,Dynamic>`. This commit also reverts the current behaviour of using the matrix's storage order to determine the structure when the Matrix is fully dynamic (i.e. in both dimensions). Currently we assign to an eigen row if the storage order is row-major, and column otherwise: this seems wrong (the storage order has nothing to do with the shape!). While numpy doesn't distinguish between a row/column vector, Eigen does, but it makes more sense to consistently choose one than to produce something with a different shape based on the intended storage layout.
152 lines
5.6 KiB
C++
152 lines
5.6 KiB
C++
/*
|
|
tests/eigen.cpp -- automatic conversion of Eigen types
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#include "pybind11_tests.h"
|
|
#include <pybind11/eigen.h>
|
|
#include <Eigen/Cholesky>
|
|
|
|
Eigen::VectorXf double_col(const Eigen::VectorXf& x)
|
|
{ return 2.0f * x; }
|
|
|
|
Eigen::RowVectorXf double_row(const Eigen::RowVectorXf& x)
|
|
{ return 2.0f * x; }
|
|
|
|
Eigen::MatrixXf double_mat_cm(const Eigen::MatrixXf& x)
|
|
{ return 2.0f * x; }
|
|
|
|
// Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended
|
|
Eigen::MatrixXd cholesky1(Eigen::Ref<Eigen::MatrixXd> &x) { return x.llt().matrixL(); }
|
|
Eigen::MatrixXd cholesky2(const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.llt().matrixL(); }
|
|
Eigen::MatrixXd cholesky3(const Eigen::Ref<Eigen::MatrixXd> &x) { return x.llt().matrixL(); }
|
|
Eigen::MatrixXd cholesky4(Eigen::Ref<const Eigen::MatrixXd> &x) { return x.llt().matrixL(); }
|
|
Eigen::MatrixXd cholesky5(Eigen::Ref<Eigen::MatrixXd> x) { return x.llt().matrixL(); }
|
|
Eigen::MatrixXd cholesky6(Eigen::Ref<const Eigen::MatrixXd> x) { return x.llt().matrixL(); }
|
|
|
|
typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixXfRowMajor;
|
|
MatrixXfRowMajor double_mat_rm(const MatrixXfRowMajor& x)
|
|
{ return 2.0f * x; }
|
|
|
|
test_initializer eigen([](py::module &m) {
|
|
typedef Eigen::Matrix<float, 5, 6, Eigen::RowMajor> FixedMatrixR;
|
|
typedef Eigen::Matrix<float, 5, 6> FixedMatrixC;
|
|
typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> DenseMatrixR;
|
|
typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> DenseMatrixC;
|
|
typedef Eigen::Matrix<float, 4, Eigen::Dynamic> FourRowMatrixC;
|
|
typedef Eigen::Matrix<float, Eigen::Dynamic, 4> FourColMatrixC;
|
|
typedef Eigen::Matrix<float, 4, Eigen::Dynamic> FourRowMatrixR;
|
|
typedef Eigen::Matrix<float, Eigen::Dynamic, 4> FourColMatrixR;
|
|
typedef Eigen::SparseMatrix<float, Eigen::RowMajor> SparseMatrixR;
|
|
typedef Eigen::SparseMatrix<float> SparseMatrixC;
|
|
|
|
m.attr("have_eigen") = true;
|
|
|
|
// Non-symmetric matrix with zero elements
|
|
Eigen::MatrixXf mat(5, 6);
|
|
mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0,
|
|
0, 0, 0, 0, 11, 0, 0, 14, 0, 8, 11;
|
|
|
|
m.def("double_col", &double_col);
|
|
m.def("double_row", &double_row);
|
|
m.def("double_mat_cm", &double_mat_cm);
|
|
m.def("double_mat_rm", &double_mat_rm);
|
|
m.def("cholesky1", &cholesky1);
|
|
m.def("cholesky2", &cholesky2);
|
|
m.def("cholesky3", &cholesky3);
|
|
m.def("cholesky4", &cholesky4);
|
|
m.def("cholesky5", &cholesky5);
|
|
m.def("cholesky6", &cholesky6);
|
|
|
|
// Returns diagonals: a vector-like object with an inner stride != 1
|
|
m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); });
|
|
m.def("diagonal_1", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); });
|
|
m.def("diagonal_n", [](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); });
|
|
|
|
// Return a block of a matrix (gives non-standard strides)
|
|
m.def("block", [](const Eigen::Ref<const Eigen::MatrixXd> &x, int start_row, int start_col, int block_rows, int block_cols) {
|
|
return x.block(start_row, start_col, block_rows, block_cols);
|
|
});
|
|
|
|
// Returns a DiagonalMatrix with diagonal (1,2,3,...)
|
|
m.def("incr_diag", [](int k) {
|
|
Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k);
|
|
for (int i = 0; i < k; i++) m.diagonal()[i] = i+1;
|
|
return m;
|
|
});
|
|
|
|
// Returns a SelfAdjointView referencing the lower triangle of m
|
|
m.def("symmetric_lower", [](const Eigen::MatrixXi &m) {
|
|
return m.selfadjointView<Eigen::Lower>();
|
|
});
|
|
// Returns a SelfAdjointView referencing the lower triangle of m
|
|
m.def("symmetric_upper", [](const Eigen::MatrixXi &m) {
|
|
return m.selfadjointView<Eigen::Upper>();
|
|
});
|
|
|
|
m.def("fixed_r", [mat]() -> FixedMatrixR {
|
|
return FixedMatrixR(mat);
|
|
});
|
|
|
|
m.def("fixed_c", [mat]() -> FixedMatrixC {
|
|
return FixedMatrixC(mat);
|
|
});
|
|
|
|
m.def("fixed_passthrough_r", [](const FixedMatrixR &m) -> FixedMatrixR {
|
|
return m;
|
|
});
|
|
|
|
m.def("fixed_passthrough_c", [](const FixedMatrixC &m) -> FixedMatrixC {
|
|
return m;
|
|
});
|
|
|
|
m.def("dense_r", [mat]() -> DenseMatrixR {
|
|
return DenseMatrixR(mat);
|
|
});
|
|
|
|
m.def("dense_c", [mat]() -> DenseMatrixC {
|
|
return DenseMatrixC(mat);
|
|
});
|
|
|
|
m.def("dense_passthrough_r", [](const DenseMatrixR &m) -> DenseMatrixR {
|
|
return m;
|
|
});
|
|
|
|
m.def("dense_passthrough_c", [](const DenseMatrixC &m) -> DenseMatrixC {
|
|
return m;
|
|
});
|
|
|
|
m.def("sparse_r", [mat]() -> SparseMatrixR {
|
|
return Eigen::SparseView<Eigen::MatrixXf>(mat);
|
|
});
|
|
|
|
m.def("sparse_c", [mat]() -> SparseMatrixC {
|
|
return Eigen::SparseView<Eigen::MatrixXf>(mat);
|
|
});
|
|
|
|
m.def("sparse_passthrough_r", [](const SparseMatrixR &m) -> SparseMatrixR {
|
|
return m;
|
|
});
|
|
|
|
m.def("sparse_passthrough_c", [](const SparseMatrixC &m) -> SparseMatrixC {
|
|
return m;
|
|
});
|
|
|
|
m.def("partial_passthrough_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR {
|
|
return m;
|
|
});
|
|
m.def("partial_passthrough_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR {
|
|
return m;
|
|
});
|
|
m.def("partial_passthrough_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC {
|
|
return m;
|
|
});
|
|
m.def("partial_passthrough_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC {
|
|
return m;
|
|
});
|
|
});
|