mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-06 23:34:53 +00:00
539 lines
23 KiB
Python
539 lines
23 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import logging
|
|
from mmgp import offload
|
|
import torch
|
|
import torch.cuda.amp as amp
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
|
|
__all__ = [
|
|
'WanVAE',
|
|
]
|
|
|
|
CACHE_T = 2
|
|
|
|
|
|
class CausalConv3d(nn.Conv3d):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._padding = (self.padding[2], self.padding[2], self.padding[1],
|
|
self.padding[1], 2 * self.padding[0], 0)
|
|
self.padding = (0, 0, 0)
|
|
|
|
def forward(self, x, cache_x=None):
|
|
padding = list(self._padding)
|
|
if cache_x is not None and self._padding[4] > 0:
|
|
cache_x = cache_x.to(x.device)
|
|
x = torch.cat([cache_x, x], dim=2)
|
|
padding[4] -= cache_x.shape[2]
|
|
cache_x = None
|
|
x = F.pad(x, padding)
|
|
x = super().forward(x)
|
|
return x
|
|
|
|
|
|
class RMS_norm(nn.Module):
|
|
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
|
super().__init__()
|
|
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
|
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
|
self.channel_first = channel_first
|
|
self.scale = dim**0.5
|
|
self.gamma = nn.Parameter(torch.ones(shape))
|
|
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
|
|
|
|
def forward(self, x):
|
|
x = F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
|
|
return x
|
|
|
|
|
|
class Upsample(nn.Upsample):
|
|
def forward(self, x):
|
|
return super().forward(x.float()).type_as(x)
|
|
|
|
|
|
class Resample(nn.Module):
|
|
def __init__(self, dim, mode):
|
|
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', 'downsample3d')
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.mode = mode
|
|
if mode == 'upsample2d':
|
|
self.resample = nn.Sequential(
|
|
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
|
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
|
elif mode == 'upsample3d':
|
|
self.resample = nn.Sequential(
|
|
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
|
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
|
self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
|
elif mode == 'downsample2d':
|
|
self.resample = nn.Sequential(
|
|
nn.ZeroPad2d((0, 1, 0, 1)),
|
|
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
|
elif mode == 'downsample3d':
|
|
self.resample = nn.Sequential(
|
|
nn.ZeroPad2d((0, 1, 0, 1)),
|
|
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
|
self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
|
else:
|
|
self.resample = nn.Identity()
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
b, c, t, h, w = x.size()
|
|
if self.mode == 'upsample3d':
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
if feat_cache[idx] is None:
|
|
feat_cache[idx] = 'Rep'
|
|
feat_idx[0] += 1
|
|
else:
|
|
clone = True
|
|
cache_x = x[:, :, -CACHE_T:, :, :]
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != 'Rep':
|
|
clone = False
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == 'Rep':
|
|
clone = False
|
|
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
|
|
if clone:
|
|
cache_x = cache_x.clone()
|
|
if feat_cache[idx] == 'Rep':
|
|
x = self.time_conv(x)
|
|
else:
|
|
x = self.time_conv(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
x = x.reshape(b, 2, c, t, h, w)
|
|
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
|
|
x = x.reshape(b, c, t * 2, h, w)
|
|
t = x.shape[2]
|
|
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
|
x = self.resample(x)
|
|
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
|
if self.mode == 'downsample3d':
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
if feat_cache[idx] is None:
|
|
feat_cache[idx] = x
|
|
feat_idx[0] += 1
|
|
else:
|
|
cache_x = x[:, :, -1:, :, :].clone()
|
|
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
return x
|
|
|
|
def init_weight(self, conv):
|
|
conv_weight = conv.weight
|
|
nn.init.zeros_(conv_weight)
|
|
c1, c2, t, h, w = conv_weight.size()
|
|
one_matrix = torch.eye(c1, c2)
|
|
nn.init.zeros_(conv_weight)
|
|
conv_weight.data[:, :, 1, 0, 0] = one_matrix
|
|
conv.weight.data.copy_(conv_weight)
|
|
nn.init.zeros_(conv.bias.data)
|
|
|
|
def init_weight2(self, conv):
|
|
conv_weight = conv.weight.data
|
|
nn.init.zeros_(conv_weight)
|
|
c1, c2, t, h, w = conv_weight.size()
|
|
init_matrix = torch.eye(c1 // 2, c2)
|
|
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
|
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
|
conv.weight.data.copy_(conv_weight)
|
|
nn.init.zeros_(conv.bias.data)
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, in_dim, out_dim, dropout=0.0):
|
|
super().__init__()
|
|
self.in_dim = in_dim
|
|
self.out_dim = out_dim
|
|
self.residual = nn.Sequential(
|
|
RMS_norm(in_dim, images=False), nn.SiLU(),
|
|
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
|
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
|
|
CausalConv3d(out_dim, out_dim, 3, padding=1))
|
|
self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
h = self.shortcut(x)
|
|
for layer in self.residual:
|
|
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
|
|
x = layer(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = layer(x)
|
|
return x + h
|
|
|
|
|
|
class AttentionBlock(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.norm = RMS_norm(dim)
|
|
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
|
self.proj = nn.Conv2d(dim, dim, 1)
|
|
nn.init.zeros_(self.proj.weight)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
b, c, t, h, w = x.size()
|
|
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
|
x = self.norm(x)
|
|
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
|
|
x = F.scaled_dot_product_attention(q, k, v)
|
|
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
|
x = self.proj(x)
|
|
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
|
return x + identity
|
|
|
|
|
|
class Encoder3d(nn.Module):
|
|
def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[],
|
|
temperal_downsample=[True, True, False], dropout=0.0):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.z_dim = z_dim
|
|
self.dim_mult = dim_mult
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attn_scales = attn_scales
|
|
self.temperal_downsample = temperal_downsample
|
|
dims = [dim * u for u in [1] + dim_mult]
|
|
scale = 1.0
|
|
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
|
downsamples = []
|
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
|
for _ in range(num_res_blocks):
|
|
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
|
if scale in attn_scales:
|
|
downsamples.append(AttentionBlock(out_dim))
|
|
in_dim = out_dim
|
|
if i != len(dim_mult) - 1:
|
|
mode = 'downsample3d' if temperal_downsample[i] else 'downsample2d'
|
|
downsamples.append(Resample(out_dim, mode=mode))
|
|
scale /= 2.0
|
|
self.downsamples = nn.Sequential(*downsamples)
|
|
self.middle = nn.Sequential(
|
|
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
|
|
ResidualBlock(out_dim, out_dim, dropout))
|
|
self.head = nn.Sequential(
|
|
RMS_norm(out_dim, images=False), nn.SiLU(),
|
|
CausalConv3d(out_dim, z_dim, 3, padding=1))
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
|
|
x = self.conv1(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
del cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv1(x)
|
|
for layer in self.downsamples:
|
|
if feat_cache is not None:
|
|
x = layer(x, feat_cache, feat_idx)
|
|
else:
|
|
x = layer(x)
|
|
for layer in self.middle:
|
|
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
|
x = layer(x, feat_cache, feat_idx)
|
|
else:
|
|
x = layer(x)
|
|
for layer in self.head:
|
|
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
|
|
x = layer(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
del cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
class Decoder3d(nn.Module):
|
|
def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[],
|
|
temperal_upsample=[False, True, True], dropout=0.0):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.z_dim = z_dim
|
|
self.dim_mult = dim_mult
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attn_scales = attn_scales
|
|
self.temperal_upsample = temperal_upsample
|
|
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
|
scale = 1.0 / 2**(len(dim_mult) - 2)
|
|
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
|
self.middle = nn.Sequential(
|
|
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
|
|
ResidualBlock(dims[0], dims[0], dropout))
|
|
upsamples = []
|
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
|
if i == 1 or i == 2 or i == 3:
|
|
in_dim = in_dim // 2
|
|
for _ in range(num_res_blocks + 1):
|
|
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
|
if scale in attn_scales:
|
|
upsamples.append(AttentionBlock(out_dim))
|
|
in_dim = out_dim
|
|
if i != len(dim_mult) - 1:
|
|
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
|
|
upsamples.append(Resample(out_dim, mode=mode))
|
|
scale *= 2.0
|
|
self.upsamples = nn.Sequential(*upsamples)
|
|
self.head = nn.Sequential(
|
|
RMS_norm(out_dim, images=False), nn.SiLU(),
|
|
CausalConv3d(out_dim, 3, 3, padding=1))
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
|
|
x = self.conv1(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
del cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv1(x)
|
|
for layer in self.middle:
|
|
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
|
x = layer(x, feat_cache, feat_idx)
|
|
else:
|
|
x = layer(x)
|
|
for layer in self.upsamples:
|
|
if feat_cache is not None:
|
|
x = layer(x, feat_cache, feat_idx)
|
|
else:
|
|
x = layer(x)
|
|
for layer in self.head:
|
|
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2)
|
|
x = layer(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
del cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
def count_conv3d(model):
|
|
count = 0
|
|
for m in model.modules():
|
|
if isinstance(m, CausalConv3d):
|
|
count += 1
|
|
return count
|
|
|
|
|
|
class WanVAE_(nn.Module):
|
|
def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[],
|
|
temperal_downsample=[True, True, False], dropout=0.0):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.z_dim = z_dim
|
|
self.dim_mult = dim_mult
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attn_scales = attn_scales
|
|
self.temperal_downsample = temperal_downsample
|
|
self.temperal_upsample = temperal_downsample[::-1]
|
|
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout)
|
|
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
|
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
|
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout)
|
|
|
|
def forward(self, x):
|
|
mu, log_var = self.encode(x)
|
|
z = self.reparameterize(mu, log_var)
|
|
x_recon = self.decode(z)
|
|
return x_recon, mu, log_var
|
|
|
|
def encode(self, x, scale=None):
|
|
self.clear_cache()
|
|
t = x.shape[2]
|
|
iter_ = 1 + (t - 1) // 4
|
|
for i in range(iter_):
|
|
self._enc_conv_idx = [0]
|
|
if i == 0:
|
|
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
|
else:
|
|
out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
|
out = torch.cat([out, out_], 2)
|
|
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
|
if scale is not None:
|
|
if isinstance(scale[0], torch.Tensor):
|
|
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
|
|
else:
|
|
mu = (mu - scale[0]) * scale[1]
|
|
self.clear_cache()
|
|
return mu
|
|
|
|
def decode(self, z, scale=None):
|
|
self.clear_cache()
|
|
if scale is not None:
|
|
if isinstance(scale[0], torch.Tensor):
|
|
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
|
|
else:
|
|
z = z / scale[1] + scale[0]
|
|
iter_ = z.shape[2]
|
|
x = self.conv2(z)
|
|
for i in range(iter_):
|
|
self._conv_idx = [0]
|
|
if i == 0:
|
|
out = self.decoder(x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
|
else:
|
|
out_ = self.decoder(x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
|
out = torch.cat([out, out_], 2)
|
|
self.clear_cache()
|
|
return out
|
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
|
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
|
for y in range(blend_extent):
|
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
|
|
return b
|
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
|
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
|
for x in range(blend_extent):
|
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
|
|
return b
|
|
|
|
def spatial_tiled_decode(self, z, scale, tile_size):
|
|
tile_sample_min_size = tile_size
|
|
tile_latent_min_size = int(tile_sample_min_size / 8)
|
|
tile_overlap_factor = 0.25
|
|
if isinstance(scale[0], torch.Tensor):
|
|
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
|
|
else:
|
|
z = z / scale[1] + scale[0]
|
|
overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor))
|
|
blend_extent = int(tile_sample_min_size * tile_overlap_factor)
|
|
row_limit = tile_sample_min_size - blend_extent
|
|
rows = []
|
|
for i in range(0, z.shape[-2], overlap_size):
|
|
row = []
|
|
for j in range(0, z.shape[-1], overlap_size):
|
|
tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size]
|
|
decoded = self.decode(tile)
|
|
row.append(decoded)
|
|
rows.append(row)
|
|
result_rows = []
|
|
for i, row in enumerate(rows):
|
|
result_row = []
|
|
for j, tile in enumerate(row):
|
|
if i > 0:
|
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
|
if j > 0:
|
|
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
|
result_rows.append(torch.cat(result_row, dim=-1))
|
|
return torch.cat(result_rows, dim=-2)
|
|
|
|
def spatial_tiled_encode(self, x, scale, tile_size):
|
|
tile_sample_min_size = tile_size
|
|
tile_latent_min_size = int(tile_sample_min_size / 8)
|
|
tile_overlap_factor = 0.25
|
|
overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor))
|
|
blend_extent = int(tile_latent_min_size * tile_overlap_factor)
|
|
row_limit = tile_latent_min_size - blend_extent
|
|
rows = []
|
|
for i in range(0, x.shape[-2], overlap_size):
|
|
row = []
|
|
for j in range(0, x.shape[-1], overlap_size):
|
|
tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size]
|
|
tile = self.encode(tile)
|
|
row.append(tile)
|
|
rows.append(row)
|
|
result_rows = []
|
|
for i, row in enumerate(rows):
|
|
result_row = []
|
|
for j, tile in enumerate(row):
|
|
if i > 0:
|
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
|
if j > 0:
|
|
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
|
result_rows.append(torch.cat(result_row, dim=-1))
|
|
mu = torch.cat(result_rows, dim=-2)
|
|
if isinstance(scale[0], torch.Tensor):
|
|
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
|
|
else:
|
|
mu = (mu - scale[0]) * scale[1]
|
|
return mu
|
|
|
|
def reparameterize(self, mu, log_var):
|
|
std = torch.exp(0.5 * log_var)
|
|
eps = torch.randn_like(std)
|
|
return eps * std + mu
|
|
|
|
def sample(self, imgs, deterministic=False):
|
|
mu, log_var = self.encode(imgs)
|
|
if deterministic:
|
|
return mu
|
|
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
|
return mu + std * torch.randn_like(std)
|
|
|
|
def clear_cache(self):
|
|
self._conv_num = count_conv3d(self.decoder)
|
|
self._conv_idx = [0]
|
|
self._feat_map = [None] * self._conv_num
|
|
self._enc_conv_num = count_conv3d(self.encoder)
|
|
self._enc_conv_idx = [0]
|
|
self._enc_feat_map = [None] * self._enc_conv_num
|
|
|
|
|
|
def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs):
|
|
cfg = dict(dim=96, z_dim=z_dim, dim_mult=[1, 2, 4, 4], num_res_blocks=2,
|
|
attn_scales=[], temperal_downsample=[False, True, True], dropout=0.0)
|
|
cfg.update(**kwargs)
|
|
model = WanVAE_(**cfg)
|
|
logging.info(f'loading {pretrained_path}')
|
|
model.load_state_dict(torch.load(pretrained_path, map_location=device), assign=True)
|
|
return model
|
|
|
|
|
|
class WanVAE:
|
|
def __init__(self, z_dim=16, vae_pth='cache/vae_step_411000.pth', dtype=torch.float, device="cuda"):
|
|
self.dtype = dtype
|
|
self.device = device
|
|
mean = [-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
|
|
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921]
|
|
std = [2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
|
|
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160]
|
|
self.mean = torch.tensor(mean, dtype=dtype, device=device)
|
|
self.std = torch.tensor(std, dtype=dtype, device=device)
|
|
self.scale = [self.mean, 1.0 / self.std]
|
|
self.model = _video_vae(pretrained_path=vae_pth, z_dim=z_dim, device=device)
|
|
self.model = self.model.eval().requires_grad_(False).to(device)
|
|
|
|
def encode(self, videos, tile_size=256):
|
|
if tile_size > 0:
|
|
return [self.model.spatial_tiled_encode(u.unsqueeze(0), self.scale, tile_size).float().squeeze(0) for u in videos]
|
|
else:
|
|
return [self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0) for u in videos]
|
|
|
|
def decode(self, zs, tile_size):
|
|
if tile_size > 0:
|
|
return [self.model.spatial_tiled_decode(u.unsqueeze(0), self.scale, tile_size).float().clamp_(-1, 1).squeeze(0) for u in zs]
|
|
else:
|
|
return [self.model.decode(u.unsqueeze(0), self.scale).float().clamp_(-1, 1).squeeze(0) for u in zs]
|