stuff and more stuff

This commit is contained in:
DeepBeepMeep 2025-07-02 14:08:59 +02:00
parent e0666a3e6d
commit 28fc48db2d
125 changed files with 11593 additions and 578 deletions

View File

@ -0,0 +1,16 @@
You can override the choice of Resolutions offered by WanGP, if you create a file "resolutions.json" in the main WanGP folder.
This file is composed of a list of 2 elements sublists. Each 2 elements sublist should have the format ["Label", "WxH"] where W, H are respectively the Width and Height of the resolution. Please make sure that W and H are multiples of 16. The letter "x" should be placed inbetween these two dimensions.
Here is below a sample "resolutions.json" file :
[
["1280x720 (16:9, 720p)", "1280x720"],
["720x1280 (9:16, 720p)", "720x1280"],
["1024x1024 (1:1, 720p)", "1024x1024"],
["1280x544 (21:9, 720p)", "1280x544"],
["544x1280 (9:21, 720p)", "544x1280"],
["1104x832 (4:3, 720p)", "1104x832"],
["832x1104 (3:4, 720p)", "832x1104"],
["960x960 (1:1, 720p)", "960x960"],
["832x480 (16:9, 480p)", "832x480"]
]

View File

@ -11,7 +11,7 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models
- Very Fast on the latest GPUs
- Easy to use Full Web based interface
- Auto download of the required model adapted to your specific architecture
- Tools integrated to facilitate Video Generation : Mask Editor, Prompt Enhancer, Temporal and Spatial Generation
- Tools integrated to facilitate Video Generation : Mask Editor, Prompt Enhancer, Temporal and Spatial Generation, MMAudio, Vew
- Loras Support to customize each model
- Queuing system : make your shopping list of videos to generate and come back later
@ -20,6 +20,21 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models
**Follow DeepBeepMeep on Twitter/X to get the Latest News**: https://x.com/deepbeepmeep
## 🔥 Latest Updates
### July 2 2025: WanGP v6.5, WanGP takes care of you: lots of quality of life features:
- View directly inside WanGP the properties (seed, resolutions, length, most settings...) of the past generations
- In one click use the newly generated video as a Control Video or Source Video to be continued
- Manage multiple settings for the same model and switch between them using a dropdown box
- WanGP will keep the last generated videos in the Gallery and will remember the last model you used if you restart the app but kept the Web page open
Taking care of your life is not enough, you want new stuff to play with ?
- MMAudio directly inside WanGP : add an audio soundtrack that matches the content of your video. By the way it is a low VRAM MMAudio and 6 GB of VRAM should be sufficient
- Forgot to upsample your video during the generation ? want to try another MMAudio variation ? Fear not you can also apply upsampling or add an MMAudio track once the video generation is done. Even better you can ask WangGP for multiple variations of MMAudio to pick the one you like best
- MagCache support: a new step skipping approach, supposed to be better than TeaCache. Makes a difference if you usually generate with a high number of steps
- SageAttention2++ support : not just the compatibility but also a slightly reduced VRAM usage
- Video2Video in Wan Text2Video : this is the paradox, a text2video can become a video2video if you start the denoising process later on an existing video
- FusioniX upsampler: this is an illustration of Video2Video in Text2Video. Use the FusioniX text2video model with an output resolution of 1080p and a denoising strength of 0.25 and you will get one of the best upsamplers (in only 2/3 steps, you will need lots of VRAM though). Increase the denoising strength and you will get one of the best Video Restorer
- Preliminary support for multiple Wan Samplers
### June 23 2025: WanGP v6.3, Vace Unleashed. Thought we couldnt squeeze Vace even more ?
- Multithreaded preprocessing when possible for faster generations
- Multithreaded frames Lanczos Upsampling as a bonus

View File

@ -206,17 +206,38 @@ https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_T2V_14B_lightx2v_cfg
## Macro System (Advanced)
Create multiple prompts from templates using macros:
Create multiple prompts from templates using macros. This allows you to generate variations of a sentence by defining lists of values for different variables.
**Syntax Rule:**
Define your variables on a single line starting with `!`. Each complete variable definition, including its name and values, **must be separated by a colon (`:`)**.
**Format:**
```
! {Subject}="cat","woman","man", {Location}="forest","lake","city", {Possessive}="its","her","his"
! {Variable1}="valueA","valueB" : {Variable2}="valueC","valueD"
This is a template using {Variable1} and {Variable2}.
```
**Example:**
The following macro will generate three distinct prompts by cycling through the values for each variable.
**Macro Definition:**
```
! {Subject}="cat","woman","man" : {Location}="forest","lake","city" : {Possessive}="its","her","his"
In the video, a {Subject} is presented. The {Subject} is in a {Location} and looks at {Possessive} watch.
```
This generates:
1. "In the video, a cat is presented. The cat is in a forest and looks at its watch."
2. "In the video, a woman is presented. The woman is in a lake and looks at her watch."
3. "In the video, a man is presented. The man is in a city and looks at his watch."
**Generated Output:**
```
In the video, a cat is presented. The cat is in a forest and looks at its watch.
In the video, a woman is presented. The woman is in a lake and looks at her watch.
In the video, a man is presented. The man is in a city and looks at his watch.
```
## Troubleshooting

View File

@ -949,11 +949,15 @@ class HunyuanVideoPipeline(DiffusionPipeline):
# width = width or self.transformer.config.sample_size * self.vae_scale_factor
# to deal with lora scaling and other possible forward hooks
trans = self.transformer
if trans.enable_cache:
teacache_multiplier = trans.teacache_multiplier
if trans.enable_cache == "tea":
teacache_multiplier = trans.cache_multiplier
trans.accumulated_rel_l1_distance = 0
trans.rel_l1_thresh = 0.1 if teacache_multiplier < 2 else 0.15
# trans.cache_start_step = int(tea_cache_start_step_perc*num_inference_steps/100)
elif trans.enable_cache == "mag":
trans.compute_magcache_threshold(trans.cache_start_step, num_inference_steps, trans.cache_multiplier)
trans.accumulated_err, trans.accumulated_steps, trans.accumulated_ratio = 0, 0, 1.0
else:
trans.enable_cache == None
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,

View File

@ -934,10 +934,15 @@ class HunyuanVideoAudioPipeline(DiffusionPipeline):
transformer = self.transformer
if transformer.enable_cache:
teacache_multiplier = transformer.teacache_multiplier
if transformer.enable_cache == "tea":
teacache_multiplier = transformer.cache_multiplier
transformer.accumulated_rel_l1_distance = 0
transformer.rel_l1_thresh = 0.1 if teacache_multiplier < 2 else 0.15
elif transformer.enable_cache == "mag":
transformer.compute_magcache_threshold(transformer.cache_start_step, num_inference_steps, transformer.cache_multiplier)
transformer.accumulated_err, transformer.accumulated_steps, transformer.accumulated_ratio = 0, 0, 1.0
else:
transformer.enable_cache == None
# 1. Check inputs. Raise error if not correct
self.check_inputs(
@ -1136,7 +1141,7 @@ class HunyuanVideoAudioPipeline(DiffusionPipeline):
if self._interrupt:
return [None]
if transformer.enable_cache:
if transformer.enable_cache == "tea":
cache_size = round( infer_length / frames_per_batch )
transformer.previous_residual = [None] * latent_items
cache_all_previous_residual = [None] * latent_items
@ -1144,6 +1149,8 @@ class HunyuanVideoAudioPipeline(DiffusionPipeline):
cache_should_calc = [True] * cache_size
cache_accumulated_rel_l1_distance = [0.] * cache_size
cache_teacache_skipped_steps = [0] * cache_size
elif transformer.enable_cache == "mag":
transformer.previous_residual = [None] * latent_items
with self.progress_bar(total=num_inference_steps) as progress_bar:
@ -1180,7 +1187,7 @@ class HunyuanVideoAudioPipeline(DiffusionPipeline):
img_ref_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * ( 1)
img_all_len = (latents_all.shape[-1] // 2) * (latents_all.shape[-2] // 2) * latents_all.shape[-3]
if transformer.enable_cache and cache_size > 1:
if transformer.enable_cache == "tea" and cache_size > 1:
for l in range(latent_items):
if cache_all_previous_residual[l] != None:
bsz = cache_all_previous_residual[l].shape[0]
@ -1297,7 +1304,7 @@ class HunyuanVideoAudioPipeline(DiffusionPipeline):
pred_latents[:, :, p] += latents[:, :, iii]
counter[:, :, p] += 1
if transformer.enable_cache and cache_size > 1:
if transformer.enable_cache == "tea" and cache_size > 1:
for l in range(latent_items):
if transformer.previous_residual[l] != None:
bsz = transformer.previous_residual[l].shape[0]

View File

@ -494,7 +494,7 @@ class MMSingleStreamBlock(nn.Module):
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
def preprocess_loras(self, model_type, sd):
if model_type != "i2v" :
if model_type != "hunyuan_i2v" :
return sd
new_sd = {}
for k,v in sd.items():
@ -797,6 +797,59 @@ class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
for block in self.single_blocks:
block.disable_deterministic()
def compute_magcache_threshold(self, start_step, num_inference_steps = 0, speed_factor =0):
def nearest_interp(src_array, target_length):
src_length = len(src_array)
if target_length == 1:
return np.array([src_array[-1]])
scale = (src_length - 1) / (target_length - 1)
mapped_indices = np.round(np.arange(target_length) * scale).astype(int)
return src_array[mapped_indices]
if len(self.def_mag_ratios) != num_inference_steps:
self.mag_ratios = nearest_interp(self.def_mag_ratios, num_inference_steps)
else:
self.mag_ratios = self.def_mag_ratios
best_deltas = None
best_threshold = 0.01
best_diff = 1000
best_signed_diff = 1000
target_nb_steps= int(num_inference_steps / speed_factor)
threshold = 0.01
while threshold <= 0.6:
nb_steps = 0
diff = 1000
accumulated_err, accumulated_steps, accumulated_ratio = 0, 0, 1.0
for i in range(num_inference_steps):
if i<=start_step:
skip = False
else:
cur_mag_ratio = self.mag_ratios[i] # conditional and unconditional in one list
accumulated_ratio *= cur_mag_ratio # magnitude ratio between current step and the cached step
accumulated_steps += 1 # skip steps plus 1
cur_skip_err = np.abs(1-accumulated_ratio) # skip error of current steps
accumulated_err += cur_skip_err # accumulated error of multiple steps
if accumulated_err<threshold and accumulated_steps<=self.magcache_K:
skip = True
else:
skip = False
accumulated_err, accumulated_steps, accumulated_ratio = 0, 0, 1.0
if not skip:
nb_steps += 1
signed_diff = target_nb_steps - nb_steps
diff = abs(signed_diff)
if diff < best_diff:
best_threshold = threshold
best_diff = diff
best_signed_diff = signed_diff
elif diff > best_diff:
break
threshold += 0.01
self.magcache_thresh = best_threshold
print(f"Mag Cache, best threshold found:{best_threshold:0.2f} with gain x{num_inference_steps/(target_nb_steps - best_signed_diff):0.2f} for a target of x{speed_factor}")
return best_threshold
def forward(
self,
x: torch.Tensor,
@ -925,25 +978,38 @@ class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
if self.enable_cache:
if x_id == 0:
self.should_calc = True
inp = img[0:1]
vec_ = vec[0:1]
( img_mod1_shift, img_mod1_scale, _ , _ , _ , _ , ) = self.double_blocks[0].img_mod(vec_).chunk(6, dim=-1)
normed_inp = self.double_blocks[0].img_norm1(inp)
normed_inp = normed_inp.to(torch.bfloat16)
modulated_inp = modulate( normed_inp, shift=img_mod1_shift, scale=img_mod1_scale )
del normed_inp, img_mod1_shift, img_mod1_scale
if step_no <= self.cache_start_step or step_no == self.num_steps-1:
self.accumulated_rel_l1_distance = 0
if self.enable_cache == "mag":
if step_no > self.cache_start_step:
cur_mag_ratio = self.mag_ratios[step_no]
self.accumulated_ratio = self.accumulated_ratio*cur_mag_ratio
cur_skip_err = np.abs(1-self.accumulated_ratio)
self.accumulated_err += cur_skip_err
self.accumulated_steps += 1
if self.accumulated_err<=self.magcache_thresh and self.accumulated_steps<=self.magcache_K:
self.should_calc = False
self.cache_skipped_steps += 1
else:
self.accumulated_ratio, self.accumulated_steps, self.accumulated_err = 1.0, 0, 0
else:
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
self.should_calc = False
self.teacache_skipped_steps += 1
else:
inp = img[0:1]
vec_ = vec[0:1]
( img_mod1_shift, img_mod1_scale, _ , _ , _ , _ , ) = self.double_blocks[0].img_mod(vec_).chunk(6, dim=-1)
normed_inp = self.double_blocks[0].img_norm1(inp)
normed_inp = normed_inp.to(torch.bfloat16)
modulated_inp = modulate( normed_inp, shift=img_mod1_shift, scale=img_mod1_scale )
del normed_inp, img_mod1_shift, img_mod1_scale
if step_no <= self.cache_start_step or step_no == self.num_steps-1:
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
else:
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
self.should_calc = False
self.cache_skipped_steps += 1
else:
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
else:
self.should_calc = True

View File

@ -584,10 +584,10 @@ def main():
# If teacache => reset counters
if trans.enable_cache:
trans.teacache_counter = 0
trans.teacache_multiplier = args.teacache
trans.cache_multiplier = args.teacache
trans.cache_start_step = int(args.teacache_start * args.steps / 100.0)
trans.num_steps = args.steps
trans.teacache_skipped_steps = 0
trans.cache_skipped_steps = 0
trans.previous_residual_uncond = None
trans.previous_residual_cond = None

View File

View File

View File

@ -0,0 +1,188 @@
from dataclasses import dataclass
from fractions import Fraction
from pathlib import Path
from typing import Optional
import av
import numpy as np
import torch
from av import AudioFrame
@dataclass
class VideoInfo:
duration_sec: float
fps: Fraction
clip_frames: torch.Tensor
sync_frames: torch.Tensor
all_frames: Optional[list[np.ndarray]]
@property
def height(self):
return self.all_frames[0].shape[0]
@property
def width(self):
return self.all_frames[0].shape[1]
@classmethod
def from_image_info(cls, image_info: 'ImageInfo', duration_sec: float,
fps: Fraction) -> 'VideoInfo':
num_frames = int(duration_sec * fps)
all_frames = [image_info.original_frame] * num_frames
return cls(duration_sec=duration_sec,
fps=fps,
clip_frames=image_info.clip_frames,
sync_frames=image_info.sync_frames,
all_frames=all_frames)
@dataclass
class ImageInfo:
clip_frames: torch.Tensor
sync_frames: torch.Tensor
original_frame: Optional[np.ndarray]
@property
def height(self):
return self.original_frame.shape[0]
@property
def width(self):
return self.original_frame.shape[1]
def read_frames(video_path: Path, list_of_fps: list[float], start_sec: float, end_sec: float,
need_all_frames: bool) -> tuple[list[np.ndarray], list[np.ndarray], Fraction]:
output_frames = [[] for _ in list_of_fps]
next_frame_time_for_each_fps = [0.0 for _ in list_of_fps]
time_delta_for_each_fps = [1 / fps for fps in list_of_fps]
all_frames = []
# container = av.open(video_path)
with av.open(video_path) as container:
stream = container.streams.video[0]
fps = stream.guessed_rate
stream.thread_type = 'AUTO'
for packet in container.demux(stream):
for frame in packet.decode():
frame_time = frame.time
if frame_time < start_sec:
continue
if frame_time > end_sec:
break
frame_np = None
if need_all_frames:
frame_np = frame.to_ndarray(format='rgb24')
all_frames.append(frame_np)
for i, _ in enumerate(list_of_fps):
this_time = frame_time
while this_time >= next_frame_time_for_each_fps[i]:
if frame_np is None:
frame_np = frame.to_ndarray(format='rgb24')
output_frames[i].append(frame_np)
next_frame_time_for_each_fps[i] += time_delta_for_each_fps[i]
output_frames = [np.stack(frames) for frames in output_frames]
return output_frames, all_frames, fps
def reencode_with_audio(video_info: VideoInfo, output_path: Path, audio: torch.Tensor,
sampling_rate: int):
container = av.open(output_path, 'w')
output_video_stream = container.add_stream('h264', video_info.fps)
output_video_stream.codec_context.bit_rate = 10 * 1e6 # 10 Mbps
output_video_stream.width = video_info.width
output_video_stream.height = video_info.height
output_video_stream.pix_fmt = 'yuv420p'
output_audio_stream = container.add_stream('aac', sampling_rate)
# encode video
for image in video_info.all_frames:
image = av.VideoFrame.from_ndarray(image)
packet = output_video_stream.encode(image)
container.mux(packet)
for packet in output_video_stream.encode():
container.mux(packet)
# convert float tensor audio to numpy array
audio_np = audio.numpy().astype(np.float32)
audio_frame = AudioFrame.from_ndarray(audio_np, format='flt', layout='mono')
audio_frame.sample_rate = sampling_rate
for packet in output_audio_stream.encode(audio_frame):
container.mux(packet)
for packet in output_audio_stream.encode():
container.mux(packet)
container.close()
import subprocess
import tempfile
from pathlib import Path
import torch
def remux_with_audio(video_path: Path, output_path: Path, audio: torch.Tensor, sampling_rate: int):
"""Remux video with new audio using FFmpeg."""
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f:
temp_path = Path(f.name)
try:
# Write audio as WAV
import torchaudio
torchaudio.save(str(temp_path), audio.unsqueeze(0) if audio.dim() == 1 else audio, sampling_rate)
# Remux with FFmpeg
subprocess.run([
'ffmpeg', '-i', str(video_path), '-i', str(temp_path),
'-c:v', 'copy', '-c:a', 'aac', '-map', '0:v', '-map', '1:a',
'-shortest', '-y', str(output_path)
], check=True, capture_output=True)
finally:
temp_path.unlink(missing_ok=True)
def remux_with_audio_old(video_path: Path, audio: torch.Tensor, output_path: Path, sampling_rate: int):
"""
NOTE: I don't think we can get the exact video duration right without re-encoding
so we are not using this but keeping it here for reference
"""
video = av.open(video_path)
output = av.open(output_path, 'w')
input_video_stream = video.streams.video[0]
output_video_stream = output.add_stream(template=input_video_stream)
output_audio_stream = output.add_stream('aac', sampling_rate)
duration_sec = audio.shape[-1] / sampling_rate
for packet in video.demux(input_video_stream):
# We need to skip the "flushing" packets that `demux` generates.
if packet.dts is None:
continue
# We need to assign the packet to the new stream.
packet.stream = output_video_stream
output.mux(packet)
# convert float tensor audio to numpy array
audio_np = audio.numpy().astype(np.float32)
audio_frame = av.AudioFrame.from_ndarray(audio_np, format='flt', layout='mono')
audio_frame.sample_rate = sampling_rate
for packet in output_audio_stream.encode(audio_frame):
output.mux(packet)
for packet in output_audio_stream.encode():
output.mux(packet)
video.close()
output.close()
output.close()

View File

@ -0,0 +1,174 @@
import logging
import random
import numpy as np
import torch
from omegaconf import DictConfig
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataloader import default_collate
from torch.utils.data.distributed import DistributedSampler
from .eval.audiocaps import AudioCapsData
from .eval.video_dataset import MovieGen, VGGSound
from .extracted_audio import ExtractedAudio
from .extracted_vgg import ExtractedVGG
from .mm_dataset import MultiModalDataset
from ..utils.dist_utils import local_rank
log = logging.getLogger()
# Re-seed randomness every time we start a worker
def worker_init_fn(worker_id: int):
worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000
np.random.seed(worker_seed)
random.seed(worker_seed)
log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}')
def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
dataset = ExtractedVGG(tsv_path=data_cfg.tsv,
data_dim=cfg.data_dim,
premade_mmap_dir=data_cfg.memmap_dir)
return dataset
def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
dataset = ExtractedAudio(tsv_path=data_cfg.tsv,
data_dim=cfg.data_dim,
premade_mmap_dir=data_cfg.memmap_dir)
return dataset
def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]:
if cfg.mini_train:
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
dataset = MultiModalDataset([vgg], [audiocaps])
if cfg.example_train:
video = load_vgg_data(cfg, cfg.data.Example_video)
audio = load_audio_data(cfg, cfg.data.Example_audio)
dataset = MultiModalDataset([video], [audio])
else:
# load the largest one first
freesound = load_audio_data(cfg, cfg.data.FreeSound)
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG)
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL)
bbcsound = load_audio_data(cfg, cfg.data.BBCSound)
clotho = load_audio_data(cfg, cfg.data.Clotho)
dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate,
[audiocaps, audioset_sl, bbcsound, freesound, clotho])
batch_size = cfg.batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
sampler, loader = construct_loader(dataset,
batch_size,
num_workers,
shuffle=True,
drop_last=True,
pin_memory=pin_memory)
return dataset, sampler, loader
def setup_test_datasets(cfg):
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test)
batch_size = cfg.batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
sampler, loader = construct_loader(dataset,
batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory)
return dataset, sampler, loader
def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]:
if cfg.example_train:
dataset = load_vgg_data(cfg, cfg.data.Example_video)
else:
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
val_batch_size = cfg.batch_size
val_eval_batch_size = cfg.eval_batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
_, val_loader = construct_loader(dataset,
val_batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory)
_, eval_loader = construct_loader(dataset,
val_eval_batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory)
return dataset, val_loader, eval_loader
def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]:
if dataset_name.startswith('audiocaps_full'):
dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path,
cfg.eval_data.AudioCaps_full.csv_path)
elif dataset_name.startswith('audiocaps'):
dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path,
cfg.eval_data.AudioCaps.csv_path)
elif dataset_name.startswith('moviegen'):
dataset = MovieGen(cfg.eval_data.MovieGen.video_path,
cfg.eval_data.MovieGen.jsonl_path,
duration_sec=cfg.duration_s)
elif dataset_name.startswith('vggsound'):
dataset = VGGSound(cfg.eval_data.VGGSound.video_path,
cfg.eval_data.VGGSound.csv_path,
duration_sec=cfg.duration_s)
else:
raise ValueError(f'Invalid dataset name: {dataset_name}')
batch_size = cfg.batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
_, loader = construct_loader(dataset,
batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory,
error_avoidance=True)
return dataset, loader
def error_avoidance_collate(batch):
batch = list(filter(lambda x: x is not None, batch))
return default_collate(batch)
def construct_loader(dataset: Dataset,
batch_size: int,
num_workers: int,
*,
shuffle: bool = True,
drop_last: bool = True,
pin_memory: bool = False,
error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]:
train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle)
train_loader = DataLoader(dataset,
batch_size,
sampler=train_sampler,
num_workers=num_workers,
worker_init_fn=worker_init_fn,
drop_last=drop_last,
persistent_workers=num_workers > 0,
pin_memory=pin_memory,
collate_fn=error_avoidance_collate if error_avoidance else None)
return train_sampler, train_loader

View File

@ -0,0 +1,39 @@
import logging
import os
from collections import defaultdict
from pathlib import Path
from typing import Union
import pandas as pd
import torch
from torch.utils.data.dataset import Dataset
log = logging.getLogger()
class AudioCapsData(Dataset):
def __init__(self, audio_path: Union[str, Path], csv_path: Union[str, Path]):
df = pd.read_csv(csv_path).to_dict(orient='records')
audio_files = sorted(os.listdir(audio_path))
audio_files = set(
[Path(f).stem for f in audio_files if f.endswith('.wav') or f.endswith('.flac')])
self.data = []
for row in df:
self.data.append({
'name': row['name'],
'caption': row['caption'],
})
self.audio_path = Path(audio_path)
self.csv_path = Path(csv_path)
log.info(f'Found {len(self.data)} matching audio files in {self.audio_path}')
def __getitem__(self, idx: int) -> torch.Tensor:
return self.data[idx]
def __len__(self):
return len(self.data)

View File

@ -0,0 +1,131 @@
import json
import logging
import os
from pathlib import Path
from typing import Union
import torch
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from ...utils.dist_utils import local_rank
log = logging.getLogger()
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
class MovieGenData(Dataset):
def __init__(
self,
video_root: Union[str, Path],
sync_root: Union[str, Path],
jsonl_root: Union[str, Path],
*,
duration_sec: float = 10.0,
read_clip: bool = True,
):
self.video_root = Path(video_root)
self.sync_root = Path(sync_root)
self.jsonl_root = Path(jsonl_root)
self.read_clip = read_clip
videos = sorted(os.listdir(self.video_root))
videos = [v[:-4] for v in videos] # remove extensions
self.captions = {}
for v in videos:
with open(self.jsonl_root / (v + '.jsonl')) as f:
data = json.load(f)
self.captions[v] = data['audio_prompt']
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
self.duration_sec = duration_sec
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
self.clip_augment = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
self.sync_augment = v2.Compose([
v2.Resize((_SYNC_SIZE, _SYNC_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.videos = videos
def sample(self, idx: int) -> dict[str, torch.Tensor]:
video_id = self.videos[idx]
caption = self.captions[video_id]
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.add_basic_video_stream(
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
frame_rate=_SYNC_FPS,
format='rgb24',
)
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
sync_chunk = data_chunk[1]
if clip_chunk is None:
raise RuntimeError(f'CLIP video returned None {video_id}')
if clip_chunk.shape[0] < self.clip_expected_length:
raise RuntimeError(f'CLIP video too short {video_id}')
if sync_chunk is None:
raise RuntimeError(f'Sync video returned None {video_id}')
if sync_chunk.shape[0] < self.sync_expected_length:
raise RuntimeError(f'Sync video too short {video_id}')
# truncate the video
clip_chunk = clip_chunk[:self.clip_expected_length]
if clip_chunk.shape[0] != self.clip_expected_length:
raise RuntimeError(f'CLIP video wrong length {video_id}, '
f'expected {self.clip_expected_length}, '
f'got {clip_chunk.shape[0]}')
clip_chunk = self.clip_augment(clip_chunk)
sync_chunk = sync_chunk[:self.sync_expected_length]
if sync_chunk.shape[0] != self.sync_expected_length:
raise RuntimeError(f'Sync video wrong length {video_id}, '
f'expected {self.sync_expected_length}, '
f'got {sync_chunk.shape[0]}')
sync_chunk = self.sync_augment(sync_chunk)
data = {
'name': video_id,
'caption': caption,
'clip_video': clip_chunk,
'sync_video': sync_chunk,
}
return data
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
return self.sample(idx)
def __len__(self):
return len(self.captions)

View File

@ -0,0 +1,197 @@
import json
import logging
import os
from pathlib import Path
from typing import Union
import pandas as pd
import torch
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from ...utils.dist_utils import local_rank
log = logging.getLogger()
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
class VideoDataset(Dataset):
def __init__(
self,
video_root: Union[str, Path],
*,
duration_sec: float = 8.0,
):
self.video_root = Path(video_root)
self.duration_sec = duration_sec
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
self.clip_transform = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
self.sync_transform = v2.Compose([
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# to be implemented by subclasses
self.captions = {}
self.videos = sorted(list(self.captions.keys()))
def sample(self, idx: int) -> dict[str, torch.Tensor]:
video_id = self.videos[idx]
caption = self.captions[video_id]
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.add_basic_video_stream(
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
frame_rate=_SYNC_FPS,
format='rgb24',
)
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
sync_chunk = data_chunk[1]
if clip_chunk is None:
raise RuntimeError(f'CLIP video returned None {video_id}')
if clip_chunk.shape[0] < self.clip_expected_length:
raise RuntimeError(
f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
)
if sync_chunk is None:
raise RuntimeError(f'Sync video returned None {video_id}')
if sync_chunk.shape[0] < self.sync_expected_length:
raise RuntimeError(
f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
)
# truncate the video
clip_chunk = clip_chunk[:self.clip_expected_length]
if clip_chunk.shape[0] != self.clip_expected_length:
raise RuntimeError(f'CLIP video wrong length {video_id}, '
f'expected {self.clip_expected_length}, '
f'got {clip_chunk.shape[0]}')
clip_chunk = self.clip_transform(clip_chunk)
sync_chunk = sync_chunk[:self.sync_expected_length]
if sync_chunk.shape[0] != self.sync_expected_length:
raise RuntimeError(f'Sync video wrong length {video_id}, '
f'expected {self.sync_expected_length}, '
f'got {sync_chunk.shape[0]}')
sync_chunk = self.sync_transform(sync_chunk)
data = {
'name': video_id,
'caption': caption,
'clip_video': clip_chunk,
'sync_video': sync_chunk,
}
return data
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
try:
return self.sample(idx)
except Exception as e:
log.error(f'Error loading video {self.videos[idx]}: {e}')
return None
def __len__(self):
return len(self.captions)
class VGGSound(VideoDataset):
def __init__(
self,
video_root: Union[str, Path],
csv_path: Union[str, Path],
*,
duration_sec: float = 8.0,
):
super().__init__(video_root, duration_sec=duration_sec)
self.video_root = Path(video_root)
self.csv_path = Path(csv_path)
videos = sorted(os.listdir(self.video_root))
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
self.captions = {}
df = pd.read_csv(csv_path, header=None, names=['id', 'sec', 'caption',
'split']).to_dict(orient='records')
videos_no_found = []
for row in df:
if row['split'] == 'test':
start_sec = int(row['sec'])
video_id = str(row['id'])
# this is how our videos are named
video_name = f'{video_id}_{start_sec:06d}'
if video_name + '.mp4' not in videos:
videos_no_found.append(video_name)
continue
self.captions[video_name] = row['caption']
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
log.info(f'{len(self.captions)} useable videos found')
if videos_no_found:
log.info(f'{len(videos_no_found)} found in {csv_path} but not in {video_root}')
log.info(
'A small amount is expected, as not all videos are still available on YouTube')
self.videos = sorted(list(self.captions.keys()))
class MovieGen(VideoDataset):
def __init__(
self,
video_root: Union[str, Path],
jsonl_root: Union[str, Path],
*,
duration_sec: float = 10.0,
):
super().__init__(video_root, duration_sec=duration_sec)
self.video_root = Path(video_root)
self.jsonl_root = Path(jsonl_root)
videos = sorted(os.listdir(self.video_root))
videos = [v[:-4] for v in videos] # remove extensions
self.captions = {}
for v in videos:
with open(self.jsonl_root / (v + '.jsonl')) as f:
data = json.load(f)
self.captions[v] = data['audio_prompt']
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
self.videos = videos

View File

@ -0,0 +1,88 @@
import logging
from pathlib import Path
from typing import Union
import pandas as pd
import torch
from tensordict import TensorDict
from torch.utils.data.dataset import Dataset
from ..utils.dist_utils import local_rank
log = logging.getLogger()
class ExtractedAudio(Dataset):
def __init__(
self,
tsv_path: Union[str, Path],
*,
premade_mmap_dir: Union[str, Path],
data_dim: dict[str, int],
):
super().__init__()
self.data_dim = data_dim
self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records')
self.ids = [str(d['id']) for d in self.df_list]
log.info(f'Loading precomputed mmap from {premade_mmap_dir}')
# load precomputed memory mapped tensors
premade_mmap_dir = Path(premade_mmap_dir)
td = TensorDict.load_memmap(premade_mmap_dir)
log.info(f'Loaded precomputed mmap from {premade_mmap_dir}')
self.mean = td['mean']
self.std = td['std']
self.text_features = td['text_features']
log.info(f'Loaded {len(self)} samples from {premade_mmap_dir}.')
log.info(f'Loaded mean: {self.mean.shape}.')
log.info(f'Loaded std: {self.std.shape}.')
log.info(f'Loaded text features: {self.text_features.shape}.')
assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \
f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}'
assert self.std.shape[1] == self.data_dim['latent_seq_len'], \
f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}'
assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \
f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}'
assert self.text_features.shape[-1] == self.data_dim['text_dim'], \
f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}'
self.fake_clip_features = torch.zeros(self.data_dim['clip_seq_len'],
self.data_dim['clip_dim'])
self.fake_sync_features = torch.zeros(self.data_dim['sync_seq_len'],
self.data_dim['sync_dim'])
self.video_exist = torch.tensor(0, dtype=torch.bool)
self.text_exist = torch.tensor(1, dtype=torch.bool)
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
latents = self.mean
return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1))
def get_memory_mapped_tensor(self) -> TensorDict:
td = TensorDict({
'mean': self.mean,
'std': self.std,
'text_features': self.text_features,
})
return td
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
data = {
'id': str(self.df_list[idx]['id']),
'a_mean': self.mean[idx],
'a_std': self.std[idx],
'clip_features': self.fake_clip_features,
'sync_features': self.fake_sync_features,
'text_features': self.text_features[idx],
'caption': self.df_list[idx]['caption'],
'video_exist': self.video_exist,
'text_exist': self.text_exist,
}
return data
def __len__(self):
return len(self.ids)

View File

@ -0,0 +1,101 @@
import logging
from pathlib import Path
from typing import Union
import pandas as pd
import torch
from tensordict import TensorDict
from torch.utils.data.dataset import Dataset
from ..utils.dist_utils import local_rank
log = logging.getLogger()
class ExtractedVGG(Dataset):
def __init__(
self,
tsv_path: Union[str, Path],
*,
premade_mmap_dir: Union[str, Path],
data_dim: dict[str, int],
):
super().__init__()
self.data_dim = data_dim
self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records')
self.ids = [d['id'] for d in self.df_list]
log.info(f'Loading precomputed mmap from {premade_mmap_dir}')
# load precomputed memory mapped tensors
premade_mmap_dir = Path(premade_mmap_dir)
td = TensorDict.load_memmap(premade_mmap_dir)
log.info(f'Loaded precomputed mmap from {premade_mmap_dir}')
self.mean = td['mean']
self.std = td['std']
self.clip_features = td['clip_features']
self.sync_features = td['sync_features']
self.text_features = td['text_features']
if local_rank == 0:
log.info(f'Loaded {len(self)} samples.')
log.info(f'Loaded mean: {self.mean.shape}.')
log.info(f'Loaded std: {self.std.shape}.')
log.info(f'Loaded clip_features: {self.clip_features.shape}.')
log.info(f'Loaded sync_features: {self.sync_features.shape}.')
log.info(f'Loaded text_features: {self.text_features.shape}.')
assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \
f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}'
assert self.std.shape[1] == self.data_dim['latent_seq_len'], \
f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}'
assert self.clip_features.shape[1] == self.data_dim['clip_seq_len'], \
f'{self.clip_features.shape[1]} != {self.data_dim["clip_seq_len"]}'
assert self.sync_features.shape[1] == self.data_dim['sync_seq_len'], \
f'{self.sync_features.shape[1]} != {self.data_dim["sync_seq_len"]}'
assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \
f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}'
assert self.clip_features.shape[-1] == self.data_dim['clip_dim'], \
f'{self.clip_features.shape[-1]} != {self.data_dim["clip_dim"]}'
assert self.sync_features.shape[-1] == self.data_dim['sync_dim'], \
f'{self.sync_features.shape[-1]} != {self.data_dim["sync_dim"]}'
assert self.text_features.shape[-1] == self.data_dim['text_dim'], \
f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}'
self.video_exist = torch.tensor(1, dtype=torch.bool)
self.text_exist = torch.tensor(1, dtype=torch.bool)
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
latents = self.mean
return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1))
def get_memory_mapped_tensor(self) -> TensorDict:
td = TensorDict({
'mean': self.mean,
'std': self.std,
'clip_features': self.clip_features,
'sync_features': self.sync_features,
'text_features': self.text_features,
})
return td
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
data = {
'id': self.df_list[idx]['id'],
'a_mean': self.mean[idx],
'a_std': self.std[idx],
'clip_features': self.clip_features[idx],
'sync_features': self.sync_features[idx],
'text_features': self.text_features[idx],
'caption': self.df_list[idx]['label'],
'video_exist': self.video_exist,
'text_exist': self.text_exist,
}
return data
def __len__(self):
return len(self.ids)

View File

@ -0,0 +1,193 @@
import logging
import os
from pathlib import Path
from typing import Optional, Union
import pandas as pd
import torch
import torchaudio
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from ...utils.dist_utils import local_rank
log = logging.getLogger()
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
class VGGSound(Dataset):
def __init__(
self,
root: Union[str, Path],
*,
tsv_path: Union[str, Path] = 'sets/vgg3-train.tsv',
sample_rate: int = 16_000,
duration_sec: float = 8.0,
audio_samples: Optional[int] = None,
normalize_audio: bool = False,
):
self.root = Path(root)
self.normalize_audio = normalize_audio
if audio_samples is None:
self.audio_samples = int(sample_rate * duration_sec)
else:
self.audio_samples = audio_samples
effective_duration = audio_samples / sample_rate
# make sure the duration is close enough, within 15ms
assert abs(effective_duration - duration_sec) < 0.015, \
f'audio_samples {audio_samples} does not match duration_sec {duration_sec}'
videos = sorted(os.listdir(self.root))
videos = set([Path(v).stem for v in videos]) # remove extensions
self.labels = {}
self.videos = []
missing_videos = []
# read the tsv for subset information
df_list = pd.read_csv(tsv_path, sep='\t', dtype={'id': str}).to_dict('records')
for record in df_list:
id = record['id']
label = record['label']
if id in videos:
self.labels[id] = label
self.videos.append(id)
else:
missing_videos.append(id)
if local_rank == 0:
log.info(f'{len(videos)} videos found in {root}')
log.info(f'{len(self.videos)} videos found in {tsv_path}')
log.info(f'{len(missing_videos)} videos missing in {root}')
self.sample_rate = sample_rate
self.duration_sec = duration_sec
self.expected_audio_length = audio_samples
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
self.clip_transform = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
self.sync_transform = v2.Compose([
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.resampler = {}
def sample(self, idx: int) -> dict[str, torch.Tensor]:
video_id = self.videos[idx]
label = self.labels[video_id]
reader = StreamingMediaDecoder(self.root / (video_id + '.mp4'))
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.add_basic_video_stream(
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
frame_rate=_SYNC_FPS,
format='rgb24',
)
reader.add_basic_audio_stream(frames_per_chunk=2**30, )
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
sync_chunk = data_chunk[1]
audio_chunk = data_chunk[2]
if clip_chunk is None:
raise RuntimeError(f'CLIP video returned None {video_id}')
if clip_chunk.shape[0] < self.clip_expected_length:
raise RuntimeError(
f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
)
if sync_chunk is None:
raise RuntimeError(f'Sync video returned None {video_id}')
if sync_chunk.shape[0] < self.sync_expected_length:
raise RuntimeError(
f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
)
# process audio
sample_rate = int(reader.get_out_stream_info(2).sample_rate)
audio_chunk = audio_chunk.transpose(0, 1)
audio_chunk = audio_chunk.mean(dim=0) # mono
if self.normalize_audio:
abs_max = audio_chunk.abs().max()
audio_chunk = audio_chunk / abs_max * 0.95
if abs_max <= 1e-6:
raise RuntimeError(f'Audio is silent {video_id}')
# resample
if sample_rate == self.sample_rate:
audio_chunk = audio_chunk
else:
if sample_rate not in self.resampler:
# https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
self.resampler[sample_rate] = torchaudio.transforms.Resample(
sample_rate,
self.sample_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method='sinc_interp_kaiser',
beta=14.769656459379492,
)
audio_chunk = self.resampler[sample_rate](audio_chunk)
if audio_chunk.shape[0] < self.expected_audio_length:
raise RuntimeError(f'Audio too short {video_id}')
audio_chunk = audio_chunk[:self.expected_audio_length]
# truncate the video
clip_chunk = clip_chunk[:self.clip_expected_length]
if clip_chunk.shape[0] != self.clip_expected_length:
raise RuntimeError(f'CLIP video wrong length {video_id}, '
f'expected {self.clip_expected_length}, '
f'got {clip_chunk.shape[0]}')
clip_chunk = self.clip_transform(clip_chunk)
sync_chunk = sync_chunk[:self.sync_expected_length]
if sync_chunk.shape[0] != self.sync_expected_length:
raise RuntimeError(f'Sync video wrong length {video_id}, '
f'expected {self.sync_expected_length}, '
f'got {sync_chunk.shape[0]}')
sync_chunk = self.sync_transform(sync_chunk)
data = {
'id': video_id,
'caption': label,
'audio': audio_chunk,
'clip_video': clip_chunk,
'sync_video': sync_chunk,
}
return data
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
try:
return self.sample(idx)
except Exception as e:
log.error(f'Error loading video {self.videos[idx]}: {e}')
return None
def __len__(self):
return len(self.labels)

View File

@ -0,0 +1,132 @@
import logging
import os
from pathlib import Path
from typing import Union
import open_clip
import pandas as pd
import torch
import torchaudio
from torch.utils.data.dataset import Dataset
log = logging.getLogger()
class WavTextClipsDataset(Dataset):
def __init__(
self,
root: Union[str, Path],
*,
captions_tsv: Union[str, Path],
clips_tsv: Union[str, Path],
sample_rate: int,
num_samples: int,
normalize_audio: bool = False,
reject_silent: bool = False,
tokenizer_id: str = 'ViT-H-14-378-quickgelu',
):
self.root = Path(root)
self.sample_rate = sample_rate
self.num_samples = num_samples
self.normalize_audio = normalize_audio
self.reject_silent = reject_silent
self.tokenizer = open_clip.get_tokenizer(tokenizer_id)
audios = sorted(os.listdir(self.root))
audios = set([
Path(audio).stem for audio in audios
if audio.endswith('.wav') or audio.endswith('.flac')
])
self.captions = {}
# read the caption tsv
df_list = pd.read_csv(captions_tsv, sep='\t', dtype={'id': str}).to_dict('records')
for record in df_list:
id = record['id']
caption = record['caption']
self.captions[id] = caption
# read the clip tsv
df_list = pd.read_csv(clips_tsv, sep='\t', dtype={
'id': str,
'name': str
}).to_dict('records')
self.clips = []
for record in df_list:
record['id'] = record['id']
record['name'] = record['name']
id = record['id']
name = record['name']
if name not in self.captions:
log.warning(f'Audio {name} not found in {captions_tsv}')
continue
record['caption'] = self.captions[name]
self.clips.append(record)
log.info(f'Found {len(self.clips)} audio files in {self.root}')
self.resampler = {}
def __getitem__(self, idx: int) -> torch.Tensor:
try:
clip = self.clips[idx]
audio_name = clip['name']
audio_id = clip['id']
caption = clip['caption']
start_sample = clip['start_sample']
end_sample = clip['end_sample']
audio_path = self.root / f'{audio_name}.flac'
if not audio_path.exists():
audio_path = self.root / f'{audio_name}.wav'
assert audio_path.exists()
audio_chunk, sample_rate = torchaudio.load(audio_path)
audio_chunk = audio_chunk.mean(dim=0) # mono
abs_max = audio_chunk.abs().max()
if self.normalize_audio:
audio_chunk = audio_chunk / abs_max * 0.95
if self.reject_silent and abs_max < 1e-6:
log.warning(f'Rejecting silent audio')
return None
audio_chunk = audio_chunk[start_sample:end_sample]
# resample
if sample_rate == self.sample_rate:
audio_chunk = audio_chunk
else:
if sample_rate not in self.resampler:
# https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
self.resampler[sample_rate] = torchaudio.transforms.Resample(
sample_rate,
self.sample_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method='sinc_interp_kaiser',
beta=14.769656459379492,
)
audio_chunk = self.resampler[sample_rate](audio_chunk)
if audio_chunk.shape[0] < self.num_samples:
raise ValueError('Audio is too short')
audio_chunk = audio_chunk[:self.num_samples]
tokens = self.tokenizer([caption])[0]
output = {
'waveform': audio_chunk,
'id': audio_id,
'caption': caption,
'tokens': tokens,
}
return output
except Exception as e:
log.error(f'Error reading {audio_path}: {e}')
return None
def __len__(self):
return len(self.clips)

View File

@ -0,0 +1,45 @@
import bisect
import torch
from torch.utils.data.dataset import Dataset
# modified from https://pytorch.org/docs/stable/_modules/torch/utils/data/dataset.html#ConcatDataset
class MultiModalDataset(Dataset):
datasets: list[Dataset]
cumulative_sizes: list[int]
@staticmethod
def cumsum(sequence):
r, s = [], 0
for e in sequence:
l = len(e)
r.append(l + s)
s += l
return r
def __init__(self, video_datasets: list[Dataset], audio_datasets: list[Dataset]):
super().__init__()
self.video_datasets = list(video_datasets)
self.audio_datasets = list(audio_datasets)
self.datasets = self.video_datasets + self.audio_datasets
self.cumulative_sizes = self.cumsum(self.datasets)
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
if idx < 0:
if -idx > len(self):
raise ValueError("absolute value of index should not exceed dataset length")
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx][sample_idx]
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
return self.video_datasets[0].compute_latent_stats()

View File

@ -0,0 +1,148 @@
import logging
import os
import random
import tempfile
from pathlib import Path
from typing import Any, Optional, Union
import torch
import torch.distributed as dist
from tensordict import MemoryMappedTensor
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from tqdm import tqdm
from ..utils.dist_utils import local_rank, world_size
scratch_path = Path(os.environ['SLURM_SCRATCH'] if 'SLURM_SCRATCH' in os.environ else '/dev/shm')
shm_path = Path('/dev/shm')
log = logging.getLogger()
def reseed(seed):
random.seed(seed)
torch.manual_seed(seed)
def local_scatter_torch(obj: Optional[Any]):
if world_size == 1:
# Just one worker. Do nothing.
return obj
array = [obj] * world_size
target_array = [None]
if local_rank == 0:
dist.scatter_object_list(target_array, scatter_object_input_list=array, src=0)
else:
dist.scatter_object_list(target_array, scatter_object_input_list=None, src=0)
return target_array[0]
class ShardDataset(Dataset):
def __init__(self, root):
self.root = root
self.shards = sorted(os.listdir(root))
def __len__(self):
return len(self.shards)
def __getitem__(self, idx):
return torch.load(os.path.join(self.root, self.shards[idx]), weights_only=True)
def get_tmp_dir(in_memory: bool) -> Path:
return shm_path if in_memory else scratch_path
def load_shards_and_share(data_path: Union[str, Path], ids: list[int],
in_memory: bool) -> MemoryMappedTensor:
if local_rank == 0:
with tempfile.NamedTemporaryFile(prefix='shared-tensor-', dir=get_tmp_dir(in_memory)) as f:
log.info(f'Loading shards from {data_path} into {f.name}...')
data = load_shards(data_path, ids=ids, tmp_file_path=f.name)
data = share_tensor_to_all(data)
torch.distributed.barrier()
f.close() # why does the context manager not close the file for me?
else:
log.info('Waiting for the data to be shared with me...')
data = share_tensor_to_all(None)
torch.distributed.barrier()
return data
def load_shards(
data_path: Union[str, Path],
ids: list[int],
*,
tmp_file_path: str,
) -> Union[torch.Tensor, dict[str, torch.Tensor]]:
id_set = set(ids)
shards = sorted(os.listdir(data_path))
log.info(f'Found {len(shards)} shards in {data_path}.')
first_shard = torch.load(os.path.join(data_path, shards[0]), weights_only=True)
log.info(f'Rank {local_rank} created file {tmp_file_path}')
first_item = next(iter(first_shard.values()))
log.info(f'First item shape: {first_item.shape}')
mm_tensor = MemoryMappedTensor.empty(shape=(len(ids), *first_item.shape),
dtype=torch.float32,
filename=tmp_file_path,
existsok=True)
total_count = 0
used_index = set()
id_indexing = {i: idx for idx, i in enumerate(ids)}
# faster with no workers; otherwise we need to set_sharing_strategy('file_system')
loader = DataLoader(ShardDataset(data_path), batch_size=1, num_workers=0)
for data in tqdm(loader, desc='Loading shards'):
for i, v in data.items():
if i not in id_set:
continue
# tensor_index = ids.index(i)
tensor_index = id_indexing[i]
if tensor_index in used_index:
raise ValueError(f'Duplicate id {i} found in {data_path}.')
used_index.add(tensor_index)
mm_tensor[tensor_index] = v
total_count += 1
assert total_count == len(ids), f'Expected {len(ids)} tensors, got {total_count}.'
log.info(f'Loaded {total_count} tensors from {data_path}.')
return mm_tensor
def share_tensor_to_all(x: Optional[MemoryMappedTensor]) -> MemoryMappedTensor:
"""
x: the tensor to be shared; None if local_rank != 0
return: the shared tensor
"""
# there is no need to share your stuff with anyone if you are alone; must be in memory
if world_size == 1:
return x
if local_rank == 0:
assert x is not None, 'x must not be None if local_rank == 0'
else:
assert x is None, 'x must be None if local_rank != 0'
if local_rank == 0:
filename = x.filename
meta_information = (filename, x.shape, x.dtype)
else:
meta_information = None
filename, data_shape, data_type = local_scatter_torch(meta_information)
if local_rank == 0:
data = x
else:
data = MemoryMappedTensor.from_filename(filename=filename,
dtype=data_type,
shape=data_shape)
return data

View File

@ -0,0 +1,259 @@
import dataclasses
import logging
from pathlib import Path
from typing import Optional
import numpy as np
import torch
# from colorlog import ColoredFormatter
from PIL import Image
from torchvision.transforms import v2
from .data.av_utils import ImageInfo, VideoInfo, read_frames, reencode_with_audio, remux_with_audio
from .model.flow_matching import FlowMatching
from .model.networks import MMAudio
from .model.sequence_config import CONFIG_16K, CONFIG_44K, SequenceConfig
from .model.utils.features_utils import FeaturesUtils
from .utils.download_utils import download_model_if_needed
log = logging.getLogger()
@dataclasses.dataclass
class ModelConfig:
model_name: str
model_path: Path
vae_path: Path
bigvgan_16k_path: Optional[Path]
mode: str
synchformer_ckpt: Path = Path('ckpts/mmaudio/synchformer_state_dict.pth')
@property
def seq_cfg(self) -> SequenceConfig:
if self.mode == '16k':
return CONFIG_16K
elif self.mode == '44k':
return CONFIG_44K
def download_if_needed(self):
download_model_if_needed(self.model_path)
download_model_if_needed(self.vae_path)
if self.bigvgan_16k_path is not None:
download_model_if_needed(self.bigvgan_16k_path)
download_model_if_needed(self.synchformer_ckpt)
small_16k = ModelConfig(model_name='small_16k',
model_path=Path('./weights/mmaudio_small_16k.pth'),
vae_path=Path('./ext_weights/v1-16.pth'),
bigvgan_16k_path=Path('./ext_weights/best_netG.pt'),
mode='16k')
small_44k = ModelConfig(model_name='small_44k',
model_path=Path('./weights/mmaudio_small_44k.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
medium_44k = ModelConfig(model_name='medium_44k',
model_path=Path('./weights/mmaudio_medium_44k.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
large_44k = ModelConfig(model_name='large_44k',
model_path=Path('./weights/mmaudio_large_44k.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
large_44k_v2 = ModelConfig(model_name='large_44k_v2',
model_path=Path('ckpts/mmaudio/mmaudio_large_44k_v2.pth'),
vae_path=Path('ckpts/mmaudio/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
all_model_cfg: dict[str, ModelConfig] = {
'small_16k': small_16k,
'small_44k': small_44k,
'medium_44k': medium_44k,
'large_44k': large_44k,
'large_44k_v2': large_44k_v2,
}
def generate(
clip_video: Optional[torch.Tensor],
sync_video: Optional[torch.Tensor],
text: Optional[list[str]],
*,
negative_text: Optional[list[str]] = None,
feature_utils: FeaturesUtils,
net: MMAudio,
fm: FlowMatching,
rng: torch.Generator,
cfg_strength: float,
clip_batch_size_multiplier: int = 40,
sync_batch_size_multiplier: int = 40,
image_input: bool = False,
offloadobj = None
) -> torch.Tensor:
device = feature_utils.device
dtype = feature_utils.dtype
bs = len(text)
if clip_video is not None:
clip_video = clip_video.to(device, dtype, non_blocking=True)
clip_features = feature_utils.encode_video_with_clip(clip_video,
batch_size=bs *
clip_batch_size_multiplier)
if image_input:
clip_features = clip_features.expand(-1, net.clip_seq_len, -1)
else:
clip_features = net.get_empty_clip_sequence(bs)
if sync_video is not None and not image_input:
sync_video = sync_video.to(device, dtype, non_blocking=True)
sync_features = feature_utils.encode_video_with_sync(sync_video,
batch_size=bs *
sync_batch_size_multiplier)
else:
sync_features = net.get_empty_sync_sequence(bs)
if text is not None:
text_features = feature_utils.encode_text(text)
else:
text_features = net.get_empty_string_sequence(bs)
if negative_text is not None:
assert len(negative_text) == bs
negative_text_features = feature_utils.encode_text(negative_text)
else:
negative_text_features = net.get_empty_string_sequence(bs)
if offloadobj != None:
offloadobj.ensure_model_loaded("net")
x0 = torch.randn(bs,
net.latent_seq_len,
net.latent_dim,
device=device,
dtype=dtype,
generator=rng)
preprocessed_conditions = net.preprocess_conditions(clip_features, sync_features, text_features)
empty_conditions = net.get_empty_conditions(
bs, negative_text_features=negative_text_features if negative_text is not None else None)
cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions,
cfg_strength)
x1 = fm.to_data(cfg_ode_wrapper, x0)
x1 = net.unnormalize(x1)
spec = feature_utils.decode(x1)
audio = feature_utils.vocode(spec)
return audio
LOGFORMAT = "[%(log_color)s%(levelname)-8s%(reset)s]: %(log_color)s%(message)s%(reset)s"
def setup_eval_logging(log_level: int = logging.INFO):
logging.root.setLevel(log_level)
# formatter = ColoredFormatter(LOGFORMAT)
formatter = None
stream = logging.StreamHandler()
stream.setLevel(log_level)
stream.setFormatter(formatter)
log = logging.getLogger()
log.setLevel(log_level)
log.addHandler(stream)
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
def load_video(video_path: Path, duration_sec: float, load_all_frames: bool = True) -> VideoInfo:
clip_transform = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
sync_transform = v2.Compose([
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
output_frames, all_frames, orig_fps = read_frames(video_path,
list_of_fps=[_CLIP_FPS, _SYNC_FPS],
start_sec=0,
end_sec=duration_sec,
need_all_frames=load_all_frames)
clip_chunk, sync_chunk = output_frames
clip_chunk = torch.from_numpy(clip_chunk).permute(0, 3, 1, 2)
sync_chunk = torch.from_numpy(sync_chunk).permute(0, 3, 1, 2)
clip_frames = clip_transform(clip_chunk)
sync_frames = sync_transform(sync_chunk)
clip_length_sec = clip_frames.shape[0] / _CLIP_FPS
sync_length_sec = sync_frames.shape[0] / _SYNC_FPS
if clip_length_sec < duration_sec:
log.warning(f'Clip video is too short: {clip_length_sec:.2f} < {duration_sec:.2f}')
log.warning(f'Truncating to {clip_length_sec:.2f} sec')
duration_sec = clip_length_sec
if sync_length_sec < duration_sec:
log.warning(f'Sync video is too short: {sync_length_sec:.2f} < {duration_sec:.2f}')
log.warning(f'Truncating to {sync_length_sec:.2f} sec')
duration_sec = sync_length_sec
clip_frames = clip_frames[:int(_CLIP_FPS * duration_sec)]
sync_frames = sync_frames[:int(_SYNC_FPS * duration_sec)]
video_info = VideoInfo(
duration_sec=duration_sec,
fps=orig_fps,
clip_frames=clip_frames,
sync_frames=sync_frames,
all_frames=all_frames if load_all_frames else None,
)
return video_info
def load_image(image_path: Path) -> VideoInfo:
clip_transform = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
sync_transform = v2.Compose([
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
frame = np.array(Image.open(image_path))
clip_chunk = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2)
sync_chunk = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2)
clip_frames = clip_transform(clip_chunk)
sync_frames = sync_transform(sync_chunk)
video_info = ImageInfo(
clip_frames=clip_frames,
sync_frames=sync_frames,
original_frame=frame,
)
return video_info
def make_video(source_path, video_info: VideoInfo, output_path: Path, audio: torch.Tensor, sampling_rate: int):
# reencode_with_audio(video_info, output_path, audio, sampling_rate)
remux_with_audio(source_path, output_path, audio, sampling_rate)

View File

@ -0,0 +1 @@

View File

@ -0,0 +1 @@
from .autoencoder import AutoEncoderModule

View File

@ -0,0 +1,52 @@
from typing import Literal, Optional
import torch
import torch.nn as nn
from ..autoencoder.vae import VAE, get_my_vae
from ..bigvgan import BigVGAN
from ..bigvgan_v2.bigvgan import BigVGAN as BigVGANv2
from ...model.utils.distributions import DiagonalGaussianDistribution
class AutoEncoderModule(nn.Module):
def __init__(self,
*,
vae_ckpt_path,
vocoder_ckpt_path: Optional[str] = None,
mode: Literal['16k', '44k'],
need_vae_encoder: bool = True):
super().__init__()
self.vae: VAE = get_my_vae(mode).eval()
vae_state_dict = torch.load(vae_ckpt_path, weights_only=True, map_location='cpu')
self.vae.load_state_dict(vae_state_dict)
self.vae.remove_weight_norm()
if mode == '16k':
assert vocoder_ckpt_path is not None
self.vocoder = BigVGAN(vocoder_ckpt_path).eval()
elif mode == '44k':
self.vocoder = BigVGANv2.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x',
use_cuda_kernel=False)
self.vocoder.remove_weight_norm()
else:
raise ValueError(f'Unknown mode: {mode}')
for param in self.parameters():
param.requires_grad = False
if not need_vae_encoder:
del self.vae.encoder
@torch.inference_mode()
def encode(self, x: torch.Tensor) -> DiagonalGaussianDistribution:
return self.vae.encode(x)
@torch.inference_mode()
def decode(self, z: torch.Tensor) -> torch.Tensor:
return self.vae.decode(z)
@torch.inference_mode()
def vocode(self, spec: torch.Tensor) -> torch.Tensor:
return self.vocoder(spec)

View File

@ -0,0 +1,168 @@
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Improved diffusion model architecture proposed in the paper
"Analyzing and Improving the Training Dynamics of Diffusion Models"."""
import numpy as np
import torch
#----------------------------------------------------------------------------
# Variant of constant() that inherits dtype and device from the given
# reference tensor by default.
_constant_cache = dict()
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
value = np.asarray(value)
if shape is not None:
shape = tuple(shape)
if dtype is None:
dtype = torch.get_default_dtype()
if device is None:
device = torch.device('cpu')
if memory_format is None:
memory_format = torch.contiguous_format
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
tensor = _constant_cache.get(key, None)
if tensor is None:
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
if shape is not None:
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
tensor = tensor.contiguous(memory_format=memory_format)
_constant_cache[key] = tensor
return tensor
def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None):
if dtype is None:
dtype = ref.dtype
if device is None:
device = ref.device
return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format)
#----------------------------------------------------------------------------
# Normalize given tensor to unit magnitude with respect to the given
# dimensions. Default = all dimensions except the first.
def normalize(x, dim=None, eps=1e-4):
if dim is None:
dim = list(range(1, x.ndim))
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
return x / norm.to(x.dtype)
class Normalize(torch.nn.Module):
def __init__(self, dim=None, eps=1e-4):
super().__init__()
self.dim = dim
self.eps = eps
def forward(self, x):
return normalize(x, dim=self.dim, eps=self.eps)
#----------------------------------------------------------------------------
# Upsample or downsample the given tensor with the given filter,
# or keep it as is.
def resample(x, f=[1, 1], mode='keep'):
if mode == 'keep':
return x
f = np.float32(f)
assert f.ndim == 1 and len(f) % 2 == 0
pad = (len(f) - 1) // 2
f = f / f.sum()
f = np.outer(f, f)[np.newaxis, np.newaxis, :, :]
f = const_like(x, f)
c = x.shape[1]
if mode == 'down':
return torch.nn.functional.conv2d(x,
f.tile([c, 1, 1, 1]),
groups=c,
stride=2,
padding=(pad, ))
assert mode == 'up'
return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]),
groups=c,
stride=2,
padding=(pad, ))
#----------------------------------------------------------------------------
# Magnitude-preserving SiLU (Equation 81).
def mp_silu(x):
return torch.nn.functional.silu(x) / 0.596
class MPSiLU(torch.nn.Module):
def forward(self, x):
return mp_silu(x)
#----------------------------------------------------------------------------
# Magnitude-preserving sum (Equation 88).
def mp_sum(a, b, t=0.5):
return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2)
#----------------------------------------------------------------------------
# Magnitude-preserving concatenation (Equation 103).
def mp_cat(a, b, dim=1, t=0.5):
Na = a.shape[dim]
Nb = b.shape[dim]
C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2))
wa = C / np.sqrt(Na) * (1 - t)
wb = C / np.sqrt(Nb) * t
return torch.cat([wa * a, wb * b], dim=dim)
#----------------------------------------------------------------------------
# Magnitude-preserving convolution or fully-connected layer (Equation 47)
# with force weight normalization (Equation 66).
class MPConv1D(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size):
super().__init__()
self.out_channels = out_channels
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size))
self.weight_norm_removed = False
def forward(self, x, gain=1):
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
w = self.weight * gain
if w.ndim == 2:
return x @ w.t()
assert w.ndim == 3
return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, ))
def remove_weight_norm(self):
w = self.weight.to(torch.float32)
w = normalize(w) # traditional weight normalization
w = w / np.sqrt(w[0].numel())
w = w.to(self.weight.dtype)
self.weight.data.copy_(w)
self.weight_norm_removed = True
return self

View File

@ -0,0 +1,369 @@
import logging
from typing import Optional
import torch
import torch.nn as nn
from ...ext.autoencoder.edm2_utils import MPConv1D
from ...ext.autoencoder.vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
Upsample1D, nonlinearity)
from ...model.utils.distributions import DiagonalGaussianDistribution
log = logging.getLogger()
DATA_MEAN_80D = [
-1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
-1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
-1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
-1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
-1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
-1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
-2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
-2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
]
DATA_STD_80D = [
1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
]
DATA_MEAN_128D = [
-3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
-2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
-2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
-3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
-3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
-3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
-3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
-4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
-4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
-5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
-6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
-7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
-9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
]
DATA_STD_128D = [
2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
]
class VAE(nn.Module):
def __init__(
self,
*,
data_dim: int,
embed_dim: int,
hidden_dim: int,
):
super().__init__()
if data_dim == 80:
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32))
self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32))
elif data_dim == 128:
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32))
self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32))
self.data_mean = self.data_mean.view(1, -1, 1)
self.data_std = self.data_std.view(1, -1, 1)
self.encoder = Encoder1D(
dim=hidden_dim,
ch_mult=(1, 2, 4),
num_res_blocks=2,
attn_layers=[3],
down_layers=[0],
in_dim=data_dim,
embed_dim=embed_dim,
)
self.decoder = Decoder1D(
dim=hidden_dim,
ch_mult=(1, 2, 4),
num_res_blocks=2,
attn_layers=[3],
down_layers=[0],
in_dim=data_dim,
out_dim=data_dim,
embed_dim=embed_dim,
)
self.embed_dim = embed_dim
# self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
# self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
self.initialize_weights()
def initialize_weights(self):
pass
def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
if normalize:
x = self.normalize(x)
moments = self.encoder(x)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
dec = self.decoder(z)
if unnormalize:
dec = self.unnormalize(dec)
return dec
def normalize(self, x: torch.Tensor) -> torch.Tensor:
return (x - self.data_mean) / self.data_std
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
return x * self.data_std + self.data_mean
def forward(
self,
x: torch.Tensor,
sample_posterior: bool = True,
rng: Optional[torch.Generator] = None,
normalize: bool = True,
unnormalize: bool = True,
) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
posterior = self.encode(x, normalize=normalize)
if sample_posterior:
z = posterior.sample(rng)
else:
z = posterior.mode()
dec = self.decode(z, unnormalize=unnormalize)
return dec, posterior
def load_weights(self, src_dict) -> None:
self.load_state_dict(src_dict, strict=True)
@property
def device(self) -> torch.device:
return next(self.parameters()).device
def get_last_layer(self):
return self.decoder.conv_out.weight
def remove_weight_norm(self):
for name, m in self.named_modules():
if isinstance(m, MPConv1D):
m.remove_weight_norm()
log.debug(f"Removed weight norm from {name}")
return self
class Encoder1D(nn.Module):
def __init__(self,
*,
dim: int,
ch_mult: tuple[int] = (1, 2, 4, 8),
num_res_blocks: int,
attn_layers: list[int] = [],
down_layers: list[int] = [],
resamp_with_conv: bool = True,
in_dim: int,
embed_dim: int,
double_z: bool = True,
kernel_size: int = 3,
clip_act: float = 256.0):
super().__init__()
self.dim = dim
self.num_layers = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_dim
self.clip_act = clip_act
self.down_layers = down_layers
self.attn_layers = attn_layers
self.conv_in = MPConv1D(in_dim, self.dim, kernel_size=kernel_size)
in_ch_mult = (1, ) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
# downsampling
self.down = nn.ModuleList()
for i_level in range(self.num_layers):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = dim * in_ch_mult[i_level]
block_out = dim * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock1D(in_dim=block_in,
out_dim=block_out,
kernel_size=kernel_size,
use_norm=True))
block_in = block_out
if i_level in attn_layers:
attn.append(AttnBlock1D(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level in down_layers:
down.downsample = Downsample1D(block_in, resamp_with_conv)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
out_dim=block_in,
kernel_size=kernel_size,
use_norm=True)
self.mid.attn_1 = AttnBlock1D(block_in)
self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
out_dim=block_in,
kernel_size=kernel_size,
use_norm=True)
# end
self.conv_out = MPConv1D(block_in,
2 * embed_dim if double_z else embed_dim,
kernel_size=kernel_size)
self.learnable_gain = nn.Parameter(torch.zeros([]))
def forward(self, x):
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_layers):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
h = h.clamp(-self.clip_act, self.clip_act)
hs.append(h)
if i_level in self.down_layers:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
h = h.clamp(-self.clip_act, self.clip_act)
# end
h = nonlinearity(h)
h = self.conv_out(h, gain=(self.learnable_gain + 1))
return h
class Decoder1D(nn.Module):
def __init__(self,
*,
dim: int,
out_dim: int,
ch_mult: tuple[int] = (1, 2, 4, 8),
num_res_blocks: int,
attn_layers: list[int] = [],
down_layers: list[int] = [],
kernel_size: int = 3,
resamp_with_conv: bool = True,
in_dim: int,
embed_dim: int,
clip_act: float = 256.0):
super().__init__()
self.ch = dim
self.num_layers = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_dim
self.clip_act = clip_act
self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = dim * ch_mult[self.num_layers - 1]
# z to block_in
self.conv_in = MPConv1D(embed_dim, block_in, kernel_size=kernel_size)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
self.mid.attn_1 = AttnBlock1D(block_in)
self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_layers)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = dim * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
block_in = block_out
if i_level in attn_layers:
attn.append(AttnBlock1D(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level in self.down_layers:
up.upsample = Upsample1D(block_in, resamp_with_conv)
self.up.insert(0, up) # prepend to get consistent order
# end
self.conv_out = MPConv1D(block_in, out_dim, kernel_size=kernel_size)
self.learnable_gain = nn.Parameter(torch.zeros([]))
def forward(self, z):
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
h = h.clamp(-self.clip_act, self.clip_act)
# upsampling
for i_level in reversed(range(self.num_layers)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
h = h.clamp(-self.clip_act, self.clip_act)
if i_level in self.down_layers:
h = self.up[i_level].upsample(h)
h = nonlinearity(h)
h = self.conv_out(h, gain=(self.learnable_gain + 1))
return h
def VAE_16k(**kwargs) -> VAE:
return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
def VAE_44k(**kwargs) -> VAE:
return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
def get_my_vae(name: str, **kwargs) -> VAE:
if name == '16k':
return VAE_16k(**kwargs)
if name == '44k':
return VAE_44k(**kwargs)
raise ValueError(f'Unknown model: {name}')
if __name__ == '__main__':
network = get_my_vae('standard')
# print the number of parameters in terms of millions
num_params = sum(p.numel() for p in network.parameters()) / 1e6
print(f'Number of parameters: {num_params:.2f}M')

View File

@ -0,0 +1,117 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from ...ext.autoencoder.edm2_utils import (MPConv1D, mp_silu, mp_sum, normalize)
def nonlinearity(x):
# swish
return mp_silu(x)
class ResnetBlock1D(nn.Module):
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
super().__init__()
self.in_dim = in_dim
out_dim = in_dim if out_dim is None else out_dim
self.out_dim = out_dim
self.use_conv_shortcut = conv_shortcut
self.use_norm = use_norm
self.conv1 = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
self.conv2 = MPConv1D(out_dim, out_dim, kernel_size=kernel_size)
if self.in_dim != self.out_dim:
if self.use_conv_shortcut:
self.conv_shortcut = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
else:
self.nin_shortcut = MPConv1D(in_dim, out_dim, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# pixel norm
if self.use_norm:
x = normalize(x, dim=1)
h = x
h = nonlinearity(h)
h = self.conv1(h)
h = nonlinearity(h)
h = self.conv2(h)
if self.in_dim != self.out_dim:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return mp_sum(x, h, t=0.3)
class AttnBlock1D(nn.Module):
def __init__(self, in_channels, num_heads=1):
super().__init__()
self.in_channels = in_channels
self.num_heads = num_heads
self.qkv = MPConv1D(in_channels, in_channels * 3, kernel_size=1)
self.proj_out = MPConv1D(in_channels, in_channels, kernel_size=1)
def forward(self, x):
h = x
y = self.qkv(h)
y = y.reshape(y.shape[0], self.num_heads, -1, 3, y.shape[-1])
q, k, v = normalize(y, dim=2).unbind(3)
q = rearrange(q, 'b h c l -> b h l c')
k = rearrange(k, 'b h c l -> b h l c')
v = rearrange(v, 'b h c l -> b h l c')
h = F.scaled_dot_product_attention(q, k, v)
h = rearrange(h, 'b h l c -> b (h c) l')
h = self.proj_out(h)
return mp_sum(x, h, t=0.3)
class Upsample1D(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = MPConv1D(in_channels, in_channels, kernel_size=3)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
if self.with_conv:
x = self.conv(x)
return x
class Downsample1D(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv1 = MPConv1D(in_channels, in_channels, kernel_size=1)
self.conv2 = MPConv1D(in_channels, in_channels, kernel_size=1)
def forward(self, x):
if self.with_conv:
x = self.conv1(x)
x = F.avg_pool1d(x, kernel_size=2, stride=2)
if self.with_conv:
x = self.conv2(x)
return x

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 NVIDIA CORPORATION.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1 @@
from .bigvgan import BigVGAN

View File

@ -0,0 +1,120 @@
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
from torch import nn, sin, pow
from torch.nn import Parameter
class Snake(nn.Module):
'''
Implementation of a sine-based periodic activation function
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
'''
super(Snake, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
Snake = x + 1/a * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
if self.alpha_logscale:
alpha = torch.exp(alpha)
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class SnakeBeta(nn.Module):
'''
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
'''
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
self.beta = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.beta = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta = x + 1/b * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x

View File

@ -0,0 +1,6 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
from .filter import *
from .resample import *
from .act import *

View File

@ -0,0 +1,28 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from .resample import UpSample1d, DownSample1d
class Activation1d(nn.Module):
def __init__(self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@ -0,0 +1,95 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
if 'sinc' in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
# LICENSE is in incl_licenses directory.
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(x == 0,
torch.tensor(1., device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
# LICENSE is in incl_licenses directory.
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
even = (kernel_size % 2 == 0)
half_size = kernel_size // 2
#For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.:
beta = 0.1102 * (A - 8.7)
elif A >= 21.:
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
else:
beta = 0.
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = (torch.arange(-half_size, half_size) + 0.5)
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
# Normalize filter to have sum = 1, otherwise we will have a small leakage
# of the constant component in the input signal.
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = 'replicate',
kernel_size: int = 12):
# kernel_size should be even number for stylegan3 setup,
# in this implementation, odd number is also possible.
super().__init__()
if cutoff < -0.:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = (kernel_size % 2 == 0)
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
#input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right),
mode=self.padding_mode)
out = F.conv1d(x, self.filter.expand(C, -1, -1),
stride=self.stride, groups=C)
return out

View File

@ -0,0 +1,49 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from torch.nn import functional as F
from .filter import LowPassFilter1d
from .filter import kaiser_sinc_filter1d
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
kernel_size=self.kernel_size)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode='replicate')
x = self.ratio * F.conv_transpose1d(
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
x = x[..., self.pad_left:-self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size)
def forward(self, x):
xx = self.lowpass(x)
return xx

View File

@ -0,0 +1,32 @@
from pathlib import Path
import torch
import torch.nn as nn
from omegaconf import OmegaConf
from ...ext.bigvgan.models import BigVGANVocoder
_bigvgan_vocoder_path = Path(__file__).parent / 'bigvgan_vocoder.yml'
class BigVGAN(nn.Module):
def __init__(self, ckpt_path, config_path=_bigvgan_vocoder_path):
super().__init__()
vocoder_cfg = OmegaConf.load(config_path)
self.vocoder = BigVGANVocoder(vocoder_cfg).eval()
vocoder_ckpt = torch.load(ckpt_path, map_location='cpu', weights_only=True)['generator']
self.vocoder.load_state_dict(vocoder_ckpt)
self.weight_norm_removed = False
self.remove_weight_norm()
@torch.inference_mode()
def forward(self, x):
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
return self.vocoder(x)
def remove_weight_norm(self):
self.vocoder.remove_weight_norm()
self.weight_norm_removed = True
return self

View File

@ -0,0 +1,63 @@
resblock: '1'
num_gpus: 0
batch_size: 64
num_mels: 80
learning_rate: 0.0001
adam_b1: 0.8
adam_b2: 0.99
lr_decay: 0.999
seed: 1234
upsample_rates:
- 4
- 4
- 2
- 2
- 2
- 2
upsample_kernel_sizes:
- 8
- 8
- 4
- 4
- 4
- 4
upsample_initial_channel: 1536
resblock_kernel_sizes:
- 3
- 7
- 11
resblock_dilation_sizes:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
activation: snakebeta
snake_logscale: true
resolutions:
- - 1024
- 120
- 600
- - 2048
- 240
- 1200
- - 512
- 50
- 240
mpd_reshapes:
- 2
- 3
- 5
- 7
- 11
use_spectral_norm: false
discriminator_channel_mult: 1
num_workers: 4
dist_config:
dist_backend: nccl
dist_url: tcp://localhost:54341
world_size: 1

View File

@ -0,0 +1,18 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import shutil
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def build_env(config, config_name, path):
t_path = os.path.join(path, config_name)
if config != t_path:
os.makedirs(path, exist_ok=True)
shutil.copyfile(config, os.path.join(path, config_name))

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Jungil Kong
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Edward Dixon
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,29 @@
BSD 3-Clause License
Copyright (c) 2019, Seungwon Park 박승원
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,16 @@
Copyright 2020 Alexandre Défossez
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,255 @@
# Copyright (c) 2022 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
from ...ext.bigvgan import activations
from ...ext.bigvgan.alias_free_torch import *
from ...ext.bigvgan.utils import get_padding, init_weights
LRELU_SLOPE = 0.1
class AMPBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_parametrizations(l, 'weight')
for l in self.convs2:
remove_parametrizations(l, 'weight')
class AMPBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # total number of conv layers
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_parametrizations(l, 'weight')
class BigVGANVocoder(torch.nn.Module):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
def __init__(self, h):
super().__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# pre conv
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
nn.ModuleList([
weight_norm(
ConvTranspose1d(h.upsample_initial_channel // (2**i),
h.upsample_initial_channel // (2**(i + 1)),
k,
u,
padding=(k - u) // 2))
]))
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2**(i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
# post conv
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
# weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
# pre conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
for l_i in l:
remove_parametrizations(l_i, 'weight')
for l in self.resblocks:
l.remove_weight_norm()
remove_parametrizations(self.conv_pre, 'weight')
remove_parametrizations(self.conv_post, 'weight')

View File

@ -0,0 +1,31 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import torch
from torch.nn.utils.parametrizations import weight_norm
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def apply_weight_norm(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_norm(m)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024 NVIDIA CORPORATION.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,126 @@
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
from torch import nn, sin, pow
from torch.nn import Parameter
class Snake(nn.Module):
"""
Implementation of a sine-based periodic activation function
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
"""
super(Snake, self).__init__()
self.in_features = in_features
# Initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # Log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
else: # Linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
Snake = x + 1/a * sin^2 (xa)
"""
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
if self.alpha_logscale:
alpha = torch.exp(alpha)
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
super(SnakeBeta, self).__init__()
self.in_features = in_features
# Initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # Log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
self.beta = Parameter(torch.zeros(in_features) * alpha)
else: # Linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.beta = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta = x + 1/b * sin^2 (xa)
"""
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x

View File

@ -0,0 +1,77 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import torch
import torch.nn as nn
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
from alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
class FusedAntiAliasActivation(torch.autograd.Function):
"""
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
The hyperparameters are hard-coded in the kernel to maximize speed.
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
"""
@staticmethod
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
activation_results = anti_alias_activation_cuda.forward(
inputs, up_ftr, down_ftr, alpha, beta
)
return activation_results
@staticmethod
def backward(ctx, output_grads):
raise NotImplementedError
return output_grads, None, None
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
fused: bool = True,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
self.fused = fused # Whether to use fused CUDA kernel or not
def forward(self, x):
if not self.fused:
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x
else:
if self.act.__class__.__name__ == "Snake":
beta = self.act.alpha.data # Snake uses same params for alpha and beta
else:
beta = (
self.act.beta.data
) # Snakebeta uses different params for alpha and beta
alpha = self.act.alpha.data
if (
not self.act.alpha_logscale
): # Exp baked into cuda kernel, cancel it out with a log
alpha = torch.log(alpha)
beta = torch.log(beta)
x = FusedAntiAliasActivation.apply(
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
)
return x

View File

@ -0,0 +1,23 @@
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
}

View File

@ -0,0 +1,246 @@
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "type_shim.h"
#include <assert.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>
namespace
{
// Hard-coded hyperparameters
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
constexpr int BUFFER_SIZE = 32;
constexpr int FILTER_SIZE = 12;
constexpr int HALF_FILTER_SIZE = 6;
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
template <typename input_t, typename output_t, typename acc_t>
__global__ void anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const input_t *up_ftr,
const input_t *down_ftr,
const input_t *alpha,
const input_t *beta,
int batch_size,
int channels,
int seq_len)
{
// Up and downsample filters
input_t up_filter[FILTER_SIZE];
input_t down_filter[FILTER_SIZE];
// Load data from global memory including extra indices reserved for replication paddings
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
// Output stores downsampled output before writing to dst
output_t output[BUFFER_SIZE];
// blockDim/threadIdx = (128, 1, 1)
// gridDim/blockIdx = (seq_blocks, channels, batches)
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
int local_offset = threadIdx.x * BUFFER_SIZE;
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
// intermediate have double the seq_len
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
// Get values needed for replication padding before moving pointer
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
input_t seq_left_most_value = right_most_pntr[0];
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
// Move src and dst pointers
src += block_offset + local_offset;
dst += block_offset + local_offset;
// Alpha and beta values for snake activatons. Applies exp by default
alpha = alpha + blockIdx.y;
input_t alpha_val = expf(alpha[0]);
beta = beta + blockIdx.y;
input_t beta_val = expf(beta[0]);
#pragma unroll
for (int it = 0; it < FILTER_SIZE; it += 1)
{
up_filter[it] = up_ftr[it];
down_filter[it] = down_ftr[it];
}
// Apply replication padding for upsampling, matching torch impl
#pragma unroll
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
{
int element_index = seq_offset + it; // index for element
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
}
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
}
if ((element_index >= 0) && (element_index < seq_len))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
}
}
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
#pragma unroll
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
{
input_t acc = 0.0;
int element_index = intermediate_seq_offset + it; // index for intermediate
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
{
if ((element_index + f_idx) >= 0)
{
acc += up_filter[f_idx] * elements[it + f_idx];
}
}
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
}
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
double no_div_by_zero = 0.000000001;
#pragma unroll
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
{
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
}
// Apply replication padding before downsampling conv from intermediates
#pragma unroll
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
{
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
}
#pragma unroll
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
{
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
}
// Apply downsample strided convolution (assuming stride=2) from intermediates
#pragma unroll
for (int it = 0; it < BUFFER_SIZE; it += 1)
{
input_t acc = 0.0;
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
{
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
}
output[it] = acc;
}
// Write output to dst
#pragma unroll
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
{
int element_index = seq_offset + it;
if (element_index < seq_len)
{
dst[it] = output[it];
}
}
}
template <typename input_t, typename output_t, typename acc_t>
void dispatch_anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const input_t *up_ftr,
const input_t *down_ftr,
const input_t *alpha,
const input_t *beta,
int batch_size,
int channels,
int seq_len)
{
if (seq_len == 0)
{
return;
}
else
{
// Use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
constexpr int seq_len_per_block = 4096;
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
dim3 blocks(blocks_per_seq_len, channels, batch_size);
dim3 threads(threads_per_block, 1, 1);
anti_alias_activation_forward<input_t, output_t, acc_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
}
}
}
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
{
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
const int batches = input.size(0);
const int channels = input.size(1);
const int seq_len = input.size(2);
// Output
auto act_options = input.options().requires_grad(false);
torch::Tensor anti_alias_activation_results =
torch::empty({batches, channels, seq_len}, act_options);
void *input_ptr = static_cast<void *>(input.data_ptr());
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
void *beta_ptr = static_cast<void *>(beta.data_ptr());
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
DISPATCH_FLOAT_HALF_AND_BFLOAT(
input.scalar_type(),
"dispatch anti alias activation_forward",
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
reinterpret_cast<const scalar_t *>(input_ptr),
reinterpret_cast<const scalar_t *>(up_filter_ptr),
reinterpret_cast<const scalar_t *>(down_filter_ptr),
reinterpret_cast<const scalar_t *>(alpha_ptr),
reinterpret_cast<const scalar_t *>(beta_ptr),
batches,
channels,
seq_len););
return anti_alias_activation_results;
}

View File

@ -0,0 +1,29 @@
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*This code is copied fron NVIDIA apex:
* https://github.com/NVIDIA/apex
* with minor changes. */
#ifndef TORCH_CHECK
#define TORCH_CHECK AT_CHECK
#endif
#ifdef VERSION_GE_1_3
#define DATA_PTR data_ptr
#else
#define DATA_PTR data
#endif

View File

@ -0,0 +1,86 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import os
import pathlib
import subprocess
from torch.utils import cpp_extension
"""
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
"""
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
def load():
# Check if cuda 11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
# Build path
srcpath = pathlib.Path(__file__).parent.absolute()
buildpath = srcpath / "build"
_create_build_dir(buildpath)
# Helper function to build the kernels.
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
return cpp_extension.load(
name=name,
sources=sources,
build_directory=buildpath,
extra_cflags=[
"-O3",
],
extra_cuda_cflags=[
"-O3",
"-gencode",
"arch=compute_70,code=sm_70",
"--use_fast_math",
]
+ extra_cuda_flags
+ cc_flag,
verbose=True,
)
extra_cuda_flags = [
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
]
sources = [
srcpath / "anti_alias_activation.cpp",
srcpath / "anti_alias_activation_cuda.cu",
]
anti_alias_activation_cuda = _cpp_extention_load_helper(
"anti_alias_activation_cuda", sources, extra_cuda_flags
)
return anti_alias_activation_cuda
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output(
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def _create_build_dir(buildpath):
try:
os.mkdir(buildpath)
except OSError:
if not os.path.isdir(buildpath):
print(f"Creation of the build directory {buildpath} failed")

View File

@ -0,0 +1,92 @@
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include "compat.h"
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
switch (TYPE) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
switch (TYPEIN) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_in = float; \
switch (TYPEOUT) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
} \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_in = at::Half; \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_in = at::BFloat16; \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
}

View File

@ -0,0 +1,6 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
from .filter import *
from .resample import *
from .act import *

View File

@ -0,0 +1,32 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from .resample import (DownSample1d, UpSample1d)
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@ -0,0 +1,101 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
if "sinc" in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
# LICENSE is in incl_licenses directory.
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(
x == 0,
torch.tensor(1.0, device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x,
)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
# LICENSE is in incl_licenses directory.
def kaiser_sinc_filter1d(
cutoff, half_width, kernel_size
): # return filter [1,1,kernel_size]
even = kernel_size % 2 == 0
half_size = kernel_size // 2
# For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.0:
beta = 0.1102 * (A - 8.7)
elif A >= 21.0:
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
else:
beta = 0.0
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = torch.arange(-half_size, half_size) + 0.5
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
"""
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
"""
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(
self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = "replicate",
kernel_size: int = 12,
):
"""
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
"""
super().__init__()
if cutoff < -0.0:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = kernel_size % 2 == 0
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
# Input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
return out

View File

@ -0,0 +1,54 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from torch.nn import functional as F
from .filter import (LowPassFilter1d,
kaiser_sinc_filter1d)
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size)
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = (self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2)
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
kernel_size=self.kernel_size)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode="replicate")
x = self.ratio * F.conv_transpose1d(
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
x = x[..., self.pad_left:-self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size)
self.lowpass = LowPassFilter1d(
cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size,
)
def forward(self, x):
xx = self.lowpass(x)
return xx

View File

@ -0,0 +1,439 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import json
import os
from pathlib import Path
from typing import Dict, Optional, Union
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
from ...ext.bigvgan_v2 import activations
from ...ext.bigvgan_v2.alias_free_activation.torch.act import \
Activation1d as TorchActivation1d
from ...ext.bigvgan_v2.env import AttrDict
from ...ext.bigvgan_v2.utils import get_padding, init_weights
def load_hparams_from_json(path) -> AttrDict:
with open(path) as f:
data = f.read()
return AttrDict(json.loads(data))
class AMPBlock1(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)) for d in dilation
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=get_padding(kernel_size, 1),
)) for _ in range(len(dilation))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import \
Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == "snakebeta":
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_parametrizations(l, 'weight')
for l in self.convs2:
remove_parametrizations(l, 'weight')
class AMPBlock2(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)) for d in dilation
])
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import \
Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == "snakebeta":
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(
torch.nn.Module,
PyTorchModelHubMixin,
library_name="bigvgan",
repo_url="https://github.com/NVIDIA/BigVGAN",
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
pipeline_tag="audio-to-audio",
license="mit",
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
):
"""
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
Args:
h (AttrDict): Hyperparameters.
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
Note:
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
"""
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
super().__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import \
Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# Pre-conv
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
if h.resblock == "1":
resblock_class = AMPBlock1
elif h.resblock == "2":
resblock_class = AMPBlock2
else:
raise ValueError(
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}")
# Transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
nn.ModuleList([
weight_norm(
ConvTranspose1d(
h.upsample_initial_channel // (2**i),
h.upsample_initial_channel // (2**(i + 1)),
k,
u,
padding=(k - u) // 2,
))
]))
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2**(i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock_class(h, ch, k, d, activation=h.activation))
# Post-conv
activation_post = (activations.Snake(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snake" else
(activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snakebeta" else None))
if activation_post is None:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.activation_post = Activation1d(activation=activation_post)
# Whether to use bias for the final conv_post. Default to True for backward compatibility
self.use_bias_at_final = h.get("use_bias_at_final", True)
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final))
# Weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
# Final tanh activation. Defaults to True for backward compatibility
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
def forward(self, x):
# Pre-conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# Upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# Post-conv
x = self.activation_post(x)
x = self.conv_post(x)
# Final tanh activation
if self.use_tanh_at_final:
x = torch.tanh(x)
else:
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
return x
def remove_weight_norm(self):
try:
print("Removing weight norm...")
for l in self.ups:
for l_i in l:
remove_parametrizations(l_i, 'weight')
for l in self.resblocks:
l.remove_weight_norm()
remove_parametrizations(self.conv_pre, 'weight')
remove_parametrizations(self.conv_post, 'weight')
except ValueError:
print("[INFO] Model already removed weight norm. Skipping!")
pass
# Additional methods for huggingface_hub support
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights and config.json from a Pytorch model to a local directory."""
model_path = save_directory / "bigvgan_generator.pt"
torch.save({"generator": self.state_dict()}, model_path)
config_path = save_directory / "config.json"
with open(config_path, "w") as config_file:
json.dump(self.h, config_file, indent=4)
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: str,
cache_dir: str,
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu", # Additional argument
strict: bool = False, # Additional argument
use_cuda_kernel: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
# Download and load hyperparameters (h) used by BigVGAN
if os.path.isdir(model_id):
print("Loading config.json from local directory")
config_file = os.path.join(model_id, "config.json")
else:
config_file = hf_hub_download(
repo_id=model_id,
filename="config.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
h = load_hparams_from_json(config_file)
# instantiate BigVGAN using h
if use_cuda_kernel:
print(
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
)
print(
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
)
print(
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
)
model = cls(h, use_cuda_kernel=use_cuda_kernel)
# Download and load pretrained generator weight
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, "bigvgan_generator.pt")
else:
print(f"Loading weights from {model_id}")
model_file = hf_hub_download(
repo_id=model_id,
filename="bigvgan_generator.pt",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
checkpoint_dict = torch.load(model_file, map_location=map_location, weights_only=True)
try:
model.load_state_dict(checkpoint_dict["generator"])
except RuntimeError:
print(
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
)
model.remove_weight_norm()
model.load_state_dict(checkpoint_dict["generator"])
return model

View File

@ -0,0 +1,18 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import shutil
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def build_env(config, config_name, path):
t_path = os.path.join(path, config_name)
if config != t_path:
os.makedirs(path, exist_ok=True)
shutil.copyfile(config, os.path.join(path, config_name))

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Jungil Kong
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Edward Dixon
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,29 @@
BSD 3-Clause License
Copyright (c) 2019, Seungwon Park 박승원
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,16 @@
Copyright 2020 Alexandre Défossez
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023-present, Descript
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 Charactr Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 Amphion
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,31 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import torch
from torch.nn.utils import weight_norm
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def apply_weight_norm(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_norm(m)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print(f"Loading '{filepath}'")
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict

View File

@ -0,0 +1,106 @@
# Reference: # https://github.com/bytedance/Make-An-Audio-2
from typing import Literal
import torch
import torch.nn as nn
from librosa.filters import mel as librosa_mel_fn
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, *, norm_fn):
return norm_fn(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes, norm_fn):
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
return output
class MelConverter(nn.Module):
def __init__(
self,
*,
sampling_rate: float,
n_fft: int,
num_mels: int,
hop_size: int,
win_size: int,
fmin: float,
fmax: float,
norm_fn,
):
super().__init__()
self.sampling_rate = sampling_rate
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.norm_fn = norm_fn
mel = librosa_mel_fn(sr=self.sampling_rate,
n_fft=self.n_fft,
n_mels=self.num_mels,
fmin=self.fmin,
fmax=self.fmax)
mel_basis = torch.from_numpy(mel).float()
hann_window = torch.hann_window(self.win_size)
self.register_buffer('mel_basis', mel_basis)
self.register_buffer('hann_window', hann_window)
@property
def device(self):
return self.mel_basis.device
def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor:
waveform = waveform.clamp(min=-1., max=1.).to(self.device)
waveform = torch.nn.functional.pad(
waveform.unsqueeze(1),
[int((self.n_fft - self.hop_size) / 2),
int((self.n_fft - self.hop_size) / 2)],
mode='reflect')
waveform = waveform.squeeze(1)
spec = torch.stft(waveform,
self.n_fft,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=center,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(self.mel_basis, spec)
spec = spectral_normalize_torch(spec, self.norm_fn)
return spec
def get_mel_converter(mode: Literal['16k', '44k']) -> MelConverter:
if mode == '16k':
return MelConverter(sampling_rate=16_000,
n_fft=1024,
num_mels=80,
hop_size=256,
win_size=1024,
fmin=0,
fmax=8_000,
norm_fn=torch.log10)
elif mode == '44k':
return MelConverter(sampling_rate=44_100,
n_fft=2048,
num_mels=128,
hop_size=512,
win_size=2048,
fmin=0,
fmax=44100 / 2,
norm_fn=torch.log)
else:
raise ValueError(f'Unknown mode: {mode}')

View File

@ -0,0 +1,35 @@
from typing import Union
import torch
from einops import rearrange
from torch import Tensor
# Ref: https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
# Ref: https://github.com/lucidrains/rotary-embedding-torch
def compute_rope_rotations(length: int,
dim: int,
theta: int,
*,
freq_scaling: float = 1.0,
device: Union[torch.device, str] = 'cpu') -> Tensor:
assert dim % 2 == 0
with torch.amp.autocast(device_type='cuda', enabled=False):
pos = torch.arange(length, dtype=torch.float32, device=device)
freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
freqs *= freq_scaling
rot = torch.einsum('..., f -> ... f', pos, freqs)
rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1)
rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2)
return rot
def apply_rope(x: Tensor, rot: Tensor) -> tuple[Tensor, Tensor]:
with torch.amp.autocast(device_type='cuda', enabled=False):
_x = x.float()
_x = _x.view(*_x.shape[:-1], -1, 1, 2)
x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1]
return x_out.reshape(*x.shape).to(dtype=x.dtype)

View File

@ -0,0 +1,183 @@
# Reference: # https://github.com/bytedance/Make-An-Audio-2
import torch
import torch.nn as nn
import torchaudio
from einops import rearrange
from librosa.filters import mel as librosa_mel_fn
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10):
return norm_fn(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes, norm_fn):
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
return output
class STFTConverter(nn.Module):
def __init__(
self,
*,
sampling_rate: float = 16_000,
n_fft: int = 1024,
num_mels: int = 128,
hop_size: int = 256,
win_size: int = 1024,
fmin: float = 0,
fmax: float = 8_000,
norm_fn=torch.log,
):
super().__init__()
self.sampling_rate = sampling_rate
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.norm_fn = norm_fn
mel = librosa_mel_fn(sr=self.sampling_rate,
n_fft=self.n_fft,
n_mels=self.num_mels,
fmin=self.fmin,
fmax=self.fmax)
mel_basis = torch.from_numpy(mel).float()
hann_window = torch.hann_window(self.win_size)
self.register_buffer('mel_basis', mel_basis)
self.register_buffer('hann_window', hann_window)
@property
def device(self):
return self.hann_window.device
def forward(self, waveform: torch.Tensor) -> torch.Tensor:
# input: batch_size * length
bs = waveform.shape[0]
waveform = waveform.clamp(min=-1., max=1.)
spec = torch.stft(waveform,
self.n_fft,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True)
spec = torch.view_as_real(spec)
# print('After stft', spec.shape, spec.min(), spec.max(), spec.mean())
power = spec.pow(2).sum(-1)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power', power.shape, power.min(), power.max(), power.mean())
print('angle', angle.shape, angle.min(), angle.max(), angle.mean())
# print('mel', self.mel_basis.shape, self.mel_basis.min(), self.mel_basis.max(),
# self.mel_basis.mean())
# spec = rearrange(spec, 'b f t c -> (b c) f t')
# spec = self.mel_transform(spec)
# spec = torch.matmul(self.mel_basis, spec)
# print('After mel', spec.shape, spec.min(), spec.max(), spec.mean())
# spec = spectral_normalize_torch(spec, self.norm_fn)
# print('After norm', spec.shape, spec.min(), spec.max(), spec.mean())
# compute magnitude
# magnitude = torch.sqrt((spec**2).sum(-1))
# normalize by magnitude
# scaled_magnitude = torch.log10(magnitude.clamp(min=1e-5)) * 10
# spec = spec / magnitude.unsqueeze(-1) * scaled_magnitude.unsqueeze(-1)
# power = torch.log10(power.clamp(min=1e-5)) * 10
power = torch.log10(power.clamp(min=1e-5))
print('After scaling', power.shape, power.min(), power.max(), power.mean())
spec = torch.stack([power, angle], dim=-1)
# spec = rearrange(spec, '(b c) f t -> b c f t', b=bs)
spec = rearrange(spec, 'b f t c -> b c f t', b=bs)
# spec[:, :, 400:] = 0
return spec
def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor:
bs = spec.shape[0]
# spec = rearrange(spec, 'b c f t -> (b c) f t')
# print(spec.shape, self.mel_basis.shape)
# spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution
# spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec
# spec = self.invmel_transform(spec)
spec = rearrange(spec, 'b c f t -> b f t c', b=bs).contiguous()
# spec[..., 0] = 10**(spec[..., 0] / 10)
power = spec[..., 0]
power = 10**power
# print('After unscaling', spec[..., 0].shape, spec[..., 0].min(), spec[..., 0].max(),
# spec[..., 0].mean())
unit_vector = torch.stack([
torch.cos(spec[..., 1]),
torch.sin(spec[..., 1]),
], dim=-1)
spec = torch.sqrt(power) * unit_vector
# spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous()
spec = torch.view_as_complex(spec)
waveform = torch.istft(
spec,
self.n_fft,
length=length,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=True,
normalized=False,
onesided=True,
return_complex=False,
)
return waveform
if __name__ == '__main__':
converter = STFTConverter(sampling_rate=16000)
signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0]
# resample signal at 44100 Hz
# signal = torchaudio.transforms.Resample(16_000, 44_100)(signal)
L = signal.shape[1]
print('Input signal', signal.shape)
spec = converter(signal)
print('Final spec', spec.shape)
signal_recon = converter.invert(spec, length=L)
print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(),
signal_recon.mean())
print('MSE', torch.nn.functional.mse_loss(signal, signal_recon))
torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000)

View File

@ -0,0 +1,234 @@
# Reference: # https://github.com/bytedance/Make-An-Audio-2
import torch
import torch.nn as nn
import torchaudio
from einops import rearrange
from librosa.filters import mel as librosa_mel_fn
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10):
return norm_fn(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes, norm_fn):
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
return output
class STFTConverter(nn.Module):
def __init__(
self,
*,
sampling_rate: float = 16_000,
n_fft: int = 1024,
num_mels: int = 128,
hop_size: int = 256,
win_size: int = 1024,
fmin: float = 0,
fmax: float = 8_000,
norm_fn=torch.log,
):
super().__init__()
self.sampling_rate = sampling_rate
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.norm_fn = norm_fn
mel = librosa_mel_fn(sr=self.sampling_rate,
n_fft=self.n_fft,
n_mels=self.num_mels,
fmin=self.fmin,
fmax=self.fmax)
mel_basis = torch.from_numpy(mel).float()
hann_window = torch.hann_window(self.win_size)
self.register_buffer('mel_basis', mel_basis)
self.register_buffer('hann_window', hann_window)
@property
def device(self):
return self.hann_window.device
def forward(self, waveform: torch.Tensor) -> torch.Tensor:
# input: batch_size * length
bs = waveform.shape[0]
waveform = waveform.clamp(min=-1., max=1.)
spec = torch.stft(waveform,
self.n_fft,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True)
spec = torch.view_as_real(spec)
# print('After stft', spec.shape, spec.min(), spec.max(), spec.mean())
power = (spec.pow(2).sum(-1))**(0.5)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power 1', power.shape, power.min(), power.max(), power.mean())
print('angle 1', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2])
# print('mel', self.mel_basis.shape, self.mel_basis.min(), self.mel_basis.max(),
# self.mel_basis.mean())
# spec = self.mel_transform(spec)
# power = torch.matmul(self.mel_basis, power)
spec = rearrange(spec, 'b f t c -> (b c) f t')
spec = self.mel_basis.unsqueeze(0) @ spec
spec = rearrange(spec, '(b c) f t -> b f t c', b=bs)
power = (spec.pow(2).sum(-1))**(0.5)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power', power.shape, power.min(), power.max(), power.mean())
print('angle', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2])
# print('After mel', spec.shape, spec.min(), spec.max(), spec.mean())
# spec = spectral_normalize_torch(spec, self.norm_fn)
# print('After norm', spec.shape, spec.min(), spec.max(), spec.mean())
# compute magnitude
# magnitude = torch.sqrt((spec**2).sum(-1))
# normalize by magnitude
# scaled_magnitude = torch.log10(magnitude.clamp(min=1e-5)) * 10
# spec = spec / magnitude.unsqueeze(-1) * scaled_magnitude.unsqueeze(-1)
# power = torch.log10(power.clamp(min=1e-5)) * 10
power = torch.log10(power.clamp(min=1e-8))
print('After scaling', power.shape, power.min(), power.max(), power.mean())
# spec = torch.stack([power, angle], dim=-1)
# spec = rearrange(spec, '(b c) f t -> b c f t', b=bs)
# spec = rearrange(spec, 'b f t c -> b c f t', b=bs)
# spec[:, :, 400:] = 0
return power, angle
# return spec[..., 0], spec[..., 1]
def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor:
power, angle = spec
bs = power.shape[0]
# spec = rearrange(spec, 'b c f t -> (b c) f t')
# print(spec.shape, self.mel_basis.shape)
# spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution
# spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec
# spec = self.invmel_transform(spec)
# spec = rearrange(spec, 'b c f t -> b f t c', b=bs).contiguous()
# spec[..., 0] = 10**(spec[..., 0] / 10)
# power = spec[..., 0]
power = 10**power
# print('After unscaling', spec[..., 0].shape, spec[..., 0].min(), spec[..., 0].max(),
# spec[..., 0].mean())
unit_vector = torch.stack([
torch.cos(angle),
torch.sin(angle),
], dim=-1)
spec = power.unsqueeze(-1) * unit_vector
# power = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), power).solution
spec = rearrange(spec, 'b f t c -> (b c) f t')
spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec
# spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution
spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous()
power = (spec.pow(2).sum(-1))**(0.5)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power 2', power.shape, power.min(), power.max(), power.mean())
print('angle 2', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2])
# spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous()
spec = torch.view_as_complex(spec)
waveform = torch.istft(
spec,
self.n_fft,
length=length,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=True,
normalized=False,
onesided=True,
return_complex=False,
)
return waveform
if __name__ == '__main__':
converter = STFTConverter(sampling_rate=16000)
signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0]
# resample signal at 44100 Hz
# signal = torchaudio.transforms.Resample(16_000, 44_100)(signal)
L = signal.shape[1]
print('Input signal', signal.shape)
spec = converter(signal)
power, angle = spec
# print(power.shape, angle.shape)
# print(power, power.min(), power.max(), power.mean())
# power = power.clamp(-1, 1)
# angle = angle.clamp(-1, 1)
import matplotlib.pyplot as plt
# Visualize power
plt.figure()
plt.imshow(power[0].detach().numpy(), aspect='auto', origin='lower')
plt.colorbar()
plt.title('Power')
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.savefig('./output/power.png')
# Visualize angle
plt.figure()
plt.imshow(angle[0].detach().numpy(), aspect='auto', origin='lower')
plt.colorbar()
plt.title('Angle')
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.savefig('./output/angle.png')
# print('Final spec', spec.shape)
signal_recon = converter.invert(spec, length=L)
print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(),
signal_recon.mean())
print('MSE', torch.nn.functional.mse_loss(signal, signal_recon))
torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000)

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024 Vladimir Iashin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1 @@
# from .synchformer import Synchformer

View File

@ -0,0 +1,84 @@
TRAIN:
ENABLE: True
DATASET: Ssv2
BATCH_SIZE: 32
EVAL_PERIOD: 5
CHECKPOINT_PERIOD: 5
AUTO_RESUME: True
CHECKPOINT_EPOCH_RESET: True
CHECKPOINT_FILE_PATH: /checkpoint/fmetze/neurips_sota/40944587/checkpoints/checkpoint_epoch_00035.pyth
DATA:
NUM_FRAMES: 16
SAMPLING_RATE: 4
TRAIN_JITTER_SCALES: [256, 320]
TRAIN_CROP_SIZE: 224
TEST_CROP_SIZE: 224
INPUT_CHANNEL_NUM: [3]
MEAN: [0.5, 0.5, 0.5]
STD: [0.5, 0.5, 0.5]
PATH_TO_DATA_DIR: /private/home/mandelapatrick/slowfast/data/ssv2
PATH_PREFIX: /datasets01/SomethingV2/092720/20bn-something-something-v2-frames
INV_UNIFORM_SAMPLE: True
RANDOM_FLIP: False
REVERSE_INPUT_CHANNEL: True
USE_RAND_AUGMENT: True
RE_PROB: 0.0
USE_REPEATED_AUG: False
USE_RANDOM_RESIZE_CROPS: False
COLORJITTER: False
GRAYSCALE: False
GAUSSIAN: False
SOLVER:
BASE_LR: 1e-4
LR_POLICY: steps_with_relative_lrs
LRS: [1, 0.1, 0.01]
STEPS: [0, 20, 30]
MAX_EPOCH: 35
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-2
WARMUP_EPOCHS: 0.0
OPTIMIZING_METHOD: adamw
USE_MIXED_PRECISION: True
SMOOTHING: 0.2
SLOWFAST:
ALPHA: 8
VIT:
PATCH_SIZE: 16
PATCH_SIZE_TEMP: 2
CHANNELS: 3
EMBED_DIM: 768
DEPTH: 12
NUM_HEADS: 12
MLP_RATIO: 4
QKV_BIAS: True
VIDEO_INPUT: True
TEMPORAL_RESOLUTION: 8
USE_MLP: True
DROP: 0.0
POS_DROPOUT: 0.0
DROP_PATH: 0.2
IM_PRETRAINED: True
HEAD_DROPOUT: 0.0
HEAD_ACT: tanh
PRETRAINED_WEIGHTS: vit_1k
ATTN_LAYER: divided
MODEL:
NUM_CLASSES: 174
ARCH: slow
MODEL_NAME: VisionTransformer
LOSS_FUNC: cross_entropy
TEST:
ENABLE: True
DATASET: Ssv2
BATCH_SIZE: 64
NUM_ENSEMBLE_VIEWS: 1
NUM_SPATIAL_CROPS: 3
DATA_LOADER:
NUM_WORKERS: 4
PIN_MEMORY: True
NUM_GPUS: 8
NUM_SHARDS: 4
RNG_SEED: 0
OUTPUT_DIR: .
TENSORBOARD:
ENABLE: True

View File

@ -0,0 +1,400 @@
import logging
from pathlib import Path
import einops
import torch
from omegaconf import OmegaConf
from timm.layers import trunc_normal_
from torch import nn
from .utils import check_if_file_exists_else_download
from .video_model_builder import VisionTransformer
FILE2URL = {
# cfg
'motionformer_224_16x4.yaml':
'https://raw.githubusercontent.com/facebookresearch/Motionformer/bf43d50/configs/SSV2/motionformer_224_16x4.yaml',
'joint_224_16x4.yaml':
'https://raw.githubusercontent.com/facebookresearch/Motionformer/bf43d50/configs/SSV2/joint_224_16x4.yaml',
'divided_224_16x4.yaml':
'https://raw.githubusercontent.com/facebookresearch/Motionformer/bf43d50/configs/SSV2/divided_224_16x4.yaml',
# ckpt
'ssv2_motionformer_224_16x4.pyth':
'https://dl.fbaipublicfiles.com/motionformer/ssv2_motionformer_224_16x4.pyth',
'ssv2_joint_224_16x4.pyth':
'https://dl.fbaipublicfiles.com/motionformer/ssv2_joint_224_16x4.pyth',
'ssv2_divided_224_16x4.pyth':
'https://dl.fbaipublicfiles.com/motionformer/ssv2_divided_224_16x4.pyth',
}
class MotionFormer(VisionTransformer):
''' This class serves three puposes:
1. Renames the class to MotionFormer.
2. Downloads the cfg from the original repo and patches it if needed.
3. Takes care of feature extraction by redefining .forward()
- if `extract_features=True` and `factorize_space_time=False`,
the output is of shape (B, T, D) where T = 1 + (224 // 16) * (224 // 16) * 8
- if `extract_features=True` and `factorize_space_time=True`, the output is of shape (B*S, D)
and spatial and temporal transformer encoder layers are used.
- if `extract_features=True` and `factorize_space_time=True` as well as `add_global_repr=True`
the output is of shape (B, D) and spatial and temporal transformer encoder layers
are used as well as the global representation is extracted from segments (extra pos emb
is added).
'''
def __init__(
self,
extract_features: bool = False,
ckpt_path: str = None,
factorize_space_time: bool = None,
agg_space_module: str = None,
agg_time_module: str = None,
add_global_repr: bool = True,
agg_segments_module: str = None,
max_segments: int = None,
):
self.extract_features = extract_features
self.ckpt_path = ckpt_path
self.factorize_space_time = factorize_space_time
if self.ckpt_path is not None:
check_if_file_exists_else_download(self.ckpt_path, FILE2URL)
ckpt = torch.load(self.ckpt_path, map_location='cpu')
mformer_ckpt2cfg = {
'ssv2_motionformer_224_16x4.pyth': 'motionformer_224_16x4.yaml',
'ssv2_joint_224_16x4.pyth': 'joint_224_16x4.yaml',
'ssv2_divided_224_16x4.pyth': 'divided_224_16x4.yaml',
}
# init from motionformer ckpt or from our Stage I ckpt
# depending on whether the feat extractor was pre-trained on AVCLIPMoCo or not, we need to
# load the state dict differently
was_pt_on_avclip = self.ckpt_path.endswith(
'.pt') # checks if it is a stage I ckpt (FIXME: a bit generic)
if self.ckpt_path.endswith(tuple(mformer_ckpt2cfg.keys())):
cfg_fname = mformer_ckpt2cfg[Path(self.ckpt_path).name]
elif was_pt_on_avclip:
# TODO: this is a hack, we should be able to get the cfg from the ckpt (earlier ckpt didn't have it)
s1_cfg = ckpt.get('args', None) # Stage I cfg
if s1_cfg is not None:
s1_vfeat_extractor_ckpt_path = s1_cfg.model.params.vfeat_extractor.params.ckpt_path
# if the stage I ckpt was initialized from a motionformer ckpt or train from scratch
if s1_vfeat_extractor_ckpt_path is not None:
cfg_fname = mformer_ckpt2cfg[Path(s1_vfeat_extractor_ckpt_path).name]
else:
cfg_fname = 'divided_224_16x4.yaml'
else:
cfg_fname = 'divided_224_16x4.yaml'
else:
raise ValueError(f'ckpt_path {self.ckpt_path} is not supported.')
else:
was_pt_on_avclip = False
cfg_fname = 'divided_224_16x4.yaml'
# logging.info(f'No ckpt_path provided, using {cfg_fname} config.')
if cfg_fname in ['motionformer_224_16x4.yaml', 'divided_224_16x4.yaml']:
pos_emb_type = 'separate'
elif cfg_fname == 'joint_224_16x4.yaml':
pos_emb_type = 'joint'
self.mformer_cfg_path = Path(__file__).absolute().parent / cfg_fname
check_if_file_exists_else_download(self.mformer_cfg_path, FILE2URL)
mformer_cfg = OmegaConf.load(self.mformer_cfg_path)
logging.info(f'Loading MotionFormer config from {self.mformer_cfg_path.absolute()}')
# patch the cfg (from the default cfg defined in the repo `Motionformer/slowfast/config/defaults.py`)
mformer_cfg.VIT.ATTN_DROPOUT = 0.0
mformer_cfg.VIT.POS_EMBED = pos_emb_type
mformer_cfg.VIT.USE_ORIGINAL_TRAJ_ATTN_CODE = True
mformer_cfg.VIT.APPROX_ATTN_TYPE = 'none' # guessing
mformer_cfg.VIT.APPROX_ATTN_DIM = 64 # from ckpt['cfg']
# finally init VisionTransformer with the cfg
super().__init__(mformer_cfg)
# load the ckpt now if ckpt is provided and not from AVCLIPMoCo-pretrained ckpt
if (self.ckpt_path is not None) and (not was_pt_on_avclip):
_ckpt_load_status = self.load_state_dict(ckpt['model_state'], strict=False)
if len(_ckpt_load_status.missing_keys) > 0 or len(
_ckpt_load_status.unexpected_keys) > 0:
logging.warning(f'Loading exact vfeat_extractor ckpt from {self.ckpt_path} failed.' \
f'Missing keys: {_ckpt_load_status.missing_keys}, ' \
f'Unexpected keys: {_ckpt_load_status.unexpected_keys}')
else:
logging.info(f'Loading vfeat_extractor ckpt from {self.ckpt_path} succeeded.')
if self.extract_features:
assert isinstance(self.norm,
nn.LayerNorm), 'early x[:, 1:, :] may not be safe for per-tr weights'
# pre-logits are Sequential(nn.Linear(emb, emd), act) and `act` is tanh but see the logger
self.pre_logits = nn.Identity()
# we don't need the classification head (saving memory)
self.head = nn.Identity()
self.head_drop = nn.Identity()
# avoiding code duplication (used only if agg_*_module is TransformerEncoderLayer)
transf_enc_layer_kwargs = dict(
d_model=self.embed_dim,
nhead=self.num_heads,
activation=nn.GELU(),
batch_first=True,
dim_feedforward=self.mlp_ratio * self.embed_dim,
dropout=self.drop_rate,
layer_norm_eps=1e-6,
norm_first=True,
)
# define adapters if needed
if self.factorize_space_time:
if agg_space_module == 'TransformerEncoderLayer':
self.spatial_attn_agg = SpatialTransformerEncoderLayer(
**transf_enc_layer_kwargs)
elif agg_space_module == 'AveragePooling':
self.spatial_attn_agg = AveragePooling(avg_pattern='BS D t h w -> BS D t',
then_permute_pattern='BS D t -> BS t D')
if agg_time_module == 'TransformerEncoderLayer':
self.temp_attn_agg = TemporalTransformerEncoderLayer(**transf_enc_layer_kwargs)
elif agg_time_module == 'AveragePooling':
self.temp_attn_agg = AveragePooling(avg_pattern='BS t D -> BS D')
elif 'Identity' in agg_time_module:
self.temp_attn_agg = nn.Identity()
# define a global aggregation layer (aggregarate over segments)
self.add_global_repr = add_global_repr
if add_global_repr:
if agg_segments_module == 'TransformerEncoderLayer':
# we can reuse the same layer as for temporal factorization (B, dim_to_agg, D) -> (B, D)
# we need to add pos emb (PE) because previously we added the same PE for each segment
pos_max_len = max_segments if max_segments is not None else 16 # 16 = 10sec//0.64sec + 1
self.global_attn_agg = TemporalTransformerEncoderLayer(
add_pos_emb=True,
pos_emb_drop=mformer_cfg.VIT.POS_DROPOUT,
pos_max_len=pos_max_len,
**transf_enc_layer_kwargs)
elif agg_segments_module == 'AveragePooling':
self.global_attn_agg = AveragePooling(avg_pattern='B S D -> B D')
if was_pt_on_avclip:
# we need to filter out the state_dict of the AVCLIP model (has both A and V extractors)
# and keep only the state_dict of the feat extractor
ckpt_weights = dict()
for k, v in ckpt['state_dict'].items():
if k.startswith(('module.v_encoder.', 'v_encoder.')):
k = k.replace('module.', '').replace('v_encoder.', '')
ckpt_weights[k] = v
_load_status = self.load_state_dict(ckpt_weights, strict=False)
if len(_load_status.missing_keys) > 0 or len(_load_status.unexpected_keys) > 0:
logging.warning(f'Loading exact vfeat_extractor ckpt from {self.ckpt_path} failed. \n' \
f'Missing keys ({len(_load_status.missing_keys)}): ' \
f'{_load_status.missing_keys}, \n' \
f'Unexpected keys ({len(_load_status.unexpected_keys)}): ' \
f'{_load_status.unexpected_keys} \n' \
f'temp_attn_agg are expected to be missing if ckpt was pt contrastively.')
else:
logging.info(f'Loading vfeat_extractor ckpt from {self.ckpt_path} succeeded.')
# patch_embed is not used in MotionFormer, only patch_embed_3d, because cfg.VIT.PATCH_SIZE_TEMP > 1
# but it used to calculate the number of patches, so we need to set keep it
self.patch_embed.requires_grad_(False)
def forward(self, x):
'''
x is of shape (B, S, C, T, H, W) where S is the number of segments.
'''
# Batch, Segments, Channels, T=frames, Height, Width
B, S, C, T, H, W = x.shape
# Motionformer expects a tensor of shape (1, B, C, T, H, W).
# The first dimension (1) is a dummy dimension to make the input tensor and won't be used:
# see `video_model_builder.video_input`.
# x = x.unsqueeze(0) # (1, B, S, C, T, H, W)
orig_shape = (B, S, C, T, H, W)
x = x.view(B * S, C, T, H, W) # flatten batch and segments
x = self.forward_segments(x, orig_shape=orig_shape)
# unpack the segments (using rest dimensions to support different shapes e.g. (BS, D) or (BS, t, D))
x = x.view(B, S, *x.shape[1:])
# x is now of shape (B*S, D) or (B*S, t, D) if `self.temp_attn_agg` is `Identity`
return x # x is (B, S, ...)
def forward_segments(self, x, orig_shape: tuple) -> torch.Tensor:
'''x is of shape (1, BS, C, T, H, W) where S is the number of segments.'''
x, x_mask = self.forward_features(x)
assert self.extract_features
# (BS, T, D) where T = 1 + (224 // 16) * (224 // 16) * 8
x = x[:,
1:, :] # without the CLS token for efficiency (should be safe for LayerNorm and FC)
x = self.norm(x)
x = self.pre_logits(x)
if self.factorize_space_time:
x = self.restore_spatio_temp_dims(x, orig_shape) # (B*S, D, t, h, w) <- (B*S, t*h*w, D)
x = self.spatial_attn_agg(x, x_mask) # (B*S, t, D)
x = self.temp_attn_agg(
x) # (B*S, D) or (BS, t, D) if `self.temp_attn_agg` is `Identity`
return x
def restore_spatio_temp_dims(self, feats: torch.Tensor, orig_shape: tuple) -> torch.Tensor:
'''
feats are of shape (B*S, T, D) where T = 1 + (224 // 16) * (224 // 16) * 8
Our goal is to make them of shape (B*S, t, h, w, D) where h, w are the spatial dimensions.
From `self.patch_embed_3d`, it follows that we could reshape feats with:
`feats.transpose(1, 2).view(B*S, D, t, h, w)`
'''
B, S, C, T, H, W = orig_shape
D = self.embed_dim
# num patches in each dimension
t = T // self.patch_embed_3d.z_block_size
h = self.patch_embed_3d.height
w = self.patch_embed_3d.width
feats = feats.permute(0, 2, 1) # (B*S, D, T)
feats = feats.view(B * S, D, t, h, w) # (B*S, D, t, h, w)
return feats
class BaseEncoderLayer(nn.TransformerEncoderLayer):
'''
This is a wrapper around nn.TransformerEncoderLayer that adds a CLS token
to the sequence and outputs the CLS token's representation.
This base class parents both SpatialEncoderLayer and TemporalEncoderLayer for the RGB stream
and the FrequencyEncoderLayer and TemporalEncoderLayer for the audio stream stream.
We also, optionally, add a positional embedding to the input sequence which
allows to reuse it for global aggregation (of segments) for both streams.
'''
def __init__(self,
add_pos_emb: bool = False,
pos_emb_drop: float = None,
pos_max_len: int = None,
*args_transformer_enc,
**kwargs_transformer_enc):
super().__init__(*args_transformer_enc, **kwargs_transformer_enc)
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.self_attn.embed_dim))
trunc_normal_(self.cls_token, std=.02)
# add positional embedding
self.add_pos_emb = add_pos_emb
if add_pos_emb:
self.pos_max_len = 1 + pos_max_len # +1 (for CLS)
self.pos_emb = nn.Parameter(torch.zeros(1, self.pos_max_len, self.self_attn.embed_dim))
self.pos_drop = nn.Dropout(pos_emb_drop)
trunc_normal_(self.pos_emb, std=.02)
self.apply(self._init_weights)
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None):
''' x is of shape (B, N, D); if provided x_mask is of shape (B, N)'''
batch_dim = x.shape[0]
# add CLS token
cls_tokens = self.cls_token.expand(batch_dim, -1, -1) # expanding to match batch dimension
x = torch.cat((cls_tokens, x), dim=-2) # (batch_dim, 1+seq_len, D)
if x_mask is not None:
cls_mask = torch.ones((batch_dim, 1), dtype=torch.bool,
device=x_mask.device) # 1=keep; 0=mask
x_mask_w_cls = torch.cat((cls_mask, x_mask), dim=-1) # (batch_dim, 1+seq_len)
B, N = x_mask_w_cls.shape
# torch expects (N, N) or (B*num_heads, N, N) mask (sadness ahead); torch masks
x_mask_w_cls = x_mask_w_cls.reshape(B, 1, 1, N)\
.expand(-1, self.self_attn.num_heads, N, -1)\
.reshape(B * self.self_attn.num_heads, N, N)
assert x_mask_w_cls.dtype == x_mask_w_cls.bool().dtype, 'x_mask_w_cls.dtype != bool'
x_mask_w_cls = ~x_mask_w_cls # invert mask (1=mask)
else:
x_mask_w_cls = None
# add positional embedding
if self.add_pos_emb:
seq_len = x.shape[
1] # (don't even think about moving it before the CLS token concatenation)
assert seq_len <= self.pos_max_len, f'Seq len ({seq_len}) > pos_max_len ({self.pos_max_len})'
x = x + self.pos_emb[:, :seq_len, :]
x = self.pos_drop(x)
# apply encoder layer (calls nn.TransformerEncoderLayer.forward);
x = super().forward(src=x, src_mask=x_mask_w_cls) # (batch_dim, 1+seq_len, D)
# CLS token is expected to hold spatial information for each frame
x = x[:, 0, :] # (batch_dim, D)
return x
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token', 'pos_emb'}
class SpatialTransformerEncoderLayer(BaseEncoderLayer):
''' Aggregates spatial dimensions by applying attention individually to each frame. '''
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None) -> torch.Tensor:
''' x is of shape (B*S, D, t, h, w) where S is the number of segments.
if specified x_mask (B*S, t, h, w), 0=masked, 1=kept
Returns a tensor of shape (B*S, t, D) pooling spatial information for each frame. '''
BS, D, t, h, w = x.shape
# time as a batch dimension and flatten spatial dimensions as sequence
x = einops.rearrange(x, 'BS D t h w -> (BS t) (h w) D')
# similar to mask
if x_mask is not None:
x_mask = einops.rearrange(x_mask, 'BS t h w -> (BS t) (h w)')
# apply encoder layer (BaseEncoderLayer.forward) - it will add CLS token and output its representation
x = super().forward(x=x, x_mask=x_mask) # (B*S*t, D)
# reshape back to (B*S, t, D)
x = einops.rearrange(x, '(BS t) D -> BS t D', BS=BS, t=t)
# (B*S, t, D)
return x
class TemporalTransformerEncoderLayer(BaseEncoderLayer):
''' Aggregates temporal dimension with attention. Also used with pos emb as global aggregation
in both streams. '''
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
''' x is of shape (B*S, t, D) where S is the number of segments.
Returns a tensor of shape (B*S, D) pooling temporal information. '''
BS, t, D = x.shape
# apply encoder layer (BaseEncoderLayer.forward) - it will add CLS token and output its representation
x = super().forward(x) # (B*S, D)
return x # (B*S, D)
class AveragePooling(nn.Module):
def __init__(self, avg_pattern: str, then_permute_pattern: str = None) -> None:
''' patterns are e.g. "bs t d -> bs d" '''
super().__init__()
# TODO: need to register them as buffers (but fails because these are strings)
self.reduce_fn = 'mean'
self.avg_pattern = avg_pattern
self.then_permute_pattern = then_permute_pattern
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None) -> torch.Tensor:
x = einops.reduce(x, self.avg_pattern, self.reduce_fn)
if self.then_permute_pattern is not None:
x = einops.rearrange(x, self.then_permute_pattern)
return x

View File

@ -0,0 +1,55 @@
import logging
from typing import Any, Mapping
import torch
from torch import nn
from .motionformer import MotionFormer
class Synchformer(nn.Module):
def __init__(self):
super().__init__()
self.vfeat_extractor = MotionFormer(extract_features=True,
factorize_space_time=True,
agg_space_module='TransformerEncoderLayer',
agg_time_module='torch.nn.Identity',
add_global_repr=False)
# self.vfeat_extractor = instantiate_from_config(vfeat_extractor)
# self.afeat_extractor = instantiate_from_config(afeat_extractor)
# # bridging the s3d latent dim (1024) into what is specified in the config
# # to match e.g. the transformer dim
# self.vproj = instantiate_from_config(vproj)
# self.aproj = instantiate_from_config(aproj)
# self.transformer = instantiate_from_config(transformer)
def forward(self, vis):
B, S, Tv, C, H, W = vis.shape
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W)
# feat extractors return a tuple of segment-level and global features (ignored for sync)
# (B, S, tv, D), e.g. (B, 7, 8, 768)
vis = self.vfeat_extractor(vis)
return vis
def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True):
# discard all entries except vfeat_extractor
sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')}
return super().load_state_dict(sd, strict)
if __name__ == "__main__":
model = Synchformer().cuda().eval()
sd = torch.load('./ext_weights/synchformer_state_dict.pth', weights_only=True)
model.load_state_dict(sd)
vid = torch.randn(2, 7, 16, 3, 224, 224).cuda()
features = model.extract_vfeats(vid, for_loop=False).detach().cpu()
print(features.shape)
# extract and save the state dict only
# sd = torch.load('./ext_weights/sync_model_audioset.pt')['model']
# torch.save(sd, './ext_weights/synchformer_state_dict.pth')

View File

@ -0,0 +1,92 @@
from hashlib import md5
from pathlib import Path
import requests
from tqdm import tqdm
PARENT_LINK = 'https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a'
FNAME2LINK = {
# S3: Synchability: AudioSet (run 2)
'24-01-22T20-34-52.pt':
f'{PARENT_LINK}/sync/sync_models/24-01-22T20-34-52/24-01-22T20-34-52.pt',
'cfg-24-01-22T20-34-52.yaml':
f'{PARENT_LINK}/sync/sync_models/24-01-22T20-34-52/cfg-24-01-22T20-34-52.yaml',
# S2: Synchformer: AudioSet (run 2)
'24-01-04T16-39-21.pt':
f'{PARENT_LINK}/sync/sync_models/24-01-04T16-39-21/24-01-04T16-39-21.pt',
'cfg-24-01-04T16-39-21.yaml':
f'{PARENT_LINK}/sync/sync_models/24-01-04T16-39-21/cfg-24-01-04T16-39-21.yaml',
# S2: Synchformer: AudioSet (run 1)
'23-08-28T11-23-23.pt':
f'{PARENT_LINK}/sync/sync_models/23-08-28T11-23-23/23-08-28T11-23-23.pt',
'cfg-23-08-28T11-23-23.yaml':
f'{PARENT_LINK}/sync/sync_models/23-08-28T11-23-23/cfg-23-08-28T11-23-23.yaml',
# S2: Synchformer: LRS3 (run 2)
'23-12-23T18-33-57.pt':
f'{PARENT_LINK}/sync/sync_models/23-12-23T18-33-57/23-12-23T18-33-57.pt',
'cfg-23-12-23T18-33-57.yaml':
f'{PARENT_LINK}/sync/sync_models/23-12-23T18-33-57/cfg-23-12-23T18-33-57.yaml',
# S2: Synchformer: VGS (run 2)
'24-01-02T10-00-53.pt':
f'{PARENT_LINK}/sync/sync_models/24-01-02T10-00-53/24-01-02T10-00-53.pt',
'cfg-24-01-02T10-00-53.yaml':
f'{PARENT_LINK}/sync/sync_models/24-01-02T10-00-53/cfg-24-01-02T10-00-53.yaml',
# SparseSync: ft VGGSound-Full
'22-09-21T21-00-52.pt':
f'{PARENT_LINK}/sync/sync_models/22-09-21T21-00-52/22-09-21T21-00-52.pt',
'cfg-22-09-21T21-00-52.yaml':
f'{PARENT_LINK}/sync/sync_models/22-09-21T21-00-52/cfg-22-09-21T21-00-52.yaml',
# SparseSync: ft VGGSound-Sparse
'22-07-28T15-49-45.pt':
f'{PARENT_LINK}/sync/sync_models/22-07-28T15-49-45/22-07-28T15-49-45.pt',
'cfg-22-07-28T15-49-45.yaml':
f'{PARENT_LINK}/sync/sync_models/22-07-28T15-49-45/cfg-22-07-28T15-49-45.yaml',
# SparseSync: only pt on LRS3
'22-07-13T22-25-49.pt':
f'{PARENT_LINK}/sync/sync_models/22-07-13T22-25-49/22-07-13T22-25-49.pt',
'cfg-22-07-13T22-25-49.yaml':
f'{PARENT_LINK}/sync/sync_models/22-07-13T22-25-49/cfg-22-07-13T22-25-49.yaml',
# SparseSync: feature extractors
'ResNetAudio-22-08-04T09-51-04.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-08-04T09-51-04.pt', # 2s
'ResNetAudio-22-08-03T23-14-49.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-08-03T23-14-49.pt', # 3s
'ResNetAudio-22-08-03T23-14-28.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-08-03T23-14-28.pt', # 4s
'ResNetAudio-22-06-24T08-10-33.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-06-24T08-10-33.pt', # 5s
'ResNetAudio-22-06-24T17-31-07.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-06-24T17-31-07.pt', # 6s
'ResNetAudio-22-06-24T23-57-11.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-06-24T23-57-11.pt', # 7s
'ResNetAudio-22-06-25T04-35-42.pt':
f'{PARENT_LINK}/sync/ResNetAudio-22-06-25T04-35-42.pt', # 8s
}
def check_if_file_exists_else_download(path, fname2link=FNAME2LINK, chunk_size=1024):
'''Checks if file exists, if not downloads it from the link to the path'''
path = Path(path)
if not path.exists():
path.parent.mkdir(exist_ok=True, parents=True)
link = fname2link.get(path.name, None)
if link is None:
raise ValueError(f'Cant find the checkpoint file: {path}.',
f'Please download it manually and ensure the path exists.')
with requests.get(fname2link[path.name], stream=True) as r:
total_size = int(r.headers.get('content-length', 0))
with tqdm(total=total_size, unit='B', unit_scale=True) as pbar:
with open(path, 'wb') as f:
for data in r.iter_content(chunk_size=chunk_size):
if data:
f.write(data)
pbar.update(chunk_size)
def get_md5sum(path):
hash_md5 = md5()
with open(path, 'rb') as f:
for chunk in iter(lambda: f.read(4096 * 8), b''):
hash_md5.update(chunk)
md5sum = hash_md5.hexdigest()
return md5sum

View File

@ -0,0 +1,277 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
from collections import OrderedDict
from functools import partial
import torch
import torch.nn as nn
from timm.layers import trunc_normal_
from . import vit_helper
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage """
def __init__(self, cfg):
super().__init__()
self.img_size = cfg.DATA.TRAIN_CROP_SIZE
self.patch_size = cfg.VIT.PATCH_SIZE
self.in_chans = cfg.VIT.CHANNELS
if cfg.TRAIN.DATASET == "Epickitchens":
self.num_classes = [97, 300]
else:
self.num_classes = cfg.MODEL.NUM_CLASSES
self.embed_dim = cfg.VIT.EMBED_DIM
self.depth = cfg.VIT.DEPTH
self.num_heads = cfg.VIT.NUM_HEADS
self.mlp_ratio = cfg.VIT.MLP_RATIO
self.qkv_bias = cfg.VIT.QKV_BIAS
self.drop_rate = cfg.VIT.DROP
self.drop_path_rate = cfg.VIT.DROP_PATH
self.head_dropout = cfg.VIT.HEAD_DROPOUT
self.video_input = cfg.VIT.VIDEO_INPUT
self.temporal_resolution = cfg.VIT.TEMPORAL_RESOLUTION
self.use_mlp = cfg.VIT.USE_MLP
self.num_features = self.embed_dim
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.attn_drop_rate = cfg.VIT.ATTN_DROPOUT
self.head_act = cfg.VIT.HEAD_ACT
self.cfg = cfg
# Patch Embedding
self.patch_embed = vit_helper.PatchEmbed(img_size=224,
patch_size=self.patch_size,
in_chans=self.in_chans,
embed_dim=self.embed_dim)
# 3D Patch Embedding
self.patch_embed_3d = vit_helper.PatchEmbed3D(img_size=self.img_size,
temporal_resolution=self.temporal_resolution,
patch_size=self.patch_size,
in_chans=self.in_chans,
embed_dim=self.embed_dim,
z_block_size=self.cfg.VIT.PATCH_SIZE_TEMP)
self.patch_embed_3d.proj.weight.data = torch.zeros_like(
self.patch_embed_3d.proj.weight.data)
# Number of patches
if self.video_input:
num_patches = self.patch_embed.num_patches * self.temporal_resolution
else:
num_patches = self.patch_embed.num_patches
self.num_patches = num_patches
# CLS token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
trunc_normal_(self.cls_token, std=.02)
# Positional embedding
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patch_embed.num_patches + 1, self.embed_dim))
self.pos_drop = nn.Dropout(p=cfg.VIT.POS_DROPOUT)
trunc_normal_(self.pos_embed, std=.02)
if self.cfg.VIT.POS_EMBED == "joint":
self.st_embed = nn.Parameter(torch.zeros(1, num_patches + 1, self.embed_dim))
trunc_normal_(self.st_embed, std=.02)
elif self.cfg.VIT.POS_EMBED == "separate":
self.temp_embed = nn.Parameter(torch.zeros(1, self.temporal_resolution, self.embed_dim))
# Layer Blocks
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)]
if self.cfg.VIT.ATTN_LAYER == "divided":
self.blocks = nn.ModuleList([
vit_helper.DividedSpaceTimeBlock(
attn_type=cfg.VIT.ATTN_LAYER,
dim=self.embed_dim,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
drop=self.drop_rate,
attn_drop=self.attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
) for i in range(self.depth)
])
else:
self.blocks = nn.ModuleList([
vit_helper.Block(attn_type=cfg.VIT.ATTN_LAYER,
dim=self.embed_dim,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
drop=self.drop_rate,
attn_drop=self.attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_original_code=self.cfg.VIT.USE_ORIGINAL_TRAJ_ATTN_CODE)
for i in range(self.depth)
])
self.norm = norm_layer(self.embed_dim)
# MLP head
if self.use_mlp:
hidden_dim = self.embed_dim
if self.head_act == 'tanh':
# logging.info("Using TanH activation in MLP")
act = nn.Tanh()
elif self.head_act == 'gelu':
# logging.info("Using GELU activation in MLP")
act = nn.GELU()
else:
# logging.info("Using ReLU activation in MLP")
act = nn.ReLU()
self.pre_logits = nn.Sequential(
OrderedDict([
('fc', nn.Linear(self.embed_dim, hidden_dim)),
('act', act),
]))
else:
self.pre_logits = nn.Identity()
# Classifier Head
self.head_drop = nn.Dropout(p=self.head_dropout)
if isinstance(self.num_classes, (list, )) and len(self.num_classes) > 1:
for a, i in enumerate(range(len(self.num_classes))):
setattr(self, "head%d" % a, nn.Linear(self.embed_dim, self.num_classes[i]))
else:
self.head = nn.Linear(self.embed_dim,
self.num_classes) if self.num_classes > 0 else nn.Identity()
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
if self.cfg.VIT.POS_EMBED == "joint":
return {'pos_embed', 'cls_token', 'st_embed'}
else:
return {'pos_embed', 'cls_token', 'temp_embed'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = (nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity())
def forward_features(self, x):
# if self.video_input:
# x = x[0]
B = x.shape[0]
# Tokenize input
# if self.cfg.VIT.PATCH_SIZE_TEMP > 1:
# for simplicity of mapping between content dimensions (input x) and token dims (after patching)
# we use the same trick as for AST (see modeling_ast.ASTModel.forward for the details):
# apply patching on input
x = self.patch_embed_3d(x)
tok_mask = None
# else:
# tok_mask = None
# # 2D tokenization
# if self.video_input:
# x = x.permute(0, 2, 1, 3, 4)
# (B, T, C, H, W) = x.shape
# x = x.reshape(B * T, C, H, W)
# x = self.patch_embed(x)
# if self.video_input:
# (B2, T2, D2) = x.shape
# x = x.reshape(B, T * T2, D2)
# Append CLS token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# if tok_mask is not None:
# # prepend 1(=keep) to the mask to account for the CLS token as well
# tok_mask = torch.cat((torch.ones_like(tok_mask[:, [0]]), tok_mask), dim=1)
# Interpolate positinoal embeddings
# if self.cfg.DATA.TRAIN_CROP_SIZE != 224:
# pos_embed = self.pos_embed
# N = pos_embed.shape[1] - 1
# npatch = int((x.size(1) - 1) / self.temporal_resolution)
# class_emb = pos_embed[:, 0]
# pos_embed = pos_embed[:, 1:]
# dim = x.shape[-1]
# pos_embed = torch.nn.functional.interpolate(
# pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
# scale_factor=math.sqrt(npatch / N),
# mode='bicubic',
# )
# pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
# new_pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
# else:
new_pos_embed = self.pos_embed
npatch = self.patch_embed.num_patches
# Add positional embeddings to input
if self.video_input:
if self.cfg.VIT.POS_EMBED == "separate":
cls_embed = self.pos_embed[:, 0, :].unsqueeze(1)
tile_pos_embed = new_pos_embed[:, 1:, :].repeat(1, self.temporal_resolution, 1)
tile_temporal_embed = self.temp_embed.repeat_interleave(npatch, 1)
total_pos_embed = tile_pos_embed + tile_temporal_embed
total_pos_embed = torch.cat([cls_embed, total_pos_embed], dim=1)
x = x + total_pos_embed
elif self.cfg.VIT.POS_EMBED == "joint":
x = x + self.st_embed
else:
# image input
x = x + new_pos_embed
# Apply positional dropout
x = self.pos_drop(x)
# Encoding using transformer layers
for i, blk in enumerate(self.blocks):
x = blk(x,
seq_len=npatch,
num_frames=self.temporal_resolution,
approx=self.cfg.VIT.APPROX_ATTN_TYPE,
num_landmarks=self.cfg.VIT.APPROX_ATTN_DIM,
tok_mask=tok_mask)
### v-iashin: I moved it to the forward pass
# x = self.norm(x)[:, 0]
# x = self.pre_logits(x)
###
return x, tok_mask
# def forward(self, x):
# x = self.forward_features(x)
# ### v-iashin: here. This should leave the same forward output as before
# x = self.norm(x)[:, 0]
# x = self.pre_logits(x)
# ###
# x = self.head_drop(x)
# if isinstance(self.num_classes, (list, )) and len(self.num_classes) > 1:
# output = []
# for head in range(len(self.num_classes)):
# x_out = getattr(self, "head%d" % head)(x)
# if not self.training:
# x_out = torch.nn.functional.softmax(x_out, dim=-1)
# output.append(x_out)
# return output
# else:
# x = self.head(x)
# if not self.training:
# x = torch.nn.functional.softmax(x, dim=-1)
# return x

View File

@ -0,0 +1,399 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
"""Video models."""
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from timm.layers import to_2tuple
from torch import einsum
from torch.nn import functional as F
default_cfgs = {
'vit_1k':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
'vit_1k_large':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
}
def qkv_attn(q, k, v, tok_mask: torch.Tensor = None):
sim = einsum('b i d, b j d -> b i j', q, k)
# apply masking if provided, tok_mask is (B*S*H, N): 1s - keep; sim is (B*S*H, H, N, N)
if tok_mask is not None:
BSH, N = tok_mask.shape
sim = sim.masked_fill(tok_mask.view(BSH, 1, N) == 0,
float('-inf')) # 1 - broadcasts across N
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
return out
class DividedAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
# init to zeros
self.qkv.weight.data.fill_(0)
self.qkv.bias.data.fill_(0)
self.proj.weight.data.fill_(1)
self.proj.bias.data.fill_(0)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, einops_from, einops_to, tok_mask: torch.Tensor = None, **einops_dims):
# num of heads variable
h = self.num_heads
# project x to q, k, v vaalues
q, k, v = self.qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
if tok_mask is not None:
# replicate token mask across heads (b, n) -> (b, h, n) -> (b*h, n) -- same as qkv but w/o d
assert len(tok_mask.shape) == 2
tok_mask = tok_mask.unsqueeze(1).expand(-1, h, -1).reshape(-1, tok_mask.shape[1])
# Scale q
q *= self.scale
# Take out cls_q, cls_k, cls_v
(cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:1], t[:, 1:]), (q, k, v))
# the same for masking
if tok_mask is not None:
cls_mask, mask_ = tok_mask[:, 0:1], tok_mask[:, 1:]
else:
cls_mask, mask_ = None, None
# let CLS token attend to key / values of all patches across time and space
cls_out = qkv_attn(cls_q, k, v, tok_mask=tok_mask)
# rearrange across time or space
q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims),
(q_, k_, v_))
# expand CLS token keys and values across time or space and concat
r = q_.shape[0] // cls_k.shape[0]
cls_k, cls_v = map(lambda t: repeat(t, 'b () d -> (b r) () d', r=r), (cls_k, cls_v))
k_ = torch.cat((cls_k, k_), dim=1)
v_ = torch.cat((cls_v, v_), dim=1)
# the same for masking (if provided)
if tok_mask is not None:
# since mask does not have the latent dim (d), we need to remove it from einops dims
mask_ = rearrange(mask_, f'{einops_from} -> {einops_to}'.replace(' d', ''),
**einops_dims)
cls_mask = repeat(cls_mask, 'b () -> (b r) ()',
r=r) # expand cls_mask across time or space
mask_ = torch.cat((cls_mask, mask_), dim=1)
# attention
out = qkv_attn(q_, k_, v_, tok_mask=mask_)
# merge back time or space
out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims)
# concat back the cls token
out = torch.cat((cls_out, out), dim=1)
# merge back the heads
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
## to out
x = self.proj(out)
x = self.proj_drop(x)
return x
class DividedSpaceTimeBlock(nn.Module):
def __init__(self,
dim=768,
num_heads=12,
attn_type='divided',
mlp_ratio=4.,
qkv_bias=False,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.einops_from_space = 'b (f n) d'
self.einops_to_space = '(b f) n d'
self.einops_from_time = 'b (f n) d'
self.einops_to_time = '(b n) f d'
self.norm1 = norm_layer(dim)
self.attn = DividedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
self.timeattn = DividedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.norm3 = norm_layer(dim)
def forward(self,
x,
seq_len=196,
num_frames=8,
approx='none',
num_landmarks=128,
tok_mask: torch.Tensor = None):
time_output = self.timeattn(self.norm3(x),
self.einops_from_time,
self.einops_to_time,
n=seq_len,
tok_mask=tok_mask)
time_residual = x + time_output
space_output = self.attn(self.norm1(time_residual),
self.einops_from_space,
self.einops_to_space,
f=num_frames,
tok_mask=tok_mask)
space_residual = time_residual + self.drop_path(space_output)
x = space_residual
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = img_size if type(img_size) is tuple else to_2tuple(img_size)
patch_size = img_size if type(patch_size) is tuple else to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class PatchEmbed3D(nn.Module):
""" Image to Patch Embedding """
def __init__(self,
img_size=224,
temporal_resolution=4,
in_chans=3,
patch_size=16,
z_block_size=2,
embed_dim=768,
flatten=True):
super().__init__()
self.height = (img_size // patch_size)
self.width = (img_size // patch_size)
### v-iashin: these two are incorrect
# self.frames = (temporal_resolution // z_block_size)
# self.num_patches = self.height * self.width * self.frames
self.z_block_size = z_block_size
###
self.proj = nn.Conv3d(in_chans,
embed_dim,
kernel_size=(z_block_size, patch_size, patch_size),
stride=(z_block_size, patch_size, patch_size))
self.flatten = flatten
def forward(self, x):
B, C, T, H, W = x.shape
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2)
return x
class HeadMLP(nn.Module):
def __init__(self, n_input, n_classes, n_hidden=512, p=0.1):
super(HeadMLP, self).__init__()
self.n_input = n_input
self.n_classes = n_classes
self.n_hidden = n_hidden
if n_hidden is None:
# use linear classifier
self.block_forward = nn.Sequential(nn.Dropout(p=p),
nn.Linear(n_input, n_classes, bias=True))
else:
# use simple MLP classifier
self.block_forward = nn.Sequential(nn.Dropout(p=p),
nn.Linear(n_input, n_hidden, bias=True),
nn.BatchNorm1d(n_hidden), nn.ReLU(inplace=True),
nn.Dropout(p=p),
nn.Linear(n_hidden, n_classes, bias=True))
print(f"Dropout-NLP: {p}")
def forward(self, x):
return self.block_forward(x)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def adapt_input_conv(in_chans, conv_weight, agg='sum'):
conv_type = conv_weight.dtype
conv_weight = conv_weight.float()
O, I, J, K = conv_weight.shape
if in_chans == 1:
if I > 3:
assert conv_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
conv_weight = conv_weight.sum(dim=2, keepdim=False)
else:
if agg == 'sum':
print("Summing conv1 weights")
conv_weight = conv_weight.sum(dim=1, keepdim=True)
else:
print("Averaging conv1 weights")
conv_weight = conv_weight.mean(dim=1, keepdim=True)
elif in_chans != 3:
if I != 3:
raise NotImplementedError('Weight format not supported by conversion.')
else:
if agg == 'sum':
print("Summing conv1 weights")
repeat = int(math.ceil(in_chans / 3))
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv_weight *= (3 / float(in_chans))
else:
print("Averaging conv1 weights")
conv_weight = conv_weight.mean(dim=1, keepdim=True)
conv_weight = conv_weight.repeat(1, in_chans, 1, 1)
conv_weight = conv_weight.to(conv_type)
return conv_weight
def load_pretrained(model,
cfg=None,
num_classes=1000,
in_chans=3,
filter_fn=None,
strict=True,
progress=False):
# Load state dict
assert (f"{cfg.VIT.PRETRAINED_WEIGHTS} not in [vit_1k, vit_1k_large]")
state_dict = torch.hub.load_state_dict_from_url(url=default_cfgs[cfg.VIT.PRETRAINED_WEIGHTS])
if filter_fn is not None:
state_dict = filter_fn(state_dict)
input_convs = 'patch_embed.proj'
if input_convs is not None and in_chans != 3:
if isinstance(input_convs, str):
input_convs = (input_convs, )
for input_conv_name in input_convs:
weight_name = input_conv_name + '.weight'
try:
state_dict[weight_name] = adapt_input_conv(in_chans,
state_dict[weight_name],
agg='avg')
print(
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)'
)
except NotImplementedError as e:
del state_dict[weight_name]
strict = False
print(
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.'
)
classifier_name = 'head'
label_offset = cfg.get('label_offset', 0)
pretrain_classes = 1000
if num_classes != pretrain_classes:
# completely discard fully connected if model num_classes doesn't match pretrained weights
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
elif label_offset > 0:
# special case for pretrained weights with an extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:]
loaded_state = state_dict
self_state = model.state_dict()
all_names = set(self_state.keys())
saved_names = set([])
for name, param in loaded_state.items():
param = param
if 'module.' in name:
name = name.replace('module.', '')
if name in self_state.keys() and param.shape == self_state[name].shape:
saved_names.add(name)
self_state[name].copy_(param)
else:
print(f"didnt load: {name} of shape: {param.shape}")
print("Missing Keys:")
print(all_names - saved_names)

View File

@ -0,0 +1,120 @@
import gc
import logging
import torch
from .eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image,
load_video, make_video, setup_eval_logging)
from .model.flow_matching import FlowMatching
from .model.networks import MMAudio, get_my_mmaudio
from .model.sequence_config import SequenceConfig
from .model.utils.features_utils import FeaturesUtils
persistent_offloadobj = None
def get_model(persistent_models = False, verboseLevel = 1) -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
global device, persistent_offloadobj, persistent_net, persistent_features_utils, persistent_seq_cfg
log = logging.getLogger()
device = 'cpu' #"cuda"
# if torch.cuda.is_available():
# device = 'cuda'
# elif torch.backends.mps.is_available():
# device = 'mps'
# else:
# log.warning('CUDA/MPS are not available, running on CPU')
dtype = torch.bfloat16
model: ModelConfig = all_model_cfg['large_44k_v2']
# model.download_if_needed()
setup_eval_logging()
seq_cfg = model.seq_cfg
if persistent_offloadobj == None:
from accelerate import init_empty_weights
# with init_empty_weights():
net: MMAudio = get_my_mmaudio(model.model_name)
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
net.to(device, dtype).eval()
log.info(f'Loaded weights from {model.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
synchformer_ckpt=model.synchformer_ckpt,
enable_conditions=True,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
feature_utils.device = "cuda"
pipe = { "net" : net, "clip" : feature_utils.clip_model, "syncformer" : feature_utils.synchformer, "vocode" : feature_utils.tod.vocoder, "vae" : feature_utils.tod.vae }
from mmgp import offload
offloadobj = offload.profile(pipe, profile_no=4, verboseLevel=2)
if persistent_models:
persistent_offloadobj = offloadobj
persistent_net = net
persistent_features_utils = feature_utils
persistent_seq_cfg = seq_cfg
else:
offloadobj = persistent_offloadobj
net = persistent_net
feature_utils = persistent_features_utils
seq_cfg = persistent_seq_cfg
if not persistent_models:
persistent_offloadobj = None
persistent_net = None
persistent_features_utils = None
persistent_seq_cfg = None
return net, feature_utils, seq_cfg, offloadobj
@torch.inference_mode()
def video_to_audio(video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
cfg_strength: float, duration: float, video_save_path , persistent_models = False, verboseLevel = 1):
global device
net, feature_utils, seq_cfg, offloadobj = get_model(persistent_models, verboseLevel )
rng = torch.Generator(device="cuda")
if seed >= 0:
rng.manual_seed(seed)
else:
rng.seed()
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
video_info = load_video(video, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration = video_info.duration_sec
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
audios = generate(clip_frames,
sync_frames, [prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength,
offloadobj = offloadobj
)
audio = audios.float().cpu()[0]
make_video(video, video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
offloadobj.unload_all()
if not persistent_models:
offloadobj.release()
torch.cuda.empty_cache()
gc.collect()
return video_save_path

View File

View File

@ -0,0 +1,49 @@
import torch
import torch.nn as nn
# https://github.com/facebookresearch/DiT
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, dim, frequency_embedding_size, max_period):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, dim),
nn.SiLU(),
nn.Linear(dim, dim),
)
self.dim = dim
self.max_period = max_period
assert dim % 2 == 0, 'dim must be even.'
with torch.autocast('cuda', enabled=False):
self.freqs = nn.Buffer(
1.0 / (10000**(torch.arange(0, frequency_embedding_size, 2, dtype=torch.float32) /
frequency_embedding_size)),
persistent=False)
freq_scale = 10000 / max_period
self.freqs = freq_scale * self.freqs
def timestep_embedding(self, t):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
args = t[:, None].float() * self.freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t).to(t.dtype)
t_emb = self.mlp(t_freq)
return t_emb

View File

@ -0,0 +1,71 @@
import logging
from typing import Callable, Optional
import torch
from torchdiffeq import odeint
log = logging.getLogger()
# Partially from https://github.com/gle-bellier/flow-matching
class FlowMatching:
def __init__(self, min_sigma: float = 0.0, inference_mode='euler', num_steps: int = 25):
# inference_mode: 'euler' or 'adaptive'
# num_steps: number of steps in the euler inference mode
super().__init__()
self.min_sigma = min_sigma
self.inference_mode = inference_mode
self.num_steps = num_steps
# self.fm = ExactOptimalTransportConditionalFlowMatcher(sigma=min_sigma)
assert self.inference_mode in ['euler', 'adaptive']
if self.inference_mode == 'adaptive' and num_steps > 0:
log.info('The number of steps is ignored in adaptive inference mode ')
def get_conditional_flow(self, x0: torch.Tensor, x1: torch.Tensor,
t: torch.Tensor) -> torch.Tensor:
# which is psi_t(x), eq 22 in flow matching for generative models
t = t[:, None, None].expand_as(x0)
return (1 - (1 - self.min_sigma) * t) * x0 + t * x1
def loss(self, predicted_v: torch.Tensor, x0: torch.Tensor, x1: torch.Tensor) -> torch.Tensor:
# return the mean error without reducing the batch dimension
reduce_dim = list(range(1, len(predicted_v.shape)))
target_v = x1 - (1 - self.min_sigma) * x0
return (predicted_v - target_v).pow(2).mean(dim=reduce_dim)
def get_x0_xt_c(
self,
x1: torch.Tensor,
t: torch.Tensor,
Cs: list[torch.Tensor],
generator: Optional[torch.Generator] = None
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
x0 = torch.empty_like(x1).normal_(generator=generator)
xt = self.get_conditional_flow(x0, x1, t)
return x0, x1, xt, Cs
def to_prior(self, fn: Callable, x1: torch.Tensor) -> torch.Tensor:
return self.run_t0_to_t1(fn, x1, 1, 0)
def to_data(self, fn: Callable, x0: torch.Tensor) -> torch.Tensor:
return self.run_t0_to_t1(fn, x0, 0, 1)
def run_t0_to_t1(self, fn: Callable, x0: torch.Tensor, t0: float, t1: float) -> torch.Tensor:
# fn: a function that takes (t, x) and returns the direction x0->x1
if self.inference_mode == 'adaptive':
return odeint(fn, x0, torch.tensor([t0, t1], device=x0.device, dtype=x0.dtype))
elif self.inference_mode == 'euler':
x = x0
steps = torch.linspace(t0, t1 - self.min_sigma, self.num_steps + 1)
for ti, t in enumerate(steps[:-1]):
flow = fn(t, x)
next_t = steps[ti + 1]
dt = next_t - t
x = x + dt * flow
return x

View File

@ -0,0 +1,95 @@
import torch
from torch import nn
from torch.nn import functional as F
class ChannelLastConv1d(nn.Conv1d):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.permute(0, 2, 1)
x = super().forward(x)
x = x.permute(0, 2, 1)
return x
# https://github.com/Stability-AI/sd3-ref
class MLP(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int = 256,
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
Attributes:
w1 (ColumnParallelLinear): Linear transformation for the first layer.
w2 (RowParallelLinear): Linear transformation for the second layer.
w3 (ColumnParallelLinear): Linear transformation for the third layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class ConvMLP(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int = 256,
kernel_size: int = 3,
padding: int = 1,
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
Attributes:
w1 (ColumnParallelLinear): Linear transformation for the first layer.
w2 (RowParallelLinear): Linear transformation for the second layer.
w3 (ColumnParallelLinear): Linear transformation for the third layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = ChannelLastConv1d(dim,
hidden_dim,
bias=False,
kernel_size=kernel_size,
padding=padding)
self.w2 = ChannelLastConv1d(hidden_dim,
dim,
bias=False,
kernel_size=kernel_size,
padding=padding)
self.w3 = ChannelLastConv1d(dim,
hidden_dim,
bias=False,
kernel_size=kernel_size,
padding=padding)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))

View File

@ -0,0 +1,477 @@
import logging
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..ext.rotary_embeddings import compute_rope_rotations
from .embeddings import TimestepEmbedder
from .low_level import MLP, ChannelLastConv1d, ConvMLP
from .transformer_layers import (FinalBlock, JointBlock, MMDitSingleBlock)
log = logging.getLogger()
@dataclass
class PreprocessedConditions:
clip_f: torch.Tensor
sync_f: torch.Tensor
text_f: torch.Tensor
clip_f_c: torch.Tensor
text_f_c: torch.Tensor
# Partially from https://github.com/facebookresearch/DiT
class MMAudio(nn.Module):
def __init__(self,
*,
latent_dim: int,
clip_dim: int,
sync_dim: int,
text_dim: int,
hidden_dim: int,
depth: int,
fused_depth: int,
num_heads: int,
mlp_ratio: float = 4.0,
latent_seq_len: int,
clip_seq_len: int,
sync_seq_len: int,
text_seq_len: int = 77,
latent_mean: Optional[torch.Tensor] = None,
latent_std: Optional[torch.Tensor] = None,
empty_string_feat: Optional[torch.Tensor] = None,
v2: bool = False) -> None:
super().__init__()
self.v2 = v2
self.latent_dim = latent_dim
self._latent_seq_len = latent_seq_len
self._clip_seq_len = clip_seq_len
self._sync_seq_len = sync_seq_len
self._text_seq_len = text_seq_len
self.hidden_dim = hidden_dim
self.num_heads = num_heads
if v2:
self.audio_input_proj = nn.Sequential(
ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
nn.SiLU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
)
self.clip_input_proj = nn.Sequential(
nn.Linear(clip_dim, hidden_dim),
nn.SiLU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.sync_input_proj = nn.Sequential(
ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
nn.SiLU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.text_input_proj = nn.Sequential(
nn.Linear(text_dim, hidden_dim),
nn.SiLU(),
MLP(hidden_dim, hidden_dim * 4),
)
else:
self.audio_input_proj = nn.Sequential(
ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
nn.SELU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
)
self.clip_input_proj = nn.Sequential(
nn.Linear(clip_dim, hidden_dim),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.sync_input_proj = nn.Sequential(
ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
nn.SELU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.text_input_proj = nn.Sequential(
nn.Linear(text_dim, hidden_dim),
MLP(hidden_dim, hidden_dim * 4),
)
self.clip_cond_proj = nn.Linear(hidden_dim, hidden_dim)
self.text_cond_proj = nn.Linear(hidden_dim, hidden_dim)
self.global_cond_mlp = MLP(hidden_dim, hidden_dim * 4)
# each synchformer output segment has 8 feature frames
self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, sync_dim)))
self.final_layer = FinalBlock(hidden_dim, latent_dim)
if v2:
self.t_embed = TimestepEmbedder(hidden_dim,
frequency_embedding_size=hidden_dim,
max_period=1)
else:
self.t_embed = TimestepEmbedder(hidden_dim,
frequency_embedding_size=256,
max_period=10000)
self.joint_blocks = nn.ModuleList([
JointBlock(hidden_dim,
num_heads,
mlp_ratio=mlp_ratio,
pre_only=(i == depth - fused_depth - 1)) for i in range(depth - fused_depth)
])
self.fused_blocks = nn.ModuleList([
MMDitSingleBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, kernel_size=3, padding=1)
for i in range(fused_depth)
])
if latent_mean is None:
# these values are not meant to be used
# if you don't provide mean/std here, we should load them later from a checkpoint
assert latent_std is None
latent_mean = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan'))
latent_std = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan'))
else:
assert latent_std is not None
assert latent_mean.numel() == latent_dim, f'{latent_mean.numel()=} != {latent_dim=}'
if empty_string_feat is None:
empty_string_feat = torch.zeros((text_seq_len, text_dim))
self.latent_mean = nn.Parameter(latent_mean.view(1, 1, -1), requires_grad=False)
self.latent_std = nn.Parameter(latent_std.view(1, 1, -1), requires_grad=False)
self.empty_string_feat = nn.Parameter(empty_string_feat, requires_grad=False)
self.empty_clip_feat = nn.Parameter(torch.zeros(1, clip_dim), requires_grad=True)
self.empty_sync_feat = nn.Parameter(torch.zeros(1, sync_dim), requires_grad=True)
self.initialize_weights()
self.initialize_rotations()
def initialize_rotations(self):
base_freq = 1.0
latent_rot = compute_rope_rotations(self._latent_seq_len,
self.hidden_dim // self.num_heads,
10000,
freq_scaling=base_freq,
device=self.device)
clip_rot = compute_rope_rotations(self._clip_seq_len,
self.hidden_dim // self.num_heads,
10000,
freq_scaling=base_freq * self._latent_seq_len /
self._clip_seq_len,
device=self.device)
self.latent_rot = latent_rot #, persistent=False)
self.clip_rot = clip_rot #, persistent=False)
def update_seq_lengths(self, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int) -> None:
self._latent_seq_len = latent_seq_len
self._clip_seq_len = clip_seq_len
self._sync_seq_len = sync_seq_len
self.initialize_rotations()
def initialize_weights(self):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embed.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.joint_blocks:
nn.init.constant_(block.latent_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.latent_block.adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.clip_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.clip_block.adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.text_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.text_block.adaLN_modulation[-1].bias, 0)
for block in self.fused_blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.conv.weight, 0)
nn.init.constant_(self.final_layer.conv.bias, 0)
# empty string feat shall be initialized by a CLIP encoder
nn.init.constant_(self.sync_pos_emb, 0)
nn.init.constant_(self.empty_clip_feat, 0)
nn.init.constant_(self.empty_sync_feat, 0)
def normalize(self, x: torch.Tensor) -> torch.Tensor:
# return (x - self.latent_mean) / self.latent_std
return x.sub_(self.latent_mean).div_(self.latent_std)
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
# return x * self.latent_std + self.latent_mean
return x.mul_(self.latent_std).add_(self.latent_mean)
def preprocess_conditions(self, clip_f: torch.Tensor, sync_f: torch.Tensor,
text_f: torch.Tensor) -> PreprocessedConditions:
"""
cache computations that do not depend on the latent/time step
i.e., the features are reused over steps during inference
"""
assert clip_f.shape[1] == self._clip_seq_len, f'{clip_f.shape=} {self._clip_seq_len=}'
assert sync_f.shape[1] == self._sync_seq_len, f'{sync_f.shape=} {self._sync_seq_len=}'
assert text_f.shape[1] == self._text_seq_len, f'{text_f.shape=} {self._text_seq_len=}'
bs = clip_f.shape[0]
# B * num_segments (24) * 8 * 768
num_sync_segments = self._sync_seq_len // 8
sync_f = sync_f.view(bs, num_sync_segments, 8, -1) + self.sync_pos_emb
sync_f = sync_f.flatten(1, 2) # (B, VN, D)
# extend vf to match x
clip_f = self.clip_input_proj(clip_f) # (B, VN, D)
sync_f = self.sync_input_proj(sync_f) # (B, VN, D)
text_f = self.text_input_proj(text_f) # (B, VN, D)
# upsample the sync features to match the audio
sync_f = sync_f.transpose(1, 2) # (B, D, VN)
sync_f = F.interpolate(sync_f, size=self._latent_seq_len, mode='nearest-exact')
sync_f = sync_f.transpose(1, 2) # (B, N, D)
# get conditional features from the clip side
clip_f_c = self.clip_cond_proj(clip_f.mean(dim=1)) # (B, D)
text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D)
return PreprocessedConditions(clip_f=clip_f,
sync_f=sync_f,
text_f=text_f,
clip_f_c=clip_f_c,
text_f_c=text_f_c)
def predict_flow(self, latent: torch.Tensor, t: torch.Tensor,
conditions: PreprocessedConditions) -> torch.Tensor:
"""
for non-cacheable computations
"""
assert latent.shape[1] == self._latent_seq_len, f'{latent.shape=} {self._latent_seq_len=}'
clip_f = conditions.clip_f
sync_f = conditions.sync_f
text_f = conditions.text_f
clip_f_c = conditions.clip_f_c
text_f_c = conditions.text_f_c
latent = self.audio_input_proj(latent) # (B, N, D)
global_c = self.global_cond_mlp(clip_f_c + text_f_c) # (B, D)
global_c = self.t_embed(t).unsqueeze(1) + global_c.unsqueeze(1) # (B, D)
extended_c = global_c + sync_f
self.latent_rot = self.latent_rot.to("cuda")
self.clip_rot = self.clip_rot.to("cuda")
for block in self.joint_blocks:
latent, clip_f, text_f = block(latent, clip_f, text_f, global_c, extended_c,
self.latent_rot, self.clip_rot) # (B, N, D)
for block in self.fused_blocks:
latent = block(latent, extended_c, self.latent_rot)
self.latent_rot = self.latent_rot.to("cpu")
self.clip_rot = self.clip_rot.to("cpu")
# should be extended_c; this is a minor implementation error #55
flow = self.final_layer(latent, global_c) # (B, N, out_dim), remove t
return flow
def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, sync_f: torch.Tensor,
text_f: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""
latent: (B, N, C)
vf: (B, T, C_V)
t: (B,)
"""
conditions = self.preprocess_conditions(clip_f, sync_f, text_f)
flow = self.predict_flow(latent, t, conditions)
return flow
def get_empty_string_sequence(self, bs: int) -> torch.Tensor:
return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1)
def get_empty_clip_sequence(self, bs: int) -> torch.Tensor:
return self.empty_clip_feat.unsqueeze(0).expand(bs, self._clip_seq_len, -1)
def get_empty_sync_sequence(self, bs: int) -> torch.Tensor:
return self.empty_sync_feat.unsqueeze(0).expand(bs, self._sync_seq_len, -1)
def get_empty_conditions(
self,
bs: int,
*,
negative_text_features: Optional[torch.Tensor] = None) -> PreprocessedConditions:
if negative_text_features is not None:
empty_text = negative_text_features
else:
empty_text = self.get_empty_string_sequence(1)
empty_clip = self.get_empty_clip_sequence(1)
empty_sync = self.get_empty_sync_sequence(1)
conditions = self.preprocess_conditions(empty_clip, empty_sync, empty_text)
conditions.clip_f = conditions.clip_f.expand(bs, -1, -1)
conditions.sync_f = conditions.sync_f.expand(bs, -1, -1)
conditions.clip_f_c = conditions.clip_f_c.expand(bs, -1)
if negative_text_features is None:
conditions.text_f = conditions.text_f.expand(bs, -1, -1)
conditions.text_f_c = conditions.text_f_c.expand(bs, -1)
return conditions
def ode_wrapper(self, t: torch.Tensor, latent: torch.Tensor, conditions: PreprocessedConditions,
empty_conditions: PreprocessedConditions, cfg_strength: float) -> torch.Tensor:
t = t * torch.ones(len(latent), device=latent.device, dtype=latent.dtype)
if cfg_strength < 1.0:
return self.predict_flow(latent, t, conditions)
else:
return (cfg_strength * self.predict_flow(latent, t, conditions) +
(1 - cfg_strength) * self.predict_flow(latent, t, empty_conditions))
def load_weights(self, src_dict) -> None:
if 't_embed.freqs' in src_dict:
del src_dict['t_embed.freqs']
if 'latent_rot' in src_dict:
del src_dict['latent_rot']
if 'clip_rot' in src_dict:
del src_dict['clip_rot']
a,b = self.load_state_dict(src_dict, strict=True, assign= True)
pass
@property
def device(self) -> torch.device:
return self.latent_mean.device
@property
def latent_seq_len(self) -> int:
return self._latent_seq_len
@property
def clip_seq_len(self) -> int:
return self._clip_seq_len
@property
def sync_seq_len(self) -> int:
return self._sync_seq_len
def small_16k(**kwargs) -> MMAudio:
num_heads = 7
return MMAudio(latent_dim=20,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=12,
fused_depth=8,
num_heads=num_heads,
latent_seq_len=250,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def small_44k(**kwargs) -> MMAudio:
num_heads = 7
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=12,
fused_depth=8,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def medium_44k(**kwargs) -> MMAudio:
num_heads = 14
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=12,
fused_depth=8,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def large_44k(**kwargs) -> MMAudio:
num_heads = 14
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=21,
fused_depth=14,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def large_44k_v2(**kwargs) -> MMAudio:
num_heads = 14
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=21,
fused_depth=14,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
v2=True,
**kwargs)
def get_my_mmaudio(name: str, **kwargs) -> MMAudio:
if name == 'small_16k':
return small_16k(**kwargs)
if name == 'small_44k':
return small_44k(**kwargs)
if name == 'medium_44k':
return medium_44k(**kwargs)
if name == 'large_44k':
return large_44k(**kwargs)
if name == 'large_44k_v2':
return large_44k_v2(**kwargs)
raise ValueError(f'Unknown model name: {name}')
if __name__ == '__main__':
network = get_my_mmaudio('small_16k')
# print the number of parameters in terms of millions
num_params = sum(p.numel() for p in network.parameters()) / 1e6
print(f'Number of parameters: {num_params:.2f}M')

View File

@ -0,0 +1,58 @@
import dataclasses
import math
@dataclasses.dataclass
class SequenceConfig:
# general
duration: float
# audio
sampling_rate: int
spectrogram_frame_rate: int
latent_downsample_rate: int = 2
# visual
clip_frame_rate: int = 8
sync_frame_rate: int = 25
sync_num_frames_per_segment: int = 16
sync_step_size: int = 8
sync_downsample_rate: int = 2
@property
def num_audio_frames(self) -> int:
# we need an integer number of latents
return self.latent_seq_len * self.spectrogram_frame_rate * self.latent_downsample_rate
@property
def latent_seq_len(self) -> int:
return int(
math.ceil(self.duration * self.sampling_rate / self.spectrogram_frame_rate /
self.latent_downsample_rate))
@property
def clip_seq_len(self) -> int:
return int(self.duration * self.clip_frame_rate)
@property
def sync_seq_len(self) -> int:
num_frames = self.duration * self.sync_frame_rate
num_segments = (num_frames - self.sync_num_frames_per_segment) // self.sync_step_size + 1
return int(num_segments * self.sync_num_frames_per_segment / self.sync_downsample_rate)
CONFIG_16K = SequenceConfig(duration=8.0, sampling_rate=16000, spectrogram_frame_rate=256)
CONFIG_44K = SequenceConfig(duration=8.0, sampling_rate=44100, spectrogram_frame_rate=512)
if __name__ == '__main__':
assert CONFIG_16K.latent_seq_len == 250
assert CONFIG_16K.clip_seq_len == 64
assert CONFIG_16K.sync_seq_len == 192
assert CONFIG_16K.num_audio_frames == 128000
assert CONFIG_44K.latent_seq_len == 345
assert CONFIG_44K.clip_seq_len == 64
assert CONFIG_44K.sync_seq_len == 192
assert CONFIG_44K.num_audio_frames == 353280
print('Passed')

View File

@ -0,0 +1,202 @@
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from ..ext.rotary_embeddings import apply_rope
from ..model.low_level import MLP, ChannelLastConv1d, ConvMLP
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
return x * (1 + scale) + shift
def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
# training will crash without these contiguous calls and the CUDNN limitation
# I believe this is related to https://github.com/pytorch/pytorch/issues/133974
# unresolved at the time of writing
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = F.scaled_dot_product_attention(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)').contiguous()
return out
class SelfAttention(nn.Module):
def __init__(self, dim: int, nheads: int):
super().__init__()
self.dim = dim
self.nheads = nheads
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.q_norm = nn.RMSNorm(dim // nheads)
self.k_norm = nn.RMSNorm(dim // nheads)
self.split_into_heads = Rearrange('b n (h d j) -> b h n d j',
h=nheads,
d=dim // nheads,
j=3)
def pre_attention(
self, x: torch.Tensor,
rot: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# x: batch_size * n_tokens * n_channels
qkv = self.qkv(x)
q, k, v = self.split_into_heads(qkv).chunk(3, dim=-1)
q = q.squeeze(-1)
k = k.squeeze(-1)
v = v.squeeze(-1)
q = self.q_norm(q)
k = self.k_norm(k)
if rot is not None:
q = apply_rope(q, rot)
k = apply_rope(k, rot)
return q, k, v
def forward(
self,
x: torch.Tensor, # batch_size * n_tokens * n_channels
) -> torch.Tensor:
q, v, k = self.pre_attention(x)
out = attention(q, k, v)
return out
class MMDitSingleBlock(nn.Module):
def __init__(self,
dim: int,
nhead: int,
mlp_ratio: float = 4.0,
pre_only: bool = False,
kernel_size: int = 7,
padding: int = 3):
super().__init__()
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False)
self.attn = SelfAttention(dim, nhead)
self.pre_only = pre_only
if pre_only:
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
else:
if kernel_size == 1:
self.linear1 = nn.Linear(dim, dim)
else:
self.linear1 = ChannelLastConv1d(dim, dim, kernel_size=kernel_size, padding=padding)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False)
if kernel_size == 1:
self.ffn = MLP(dim, int(dim * mlp_ratio))
else:
self.ffn = ConvMLP(dim,
int(dim * mlp_ratio),
kernel_size=kernel_size,
padding=padding)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True))
def pre_attention(self, x: torch.Tensor, c: torch.Tensor, rot: Optional[torch.Tensor]):
# x: BS * N * D
# cond: BS * D
modulation = self.adaLN_modulation(c)
if self.pre_only:
(shift_msa, scale_msa) = modulation.chunk(2, dim=-1)
gate_msa = shift_mlp = scale_mlp = gate_mlp = None
else:
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
gate_mlp) = modulation.chunk(6, dim=-1)
x = modulate(self.norm1(x), shift_msa, scale_msa)
q, k, v = self.attn.pre_attention(x, rot)
return (q, k, v), (gate_msa, shift_mlp, scale_mlp, gate_mlp)
def post_attention(self, x: torch.Tensor, attn_out: torch.Tensor, c: tuple[torch.Tensor]):
if self.pre_only:
return x
(gate_msa, shift_mlp, scale_mlp, gate_mlp) = c
x = x + self.linear1(attn_out) * gate_msa
r = modulate(self.norm2(x), shift_mlp, scale_mlp)
x = x + self.ffn(r) * gate_mlp
return x
def forward(self, x: torch.Tensor, cond: torch.Tensor,
rot: Optional[torch.Tensor]) -> torch.Tensor:
# x: BS * N * D
# cond: BS * D
x_qkv, x_conditions = self.pre_attention(x, cond, rot)
attn_out = attention(*x_qkv)
x = self.post_attention(x, attn_out, x_conditions)
return x
class JointBlock(nn.Module):
def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False):
super().__init__()
self.pre_only = pre_only
self.latent_block = MMDitSingleBlock(dim,
nhead,
mlp_ratio,
pre_only=False,
kernel_size=3,
padding=1)
self.clip_block = MMDitSingleBlock(dim,
nhead,
mlp_ratio,
pre_only=pre_only,
kernel_size=3,
padding=1)
self.text_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=1)
def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, text_f: torch.Tensor,
global_c: torch.Tensor, extended_c: torch.Tensor, latent_rot: torch.Tensor,
clip_rot: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
# latent: BS * N1 * D
# clip_f: BS * N2 * D
# c: BS * (1/N) * D
x_qkv, x_mod = self.latent_block.pre_attention(latent, extended_c, latent_rot)
c_qkv, c_mod = self.clip_block.pre_attention(clip_f, global_c, clip_rot)
t_qkv, t_mod = self.text_block.pre_attention(text_f, global_c, rot=None)
latent_len = latent.shape[1]
clip_len = clip_f.shape[1]
text_len = text_f.shape[1]
joint_qkv = [torch.cat([x_qkv[i], c_qkv[i], t_qkv[i]], dim=2) for i in range(3)]
attn_out = attention(*joint_qkv)
x_attn_out = attn_out[:, :latent_len]
c_attn_out = attn_out[:, latent_len:latent_len + clip_len]
t_attn_out = attn_out[:, latent_len + clip_len:]
latent = self.latent_block.post_attention(latent, x_attn_out, x_mod)
if not self.pre_only:
clip_f = self.clip_block.post_attention(clip_f, c_attn_out, c_mod)
text_f = self.text_block.post_attention(text_f, t_attn_out, t_mod)
return latent, clip_f, text_f
class FinalBlock(nn.Module):
def __init__(self, dim, out_dim):
super().__init__()
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
self.norm = nn.LayerNorm(dim, elementwise_affine=False)
self.conv = ChannelLastConv1d(dim, out_dim, kernel_size=7, padding=3)
def forward(self, latent, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
latent = modulate(self.norm(latent), shift, scale)
latent = self.conv(latent)
return latent

View File

@ -0,0 +1,46 @@
from typing import Optional
import numpy as np
import torch
class DiagonalGaussianDistribution:
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
def sample(self, rng: Optional[torch.Generator] = None):
# x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
r = torch.empty_like(self.mean).normal_(generator=rng)
x = self.mean + self.std * r
return x
def kl(self, other=None):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar
else:
return 0.5 * (torch.pow(self.mean - other.mean, 2) / other.var +
self.var / other.var - 1.0 - self.logvar + other.logvar)
def nll(self, sample, dims=[1, 2, 3]):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean

View File

@ -0,0 +1,174 @@
from typing import Literal, Optional
import json
import open_clip
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from open_clip import create_model_from_pretrained, create_model
from torchvision.transforms import Normalize
from ...ext.autoencoder import AutoEncoderModule
from ...ext.mel_converter import get_mel_converter
from ...ext.synchformer.synchformer import Synchformer
from ...model.utils.distributions import DiagonalGaussianDistribution
def patch_clip(clip_model):
# a hack to make it output last hidden states
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
def new_encode_text(self, text, normalize: bool = False):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = self.transformer(x, attn_mask=self.attn_mask)
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
return F.normalize(x, dim=-1) if normalize else x
clip_model.encode_text = new_encode_text.__get__(clip_model)
return clip_model
def get_model_config(model_name):
with open("ckpts/DFN5B-CLIP-ViT-H-14-378/open_clip_config.json", 'r', encoding='utf-8') as f:
return json.load(f)["model_cfg"]
class FeaturesUtils(nn.Module):
def __init__(
self,
*,
tod_vae_ckpt: Optional[str] = None,
bigvgan_vocoder_ckpt: Optional[str] = None,
synchformer_ckpt: Optional[str] = None,
enable_conditions: bool = True,
mode=Literal['16k', '44k'],
need_vae_encoder: bool = True,
):
super().__init__()
self.device ="cuda"
if enable_conditions:
old_get_model_config = open_clip.factory.get_model_config
open_clip.factory.get_model_config = get_model_config
with open("ckpts/DFN5B-CLIP-ViT-H-14-378/open_clip_config.json", 'r', encoding='utf-8') as f:
override_preprocess = json.load(f)["preprocess_cfg"]
self.clip_model = create_model('DFN5B-CLIP-ViT-H-14-378', pretrained='ckpts/DFN5B-CLIP-ViT-H-14-378/open_clip_pytorch_model.bin', force_preprocess_cfg= override_preprocess)
open_clip.factory.get_model_config = old_get_model_config
# self.clip_model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384', return_transform=False)
self.clip_preprocess = Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
self.clip_model = patch_clip(self.clip_model)
self.synchformer = Synchformer()
self.synchformer.load_state_dict(
torch.load(synchformer_ckpt, weights_only=True, map_location='cpu'))
self.tokenizer = open_clip.get_tokenizer('ViT-H-14-378-quickgelu') # same as 'ViT-H-14'
else:
self.clip_model = None
self.synchformer = None
self.tokenizer = None
if tod_vae_ckpt is not None:
self.mel_converter = get_mel_converter(mode)
self.tod = AutoEncoderModule(vae_ckpt_path=tod_vae_ckpt,
vocoder_ckpt_path=bigvgan_vocoder_ckpt,
mode=mode,
need_vae_encoder=need_vae_encoder)
else:
self.tod = None
def compile(self):
if self.clip_model is not None:
self.clip_model.encode_image = torch.compile(self.clip_model.encode_image)
self.clip_model.encode_text = torch.compile(self.clip_model.encode_text)
if self.synchformer is not None:
self.synchformer = torch.compile(self.synchformer)
self.decode = torch.compile(self.decode)
self.vocode = torch.compile(self.vocode)
def train(self, mode: bool) -> None:
return super().train(False)
@torch.inference_mode()
def encode_video_with_clip(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor:
assert self.clip_model is not None, 'CLIP is not loaded'
# x: (B, T, C, H, W) H/W: 384
b, t, c, h, w = x.shape
assert c == 3 and h == 384 and w == 384
x = self.clip_preprocess(x)
x = rearrange(x, 'b t c h w -> (b t) c h w')
outputs = []
if batch_size < 0:
batch_size = b * t
for i in range(0, b * t, batch_size):
outputs.append(self.clip_model.encode_image(x[i:i + batch_size], normalize=True))
x = torch.cat(outputs, dim=0)
# x = self.clip_model.encode_image(x, normalize=True)
x = rearrange(x, '(b t) d -> b t d', b=b)
return x
@torch.inference_mode()
def encode_video_with_sync(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor:
assert self.synchformer is not None, 'Synchformer is not loaded'
# x: (B, T, C, H, W) H/W: 384
b, t, c, h, w = x.shape
assert c == 3 and h == 224 and w == 224
# partition the video
segment_size = 16
step_size = 8
num_segments = (t - segment_size) // step_size + 1
segments = []
for i in range(num_segments):
segments.append(x[:, i * step_size:i * step_size + segment_size])
x = torch.stack(segments, dim=1) # (B, S, T, C, H, W)
outputs = []
if batch_size < 0:
batch_size = b
x = rearrange(x, 'b s t c h w -> (b s) 1 t c h w')
for i in range(0, b * num_segments, batch_size):
outputs.append(self.synchformer(x[i:i + batch_size]))
x = torch.cat(outputs, dim=0)
x = rearrange(x, '(b s) 1 t d -> b (s t) d', b=b)
return x
@torch.inference_mode()
def encode_text(self, text: list[str]) -> torch.Tensor:
assert self.clip_model is not None, 'CLIP is not loaded'
assert self.tokenizer is not None, 'Tokenizer is not loaded'
# x: (B, L)
tokens = self.tokenizer(text).to(self.device)
return self.clip_model.encode_text(tokens, normalize=True)
@torch.inference_mode()
def encode_audio(self, x) -> DiagonalGaussianDistribution:
assert self.tod is not None, 'VAE is not loaded'
# x: (B * L)
mel = self.mel_converter(x)
dist = self.tod.encode(mel)
return dist
@torch.inference_mode()
def vocode(self, mel: torch.Tensor) -> torch.Tensor:
assert self.tod is not None, 'VAE is not loaded'
return self.tod.vocode(mel)
@torch.inference_mode()
def decode(self, z: torch.Tensor) -> torch.Tensor:
assert self.tod is not None, 'VAE is not loaded'
return self.tod.decode(z.transpose(1, 2))
# @property
# def device(self):
# return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype

View File

@ -0,0 +1,72 @@
import logging
log = logging.getLogger()
def get_parameter_groups(model, cfg, print_log=False):
"""
Assign different weight decays and learning rates to different parameters.
Returns a parameter group which can be passed to the optimizer.
"""
weight_decay = cfg.weight_decay
# embed_weight_decay = cfg.embed_weight_decay
# backbone_lr_ratio = cfg.backbone_lr_ratio
base_lr = cfg.learning_rate
backbone_params = []
embed_params = []
other_params = []
# embedding_names = ['summary_pos', 'query_init', 'query_emb', 'obj_pe']
# embedding_names = [e + '.weight' for e in embedding_names]
# inspired by detectron2
memo = set()
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# Avoid duplicating parameters
if param in memo:
continue
memo.add(param)
if name.startswith('module'):
name = name[7:]
inserted = False
# if name.startswith('pixel_encoder.'):
# backbone_params.append(param)
# inserted = True
# if print_log:
# log.info(f'{name} counted as a backbone parameter.')
# else:
# for e in embedding_names:
# if name.endswith(e):
# embed_params.append(param)
# inserted = True
# if print_log:
# log.info(f'{name} counted as an embedding parameter.')
# break
# if not inserted:
other_params.append(param)
parameter_groups = [
# {
# 'params': backbone_params,
# 'lr': base_lr * backbone_lr_ratio,
# 'weight_decay': weight_decay
# },
# {
# 'params': embed_params,
# 'lr': base_lr,
# 'weight_decay': embed_weight_decay
# },
{
'params': other_params,
'lr': base_lr,
'weight_decay': weight_decay
},
]
return parameter_groups

View File

@ -0,0 +1,12 @@
from typing import Optional
import torch
def log_normal_sample(x: torch.Tensor,
generator: Optional[torch.Generator] = None,
m: float = 0.0,
s: float = 1.0) -> torch.Tensor:
bs = x.shape[0]
s = torch.randn(bs, device=x.device, generator=generator) * s + m
return torch.sigmoid(s)

View File

@ -0,0 +1,609 @@
"""
trainer.py - wrapper and utility functions for network training
Compute loss, back-prop, update parameters, logging, etc.
"""
import os
from pathlib import Path
from typing import Optional, Union
import torch
import torch.distributed
import torch.optim as optim
# from av_bench.evaluate import evaluate
# from av_bench.extract import extract
# from nitrous_ema import PostHocEMA
from omegaconf import DictConfig
from torch.nn.parallel import DistributedDataParallel as DDP
from .model.flow_matching import FlowMatching
from .model.networks import get_my_mmaudio
from .model.sequence_config import CONFIG_16K, CONFIG_44K
from .model.utils.features_utils import FeaturesUtils
from .model.utils.parameter_groups import get_parameter_groups
from .model.utils.sample_utils import log_normal_sample
from .utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero)
from .utils.log_integrator import Integrator
from .utils.logger import TensorboardLogger
from .utils.time_estimator import PartialTimeEstimator, TimeEstimator
from .utils.video_joiner import VideoJoiner
class Runner:
def __init__(self,
cfg: DictConfig,
log: TensorboardLogger,
run_path: Union[str, Path],
for_training: bool = True,
latent_mean: Optional[torch.Tensor] = None,
latent_std: Optional[torch.Tensor] = None):
self.exp_id = cfg.exp_id
self.use_amp = cfg.amp
self.enable_grad_scaler = cfg.enable_grad_scaler
self.for_training = for_training
self.cfg = cfg
if cfg.model.endswith('16k'):
self.seq_cfg = CONFIG_16K
mode = '16k'
elif cfg.model.endswith('44k'):
self.seq_cfg = CONFIG_44K
mode = '44k'
else:
raise ValueError(f'Unknown model: {cfg.model}')
self.sample_rate = self.seq_cfg.sampling_rate
self.duration_sec = self.seq_cfg.duration
# setting up the model
empty_string_feat = torch.load('./ext_weights/empty_string.pth', weights_only=True)[0]
self.network = DDP(get_my_mmaudio(cfg.model,
latent_mean=latent_mean,
latent_std=latent_std,
empty_string_feat=empty_string_feat).cuda(),
device_ids=[local_rank],
broadcast_buffers=False)
if cfg.compile:
# NOTE: though train_fn and val_fn are very similar
# (early on they are implemented as a single function)
# keeping them separate and compiling them separately are CRUCIAL for high performance
self.train_fn = torch.compile(self.train_fn)
self.val_fn = torch.compile(self.val_fn)
self.fm = FlowMatching(cfg.sampling.min_sigma,
inference_mode=cfg.sampling.method,
num_steps=cfg.sampling.num_steps)
# ema profile
if for_training and cfg.ema.enable and local_rank == 0:
self.ema = PostHocEMA(self.network.module,
sigma_rels=cfg.ema.sigma_rels,
update_every=cfg.ema.update_every,
checkpoint_every_num_steps=cfg.ema.checkpoint_every,
checkpoint_folder=cfg.ema.checkpoint_folder,
step_size_correction=True).cuda()
self.ema_start = cfg.ema.start
else:
self.ema = None
self.rng = torch.Generator(device='cuda')
self.rng.manual_seed(cfg['seed'] + local_rank)
# setting up feature extractors and VAEs
if mode == '16k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_16k_ckpt'],
bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'],
synchformer_ckpt=cfg['synchformer_ckpt'],
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
elif mode == '44k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_44k_ckpt'],
synchformer_ckpt=cfg['synchformer_ckpt'],
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
self.features = self.features.cuda().eval()
if cfg.compile:
self.features.compile()
# hyperparameters
self.log_normal_sampling_mean = cfg.sampling.mean
self.log_normal_sampling_scale = cfg.sampling.scale
self.null_condition_probability = cfg.null_condition_probability
self.cfg_strength = cfg.cfg_strength
# setting up logging
self.log = log
self.run_path = Path(run_path)
vgg_cfg = cfg.data.VGGSound
if for_training:
self.val_video_joiner = VideoJoiner(vgg_cfg.root, self.run_path / 'val-sampled-videos',
self.sample_rate, self.duration_sec)
else:
self.test_video_joiner = VideoJoiner(vgg_cfg.root,
self.run_path / 'test-sampled-videos',
self.sample_rate, self.duration_sec)
string_if_rank_zero(self.log, 'model_size',
f'{sum([param.nelement() for param in self.network.parameters()])}')
string_if_rank_zero(
self.log, 'number_of_parameters_that_require_gradient: ',
str(
sum([
param.nelement()
for param in filter(lambda p: p.requires_grad, self.network.parameters())
])))
info_if_rank_zero(self.log, 'torch version: ' + torch.__version__)
self.train_integrator = Integrator(self.log, distributed=True)
self.val_integrator = Integrator(self.log, distributed=True)
# setting up optimizer and loss
if for_training:
self.enter_train()
parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0))
self.optimizer = optim.AdamW(parameter_groups,
lr=cfg['learning_rate'],
weight_decay=cfg['weight_decay'],
betas=[0.9, 0.95],
eps=1e-6 if self.use_amp else 1e-8,
fused=True)
if self.enable_grad_scaler:
self.scaler = torch.amp.GradScaler(init_scale=2048)
self.clip_grad_norm = cfg['clip_grad_norm']
# linearly warmup learning rate
linear_warmup_steps = cfg['linear_warmup_steps']
def warmup(currrent_step: int):
return (currrent_step + 1) / (linear_warmup_steps + 1)
warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
# setting up learning rate scheduler
if cfg['lr_schedule'] == 'constant':
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1)
elif cfg['lr_schedule'] == 'poly':
total_num_iter = cfg['iterations']
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer,
lr_lambda=lambda x:
(1 - (x / total_num_iter))**0.9)
elif cfg['lr_schedule'] == 'step':
next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
cfg['lr_schedule_steps'],
cfg['lr_schedule_gamma'])
else:
raise NotImplementedError
self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer,
[warmup_scheduler, next_scheduler],
[linear_warmup_steps])
# Logging info
self.log_text_interval = cfg['log_text_interval']
self.log_extra_interval = cfg['log_extra_interval']
self.save_weights_interval = cfg['save_weights_interval']
self.save_checkpoint_interval = cfg['save_checkpoint_interval']
self.save_copy_iterations = cfg['save_copy_iterations']
self.num_iterations = cfg['num_iterations']
if cfg['debug']:
self.log_text_interval = self.log_extra_interval = 1
# update() is called when we log metrics, within the logger
self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval)
# update() is called every iteration, in this script
self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9)
else:
self.enter_val()
def train_fn(
self,
clip_f: torch.Tensor,
sync_f: torch.Tensor,
text_f: torch.Tensor,
a_mean: torch.Tensor,
a_std: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# sample
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
t = log_normal_sample(x1,
generator=self.rng,
m=self.log_normal_sampling_mean,
s=self.log_normal_sampling_scale)
x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1,
t,
Cs=[clip_f, sync_f, text_f],
generator=self.rng)
# classifier-free training
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_video = (samples < self.null_condition_probability)
clip_f[null_video] = self.network.module.empty_clip_feat
sync_f[null_video] = self.network.module.empty_sync_feat
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
pred_v = self.network(xt, clip_f, sync_f, text_f, t)
loss = self.fm.loss(pred_v, x0, x1)
mean_loss = loss.mean()
return x1, loss, mean_loss, t
def val_fn(
self,
clip_f: torch.Tensor,
sync_f: torch.Tensor,
text_f: torch.Tensor,
x1: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
t = log_normal_sample(x1,
generator=self.rng,
m=self.log_normal_sampling_mean,
s=self.log_normal_sampling_scale)
x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1,
t,
Cs=[clip_f, sync_f, text_f],
generator=self.rng)
# classifier-free training
samples = torch.rand(bs, device=x1.device, generator=self.rng)
# null mask is for when a video is provided but we decided to ignore it
null_video = (samples < self.null_condition_probability)
# complete mask is for when a video is not provided or we decided to ignore it
clip_f[null_video] = self.network.module.empty_clip_feat
sync_f[null_video] = self.network.module.empty_sync_feat
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
pred_v = self.network(xt, clip_f, sync_f, text_f, t)
loss = self.fm.loss(pred_v, x0, x1)
mean_loss = loss.mean()
return loss, mean_loss, t
def train_pass(self, data, it: int = 0):
if not self.for_training:
raise ValueError('train_pass() should not be called when not training.')
self.enter_train()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
clip_f = data['clip_features'].cuda(non_blocking=True)
sync_f = data['sync_features'].cuda(non_blocking=True)
text_f = data['text_features'].cuda(non_blocking=True)
video_exist = data['video_exist'].cuda(non_blocking=True)
text_exist = data['text_exist'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
# these masks are for non-existent data; masking for CFG training is in train_fn
clip_f[~video_exist] = self.network.module.empty_clip_feat
sync_f[~video_exist] = self.network.module.empty_sync_feat
text_f[~text_exist] = self.network.module.empty_string_feat
self.log.data_timer.end()
if it % self.log_extra_interval == 0:
unmasked_clip_f = clip_f.clone()
unmasked_sync_f = sync_f.clone()
unmasked_text_f = text_f.clone()
x1, loss, mean_loss, t = self.train_fn(clip_f, sync_f, text_f, a_mean, a_std)
self.train_integrator.add_dict({'loss': mean_loss})
if it % self.log_text_interval == 0 and it != 0:
self.train_integrator.add_scalar('lr', self.scheduler.get_last_lr()[0])
self.train_integrator.add_binned_tensor('binned_loss', loss, t)
self.train_integrator.finalize('train', it)
self.train_integrator.reset_except_hooks()
# Backward pass
self.optimizer.zero_grad(set_to_none=True)
if self.enable_grad_scaler:
self.scaler.scale(mean_loss).backward()
self.scaler.unscale_(self.optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
else:
mean_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.optimizer.step()
if self.ema is not None and it >= self.ema_start:
self.ema.update()
self.scheduler.step()
self.integrator.add_scalar('grad_norm', grad_norm)
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp,
dtype=torch.bfloat16), torch.inference_mode():
try:
if it % self.log_extra_interval == 0:
# save GT audio
# unnormalize the latents
x1 = self.network.module.unnormalize(x1[0:1])
mel = self.features.decode(x1)
audio = self.features.vocode(mel).cpu()[0] # 1 * num_samples
self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-gt-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
# save audio from sampling
x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng)
clip_f = unmasked_clip_f[0:1]
sync_f = unmasked_sync_f[0:1]
text_f = unmasked_text_f[0:1]
conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
t, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu()[0]
self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
except Exception as e:
self.log.warning(f'Error in extra logging: {e}')
if self.cfg.debug:
raise
# Save network weights and checkpoint if needed
save_copy = it in self.save_copy_iterations
if (it % self.save_weights_interval == 0 and it != 0) or save_copy:
self.save_weights(it)
if it % self.save_checkpoint_interval == 0 and it != 0:
self.save_checkpoint(it, save_copy=save_copy)
self.log.data_timer.start()
@torch.inference_mode()
def validation_pass(self, data, it: int = 0):
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
clip_f = data['clip_features'].cuda(non_blocking=True)
sync_f = data['sync_features'].cuda(non_blocking=True)
text_f = data['text_features'].cuda(non_blocking=True)
video_exist = data['video_exist'].cuda(non_blocking=True)
text_exist = data['text_exist'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
clip_f[~video_exist] = self.network.module.empty_clip_feat
sync_f[~video_exist] = self.network.module.empty_sync_feat
text_f[~text_exist] = self.network.module.empty_string_feat
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn
self.log.data_timer.end()
loss, mean_loss, t = self.val_fn(clip_f.clone(), sync_f.clone(), text_f.clone(), x1)
self.val_integrator.add_binned_tensor('binned_loss', loss, t)
self.val_integrator.add_dict({'loss': mean_loss})
self.log.data_timer.start()
@torch.inference_mode()
def inference_pass(self,
data,
it: int,
data_cfg: DictConfig,
*,
save_eval: bool = True) -> Path:
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
clip_f = data['clip_features'].cuda(non_blocking=True)
sync_f = data['sync_features'].cuda(non_blocking=True)
text_f = data['text_features'].cuda(non_blocking=True)
video_exist = data['video_exist'].cuda(non_blocking=True)
text_exist = data['text_exist'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True) # for the shape only
clip_f[~video_exist] = self.network.module.empty_clip_feat
sync_f[~video_exist] = self.network.module.empty_sync_feat
text_f[~text_exist] = self.network.module.empty_string_feat
# sample
x0 = torch.empty_like(a_mean).normal_(generator=self.rng)
conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
t, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu()
for i in range(audio.shape[0]):
video_id = data['id'][i]
if (not self.for_training) and i == 0:
# save very few videos
self.test_video_joiner.join(video_id, f'{video_id}', audio[i].transpose(0, 1))
if data_cfg.output_subdir is not None:
# validation
if save_eval:
iter_naming = f'{it:09d}'
else:
iter_naming = 'val-cache'
audio_dir = self.log.log_audio(iter_naming,
f'{video_id}',
audio[i],
it=None,
sample_rate=self.sample_rate,
subdir=Path(data_cfg.output_subdir))
if save_eval and i == 0:
self.val_video_joiner.join(video_id, f'{iter_naming}-{video_id}',
audio[i].transpose(0, 1))
else:
# full test set, usually
audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled',
f'{video_id}',
audio[i],
it=None,
sample_rate=self.sample_rate)
return Path(audio_dir)
@torch.inference_mode()
def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]:
with torch.amp.autocast('cuda', enabled=False):
if local_rank == 0:
extract(audio_path=audio_dir,
output_path=audio_dir / 'cache',
device='cuda',
batch_size=32,
audio_length=8)
output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache),
pred_audio_cache=audio_dir / 'cache')
for k, v in output_metrics.items():
# pad k to 10 characters
# pad v to 10 decimal places
self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it)
self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}')
else:
output_metrics = None
return output_metrics
def save_weights(self, it, save_copy=False):
if local_rank != 0:
return
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_{it}.pth'
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
# if last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path)
self.log.info(f'Network weights shadowed to {shadow_path}.')
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
def save_checkpoint(self, it, save_copy=False):
if local_rank != 0:
return
checkpoint = {
'it': it,
'weights': self.network.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'ema': self.ema.state_dict() if self.ema is not None else None,
}
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth'
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
# if ckpt_last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path) # moves the file
self.log.info(f'Checkpoint shadowed to {shadow_path}.')
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
def get_latest_checkpoint_path(self):
ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if not ckpt_path.exists():
info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.')
return None
return ckpt_path
def get_latest_weight_path(self):
weight_path = self.run_path / f'{self.exp_id}_last.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def get_final_ema_weight_path(self):
weight_path = self.run_path / f'{self.exp_id}_ema_final.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def load_checkpoint(self, path):
# This method loads everything and should be used to resume training
map_location = 'cuda:%d' % local_rank
checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
it = checkpoint['it']
weights = checkpoint['weights']
optimizer = checkpoint['optimizer']
scheduler = checkpoint['scheduler']
if self.ema is not None:
self.ema.load_state_dict(checkpoint['ema'])
self.log.info(f'EMA states loaded from step {self.ema.step}')
map_location = 'cuda:%d' % local_rank
self.network.module.load_state_dict(weights)
self.optimizer.load_state_dict(optimizer)
self.scheduler.load_state_dict(scheduler)
self.log.info(f'Global iteration {it} loaded.')
self.log.info('Network weights, optimizer states, and scheduler states loaded.')
return it
def load_weights_in_memory(self, src_dict):
self.network.module.load_weights(src_dict)
self.log.info('Network weights loaded from memory.')
def load_weights(self, path):
# This method loads only the network weight and should be used to load a pretrained model
map_location = 'cuda:%d' % local_rank
src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
self.log.info(f'Importing network weights from {path}...')
self.load_weights_in_memory(src_dict)
def weights(self):
return self.network.module.state_dict()
def enter_train(self):
self.integrator = self.train_integrator
self.network.train()
return self
def enter_val(self):
self.network.eval()
return self

View File

@ -0,0 +1,90 @@
import json
import logging
import os
import random
import numpy as np
import torch
from hydra.core.hydra_config import HydraConfig
from omegaconf import DictConfig, open_dict
from tqdm import tqdm
from .data.data_setup import setup_test_datasets
from .runner import Runner
from .utils.dist_utils import info_if_rank_zero
from .utils.logger import TensorboardLogger
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
def sample(cfg: DictConfig):
# initial setup
num_gpus = world_size
run_dir = HydraConfig.get().run.dir
# wrap python logger with a tensorboard logger
log = TensorboardLogger(cfg.exp_id,
run_dir,
logging.getLogger(),
is_rank0=(local_rank == 0),
enable_email=cfg.enable_email and not cfg.debug)
info_if_rank_zero(log, f'All configuration: {cfg}')
info_if_rank_zero(log, f'Number of GPUs detected: {num_gpus}')
# cuda setup
torch.cuda.set_device(local_rank)
torch.backends.cudnn.benchmark = cfg.cudnn_benchmark
# number of dataloader workers
info_if_rank_zero(log, f'Number of dataloader workers (per GPU): {cfg.num_workers}')
# Set seeds to ensure the same initialization
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
# setting up configurations
info_if_rank_zero(log, f'Configuration: {cfg}')
info_if_rank_zero(log, f'Batch size (per GPU): {cfg.batch_size}')
# construct the trainer
runner = Runner(cfg, log=log, run_path=run_dir, for_training=False).enter_val()
# load the last weights if needed
if cfg['weights'] is not None:
info_if_rank_zero(log, f'Loading weights from the disk: {cfg["weights"]}')
runner.load_weights(cfg['weights'])
cfg['weights'] = None
else:
weights = runner.get_final_ema_weight_path()
if weights is not None:
info_if_rank_zero(log, f'Automatically finding weight: {weights}')
runner.load_weights(weights)
# setup datasets
dataset, sampler, loader = setup_test_datasets(cfg)
data_cfg = cfg.data.ExtractedVGG_test
with open_dict(data_cfg):
if cfg.output_name is not None:
# append to the tag
data_cfg.tag = f'{data_cfg.tag}-{cfg.output_name}'
# loop
audio_path = None
for curr_iter, data in enumerate(tqdm(loader)):
new_audio_path = runner.inference_pass(data, curr_iter, data_cfg)
if audio_path is None:
audio_path = new_audio_path
else:
assert audio_path == new_audio_path, 'Different audio path detected'
info_if_rank_zero(log, f'Inference completed. Audio path: {audio_path}')
output_metrics = runner.eval(audio_path, curr_iter, data_cfg)
if local_rank == 0:
# write the output metrics to run_dir
output_metrics_path = os.path.join(run_dir, f'{data_cfg.tag}-output_metrics.json')
with open(output_metrics_path, 'w') as f:
json.dump(output_metrics, f, indent=4)

View File

View File

@ -0,0 +1,17 @@
import os
from logging import Logger
from .logger import TensorboardLogger
local_rank = int(os.environ['LOCAL_RANK']) if 'LOCAL_RANK' in os.environ else 0
world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
def info_if_rank_zero(logger: Logger, msg: str):
if local_rank == 0:
logger.info(msg)
def string_if_rank_zero(logger: TensorboardLogger, tag: str, msg: str):
if local_rank == 0:
logger.log_string(tag, msg)

Some files were not shown because too many files have changed in this diff Show More