VAE Tiling Support - credits to deepbeepmeep's WanGP

This commit is contained in:
pftq 2025-03-18 22:16:33 -07:00 committed by GitHub
parent a0de59e928
commit 09ba994635
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,6 +1,6 @@
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
from mmgp import offload
import torch
import torch.cuda.amp as amp
import torch.nn as nn
@ -15,10 +15,6 @@ CACHE_T = 2
class CausalConv3d(nn.Conv3d):
"""
Causal 3d convolusion.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = (self.padding[2], self.padding[2], self.padding[1],
@ -31,48 +27,38 @@ class CausalConv3d(nn.Conv3d):
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
cache_x = None
x = F.pad(x, padding)
return super().forward(x)
x = super().forward(x)
return x
class RMS_norm(nn.Module):
def __init__(self, dim, channel_first=True, images=True, bias=False):
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
def forward(self, x):
return F.normalize(
x, dim=(1 if self.channel_first else
-1)) * self.scale * self.gamma + self.bias
x = F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
return x
class Upsample(nn.Upsample):
def forward(self, x):
"""
Fix bfloat16 support for nearest neighbor interpolation.
"""
return super().forward(x.float()).type_as(x)
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
'downsample3d')
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', 'downsample3d')
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == 'upsample2d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
@ -81,9 +67,7 @@ class Resample(nn.Module):
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
nn.Conv2d(dim, dim // 2, 3, padding=1))
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == 'downsample2d':
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
@ -92,9 +76,7 @@ class Resample(nn.Module):
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
@ -107,54 +89,38 @@ class Resample(nn.Module):
feat_cache[idx] = 'Rep'
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[
idx] is not None and feat_cache[idx] != 'Rep':
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
if cache_x.shape[2] < 2 and feat_cache[
idx] is not None and feat_cache[idx] == 'Rep':
cache_x = torch.cat([
torch.zeros_like(cache_x).to(cache_x.device),
cache_x
],
dim=2)
clone = True
cache_x = x[:, :, -CACHE_T:, :, :]
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != 'Rep':
clone = False
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == 'Rep':
clone = False
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
if clone:
cache_x = cache_x.clone()
if feat_cache[idx] == 'Rep':
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
3)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.resample(x)
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
if self.mode == 'downsample3d':
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_cache[idx] = x
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
# if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
# # cache last frame of last two chunk
# cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.time_conv(
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
@ -164,10 +130,8 @@ class Resample(nn.Module):
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
conv_weight.data[:, :, 1, 0, 0] = one_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
@ -176,7 +140,6 @@ class Resample(nn.Module):
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
@ -184,20 +147,16 @@ class Resample(nn.Module):
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False), nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1))
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
if in_dim != out_dim else nn.Identity()
self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
h = self.shortcut(x)
@ -206,12 +165,7 @@ class ResidualBlock(nn.Module):
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
@ -221,20 +175,12 @@ class ResidualBlock(nn.Module):
class AttentionBlock(nn.Module):
"""
Causal self-attention with a single head.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = RMS_norm(dim)
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
self.proj = nn.Conv2d(dim, dim, 1)
# zero out the last layer params
nn.init.zeros_(self.proj.weight)
def forward(self, x):
@ -242,36 +188,17 @@ class AttentionBlock(nn.Module):
b, c, t, h, w = x.size()
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.norm(x)
# compute query, key, value
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3,
-1).permute(0, 1, 3,
2).contiguous().chunk(
3, dim=-1)
# apply attention
x = F.scaled_dot_product_attention(
q,
k,
v,
)
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
x = F.scaled_dot_product_attention(q, k, v)
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
# output
x = self.proj(x)
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
return x + identity
class Encoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0):
def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[],
temperal_downsample=[True, True, False], dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
@ -279,38 +206,24 @@ class Encoder3d(nn.Module):
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
for _ in range(num_res_blocks):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
downsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# downsample block
if i != len(dim_mult) - 1:
mode = 'downsample3d' if temperal_downsample[
i] else 'downsample2d'
mode = 'downsample3d' if temperal_downsample[i] else 'downsample2d'
downsamples.append(Resample(out_dim, mode=mode))
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout))
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1))
@ -320,46 +233,32 @@ class Encoder3d(nn.Module):
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
del cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
del cache_x
feat_idx[0] += 1
else:
x = layer(x)
@ -367,15 +266,8 @@ class Encoder3d(nn.Module):
class Decoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0):
def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[],
temperal_upsample=[False, True, True], dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
@ -383,23 +275,14 @@ class Decoder3d(nn.Module):
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2**(len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout))
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i == 1 or i == 2 or i == 3:
in_dim = in_dim // 2
for _ in range(num_res_blocks + 1):
@ -407,65 +290,46 @@ class Decoder3d(nn.Module):
if scale in attn_scales:
upsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# upsample block
if i != len(dim_mult) - 1:
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
upsamples.append(Resample(out_dim, mode=mode))
scale *= 2.0
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, 3, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
del cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
del cache_x
feat_idx[0] += 1
else:
x = layer(x)
@ -481,15 +345,8 @@ def count_conv3d(model):
class WanVAE_(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0):
def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[],
temperal_downsample=[True, True, False], dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
@ -498,14 +355,10 @@ class WanVAE_(nn.Module):
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
attn_scales, self.temperal_downsample, dropout)
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
attn_scales, self.temperal_upsample, dropout)
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout)
def forward(self, x):
mu, log_var = self.encode(x)
@ -513,60 +366,120 @@ class WanVAE_(nn.Module):
x_recon = self.decode(z)
return x_recon, mu, log_var
def encode(self, x, scale):
def encode(self, x, scale=None):
self.clear_cache()
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
## 对encode输入的x按时间拆分为1、4、4、4....
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
if isinstance(scale[0], torch.Tensor):
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
1, self.z_dim, 1, 1, 1)
else:
mu = (mu - scale[0]) * scale[1]
if scale is not None:
if isinstance(scale[0], torch.Tensor):
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
else:
mu = (mu - scale[0]) * scale[1]
self.clear_cache()
return mu
def decode(self, z, scale):
def decode(self, z, scale=None):
self.clear_cache()
# z: [b,c,t,h,w]
if isinstance(scale[0], torch.Tensor):
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
1, self.z_dim, 1, 1, 1)
else:
z = z / scale[1] + scale[0]
if scale is not None:
if isinstance(scale[0], torch.Tensor):
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
else:
z = z / scale[1] + scale[0]
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
out = self.decoder(x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
else:
out_ = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
out_ = self.decoder(x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
out = torch.cat([out, out_], 2)
self.clear_cache()
return out
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
return b
def spatial_tiled_decode(self, z, scale, tile_size):
tile_sample_min_size = tile_size
tile_latent_min_size = int(tile_sample_min_size / 8)
tile_overlap_factor = 0.25
if isinstance(scale[0], torch.Tensor):
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
else:
z = z / scale[1] + scale[0]
overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor))
blend_extent = int(tile_sample_min_size * tile_overlap_factor)
row_limit = tile_sample_min_size - blend_extent
rows = []
for i in range(0, z.shape[-2], overlap_size):
row = []
for j in range(0, z.shape[-1], overlap_size):
tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size]
decoded = self.decode(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=-1))
return torch.cat(result_rows, dim=-2)
def spatial_tiled_encode(self, x, scale, tile_size):
tile_sample_min_size = tile_size
tile_latent_min_size = int(tile_sample_min_size / 8)
tile_overlap_factor = 0.25
overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor))
blend_extent = int(tile_latent_min_size * tile_overlap_factor)
row_limit = tile_latent_min_size - blend_extent
rows = []
for i in range(0, x.shape[-2], overlap_size):
row = []
for j in range(0, x.shape[-1], overlap_size):
tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size]
tile = self.encode(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=-1))
mu = torch.cat(result_rows, dim=-2)
if isinstance(scale[0], torch.Tensor):
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
else:
mu = (mu - scale[0]) * scale[1]
return mu
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
@ -583,81 +496,43 @@ class WanVAE_(nn.Module):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
#cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num
def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs):
"""
Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
"""
# params
cfg = dict(
dim=96,
z_dim=z_dim,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[False, True, True],
dropout=0.0)
cfg = dict(dim=96, z_dim=z_dim, dim_mult=[1, 2, 4, 4], num_res_blocks=2,
attn_scales=[], temperal_downsample=[False, True, True], dropout=0.0)
cfg.update(**kwargs)
# init model
with torch.device('meta'):
model = WanVAE_(**cfg)
# load checkpoint
model = WanVAE_(**cfg)
logging.info(f'loading {pretrained_path}')
model.load_state_dict(
torch.load(pretrained_path, map_location=device), assign=True)
model.load_state_dict(torch.load(pretrained_path, map_location=device), assign=True)
return model
class WanVAE:
def __init__(self,
z_dim=16,
vae_pth='cache/vae_step_411000.pth',
dtype=torch.float,
device="cuda"):
def __init__(self, z_dim=16, vae_pth='cache/vae_step_411000.pth', dtype=torch.float, device="cuda"):
self.dtype = dtype
self.device = device
mean = [
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]
std = [
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]
mean = [-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921]
std = [2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160]
self.mean = torch.tensor(mean, dtype=dtype, device=device)
self.std = torch.tensor(std, dtype=dtype, device=device)
self.scale = [self.mean, 1.0 / self.std]
self.model = _video_vae(pretrained_path=vae_pth, z_dim=z_dim, device=device)
self.model = self.model.eval().requires_grad_(False).to(device)
# init model
self.model = _video_vae(
pretrained_path=vae_pth,
z_dim=z_dim,
).eval().requires_grad_(False).to(device)
def encode(self, videos, tile_size=256):
if tile_size > 0:
return [self.model.spatial_tiled_encode(u.unsqueeze(0), self.scale, tile_size).float().squeeze(0) for u in videos]
else:
return [self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0) for u in videos]
def encode(self, videos):
"""
videos: A list of videos each with shape [C, T, H, W].
"""
with amp.autocast(dtype=self.dtype):
return [
self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0)
for u in videos
]
def decode(self, zs):
with amp.autocast(dtype=self.dtype):
return [
self.model.decode(u.unsqueeze(0),
self.scale).float().clamp_(-1, 1).squeeze(0)
for u in zs
]
def decode(self, zs, tile_size):
if tile_size > 0:
return [self.model.spatial_tiled_decode(u.unsqueeze(0), self.scale, tile_size).float().clamp_(-1, 1).squeeze(0) for u in zs]
else:
return [self.model.decode(u.unsqueeze(0), self.scale).float().clamp_(-1, 1).squeeze(0) for u in zs]