[FEAT] enable multi-device teacache

This commit is contained in:
kousakawang 2025-05-26 14:46:48 +08:00
parent 420963b7b5
commit 3e209f8b45

View File

@ -1,6 +1,9 @@
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.cuda.amp as amp
import numpy as np
import logging
from xfuser.core.distributed import (
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
@ -166,8 +169,66 @@ def usp_dit_forward(
kwargs['hints'] = hints
kwargs['context_scale'] = vace_context_scale
for block in self.blocks:
x = block(x, **kwargs)
if self.enable_teacache:
# print("enable teacache")
modulated_inp = e0 if self.use_ref_steps else e
device_id = torch.cuda.current_device()
# print("check args, {} {} {} {} {}".format(self.cnt, self.ret_steps, self.cutoff_steps, self.coefficients,
# device_id))
# teacache
if self.cnt%2==0: # even -> conditon
self.is_even = True
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_even = True
self.accumulated_rel_l1_distance_even = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_even < self.teacache_thresh:
should_calc_even = False
else:
should_calc_even = True
self.accumulated_rel_l1_distance_even = 0
self.previous_e0_even = modulated_inp.clone()
else: # odd -> unconditon
self.is_even = False
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_odd = True
self.accumulated_rel_l1_distance_odd = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_odd < self.teacache_thresh:
should_calc_odd = False
else:
should_calc_odd = True
self.accumulated_rel_l1_distance_odd = 0
self.previous_e0_odd = modulated_inp.clone()
if self.enable_teacache:
if self.is_even:
if not should_calc_even:
logging.info("use residual estimation for this difusion step")
x += self.previous_residual_even
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_even = x - ori_x
else:
if not should_calc_odd:
logging.info("use residual estimation for thi8s difusion step")
x += self.previous_residual_odd
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_odd = x - ori_x
else:
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
@ -175,6 +236,10 @@ def usp_dit_forward(
# Context Parallel
x = get_sp_group().all_gather(x, dim=1)
self.cnt += 1
if self.cnt >= self.num_steps:
self.cnt = 0
# unpatchify
x = self.unpatchify(x, grid_sizes)
return [u.float() for u in x]