mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	Merge pull request #1 from bytedance-iaas/teacache_support
[Feat] Add teacache implement for Wan2.1
This commit is contained in:
		
						commit
						420963b7b5
					
				
							
								
								
									
										623
									
								
								generate.py
									
									
									
									
									
								
							
							
						
						
									
										623
									
								
								generate.py
									
									
									
									
									
								
							@ -4,21 +4,32 @@ import logging
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
import warnings
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings('ignore')
 | 
			
		||||
 | 
			
		||||
import random
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from PIL import Image
 | 
			
		||||
import torchvision.transforms.functional as TF
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import numpy as np
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
import wan
 | 
			
		||||
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
 | 
			
		||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
			
		||||
from wan.utils.utils import cache_image, cache_video, str2bool
 | 
			
		||||
 | 
			
		||||
import gc
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
from wan.modules.model import sinusoidal_embedding_1d
 | 
			
		||||
from wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
			
		||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
			
		||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
EXAMPLE_PROMPT = {
 | 
			
		||||
    "t2v-1.3B": {
 | 
			
		||||
@ -60,6 +71,537 @@ EXAMPLE_PROMPT = {
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
def t2v_generate(self,
 | 
			
		||||
                 input_prompt,
 | 
			
		||||
                 size=(1280, 720),
 | 
			
		||||
                 frame_num=81,
 | 
			
		||||
                 shift=5.0,
 | 
			
		||||
                 sample_solver='unipc',
 | 
			
		||||
                 sampling_steps=50,
 | 
			
		||||
                 guide_scale=5.0,
 | 
			
		||||
                 n_prompt="",
 | 
			
		||||
                 seed=-1,
 | 
			
		||||
                 offload_model=True):
 | 
			
		||||
        r"""
 | 
			
		||||
        Generates video frames from text prompt using diffusion process.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            input_prompt (`str`):
 | 
			
		||||
                Text prompt for content generation
 | 
			
		||||
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
			
		||||
                Controls video resolution, (width,height).
 | 
			
		||||
            frame_num (`int`, *optional*, defaults to 81):
 | 
			
		||||
                How many frames to sample from a video. The number should be 4n+1
 | 
			
		||||
            shift (`float`, *optional*, defaults to 5.0):
 | 
			
		||||
                Noise schedule shift parameter. Affects temporal dynamics
 | 
			
		||||
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
			
		||||
                Solver used to sample the video.
 | 
			
		||||
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
			
		||||
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
			
		||||
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
			
		||||
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
			
		||||
            n_prompt (`str`, *optional*, defaults to ""):
 | 
			
		||||
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
			
		||||
            seed (`int`, *optional*, defaults to -1):
 | 
			
		||||
                Random seed for noise generation. If -1, use random seed.
 | 
			
		||||
            offload_model (`bool`, *optional*, defaults to True):
 | 
			
		||||
                If True, offloads models to CPU during generation to save VRAM
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor:
 | 
			
		||||
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
			
		||||
                - C: Color channels (3 for RGB)
 | 
			
		||||
                - N: Number of frames (81)
 | 
			
		||||
                - H: Frame height (from size)
 | 
			
		||||
                - W: Frame width from size)
 | 
			
		||||
        """
 | 
			
		||||
        # preprocess
 | 
			
		||||
        F = frame_num
 | 
			
		||||
        target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
			
		||||
                        size[1] // self.vae_stride[1],
 | 
			
		||||
                        size[0] // self.vae_stride[2])
 | 
			
		||||
 | 
			
		||||
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
			
		||||
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
			
		||||
                            target_shape[1] / self.sp_size) * self.sp_size
 | 
			
		||||
 | 
			
		||||
        if n_prompt == "":
 | 
			
		||||
            n_prompt = self.sample_neg_prompt
 | 
			
		||||
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
        seed_g = torch.Generator(device=self.device)
 | 
			
		||||
        seed_g.manual_seed(seed)
 | 
			
		||||
 | 
			
		||||
        if not self.t5_cpu:
 | 
			
		||||
            self.text_encoder.model.to(self.device)
 | 
			
		||||
            context = self.text_encoder([input_prompt], self.device)
 | 
			
		||||
            context_null = self.text_encoder([n_prompt], self.device)
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                self.text_encoder.model.cpu()
 | 
			
		||||
        else:
 | 
			
		||||
            context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
			
		||||
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
			
		||||
            context = [t.to(self.device) for t in context]
 | 
			
		||||
            context_null = [t.to(self.device) for t in context_null]
 | 
			
		||||
 | 
			
		||||
        noise = [
 | 
			
		||||
            torch.randn(
 | 
			
		||||
                target_shape[0],
 | 
			
		||||
                target_shape[1],
 | 
			
		||||
                target_shape[2],
 | 
			
		||||
                target_shape[3],
 | 
			
		||||
                dtype=torch.float32,
 | 
			
		||||
                device=self.device,
 | 
			
		||||
                generator=seed_g)
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        @contextmanager
 | 
			
		||||
        def noop_no_sync():
 | 
			
		||||
            yield
 | 
			
		||||
 | 
			
		||||
        no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
			
		||||
 | 
			
		||||
        # evaluation mode
 | 
			
		||||
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
			
		||||
 | 
			
		||||
            if sample_solver == 'unipc':
 | 
			
		||||
                sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                    shift=1,
 | 
			
		||||
                    use_dynamic_shifting=False)
 | 
			
		||||
                sample_scheduler.set_timesteps(
 | 
			
		||||
                    sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
                timesteps = sample_scheduler.timesteps
 | 
			
		||||
            elif sample_solver == 'dpm++':
 | 
			
		||||
                sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                    shift=1,
 | 
			
		||||
                    use_dynamic_shifting=False)
 | 
			
		||||
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
                timesteps, _ = retrieve_timesteps(
 | 
			
		||||
                    sample_scheduler,
 | 
			
		||||
                    device=self.device,
 | 
			
		||||
                    sigmas=sampling_sigmas)
 | 
			
		||||
            else:
 | 
			
		||||
                raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
 | 
			
		||||
            # sample videos
 | 
			
		||||
            latents = noise
 | 
			
		||||
 | 
			
		||||
            arg_c = {'context': context, 'seq_len': seq_len}
 | 
			
		||||
            arg_null = {'context': context_null, 'seq_len': seq_len}
 | 
			
		||||
 | 
			
		||||
            for _, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
                latent_model_input = latents
 | 
			
		||||
                timestep = [t]
 | 
			
		||||
 | 
			
		||||
                timestep = torch.stack(timestep)
 | 
			
		||||
 | 
			
		||||
                self.model.to(self.device)
 | 
			
		||||
                noise_pred_cond = self.model(
 | 
			
		||||
                    latent_model_input, t=timestep, **arg_c)[0]
 | 
			
		||||
                noise_pred_uncond = self.model(
 | 
			
		||||
                    latent_model_input, t=timestep, **arg_null)[0]
 | 
			
		||||
 | 
			
		||||
                noise_pred = noise_pred_uncond + guide_scale * (
 | 
			
		||||
                    noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
 | 
			
		||||
                temp_x0 = sample_scheduler.step(
 | 
			
		||||
                    noise_pred.unsqueeze(0),
 | 
			
		||||
                    t,
 | 
			
		||||
                    latents[0].unsqueeze(0),
 | 
			
		||||
                    return_dict=False,
 | 
			
		||||
                    generator=seed_g)[0]
 | 
			
		||||
                latents = [temp_x0.squeeze(0)]
 | 
			
		||||
 | 
			
		||||
            x0 = latents
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                self.model.cpu()
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
            if self.rank == 0:
 | 
			
		||||
                videos = self.vae.decode(x0)
 | 
			
		||||
 | 
			
		||||
        del noise, latents
 | 
			
		||||
        del sample_scheduler
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            torch.cuda.synchronize()
 | 
			
		||||
        if dist.is_initialized():
 | 
			
		||||
            dist.barrier()
 | 
			
		||||
 | 
			
		||||
        return videos[0] if self.rank == 0 else None
 | 
			
		||||
 | 
			
		||||
def i2v_generate(self,
 | 
			
		||||
                 input_prompt,
 | 
			
		||||
                 img,
 | 
			
		||||
                 max_area=720 * 1280,
 | 
			
		||||
                 frame_num=81,
 | 
			
		||||
                 shift=5.0,
 | 
			
		||||
                 sample_solver='unipc',
 | 
			
		||||
                 sampling_steps=40,
 | 
			
		||||
                 guide_scale=5.0,
 | 
			
		||||
                 n_prompt="",
 | 
			
		||||
                 seed=-1,
 | 
			
		||||
                 offload_model=True):
 | 
			
		||||
        r"""
 | 
			
		||||
        Generates video frames from input image and text prompt using diffusion process.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            input_prompt (`str`):
 | 
			
		||||
                Text prompt for content generation.
 | 
			
		||||
            img (PIL.Image.Image):
 | 
			
		||||
                Input image tensor. Shape: [3, H, W]
 | 
			
		||||
            max_area (`int`, *optional*, defaults to 720*1280):
 | 
			
		||||
                Maximum pixel area for latent space calculation. Controls video resolution scaling
 | 
			
		||||
            frame_num (`int`, *optional*, defaults to 81):
 | 
			
		||||
                How many frames to sample from a video. The number should be 4n+1
 | 
			
		||||
            shift (`float`, *optional*, defaults to 5.0):
 | 
			
		||||
                Noise schedule shift parameter. Affects temporal dynamics
 | 
			
		||||
                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
 | 
			
		||||
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
			
		||||
                Solver used to sample the video.
 | 
			
		||||
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
			
		||||
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
			
		||||
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
			
		||||
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
			
		||||
            n_prompt (`str`, *optional*, defaults to ""):
 | 
			
		||||
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
			
		||||
            seed (`int`, *optional*, defaults to -1):
 | 
			
		||||
                Random seed for noise generation. If -1, use random seed
 | 
			
		||||
            offload_model (`bool`, *optional*, defaults to True):
 | 
			
		||||
                If True, offloads models to CPU during generation to save VRAM
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor:
 | 
			
		||||
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
			
		||||
                - C: Color channels (3 for RGB)
 | 
			
		||||
                - N: Number of frames (81)
 | 
			
		||||
                - H: Frame height (from max_area)
 | 
			
		||||
                - W: Frame width from max_area)
 | 
			
		||||
        """
 | 
			
		||||
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
 | 
			
		||||
 | 
			
		||||
        F = frame_num
 | 
			
		||||
        h, w = img.shape[1:]
 | 
			
		||||
        aspect_ratio = h / w
 | 
			
		||||
        lat_h = round(
 | 
			
		||||
            np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
 | 
			
		||||
            self.patch_size[1] * self.patch_size[1])
 | 
			
		||||
        lat_w = round(
 | 
			
		||||
            np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
 | 
			
		||||
            self.patch_size[2] * self.patch_size[2])
 | 
			
		||||
        h = lat_h * self.vae_stride[1]
 | 
			
		||||
        w = lat_w * self.vae_stride[2]
 | 
			
		||||
 | 
			
		||||
        max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
 | 
			
		||||
            self.patch_size[1] * self.patch_size[2])
 | 
			
		||||
        max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
 | 
			
		||||
 | 
			
		||||
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
        seed_g = torch.Generator(device=self.device)
 | 
			
		||||
        seed_g.manual_seed(seed)
 | 
			
		||||
        noise = torch.randn(
 | 
			
		||||
            self.vae.model.z_dim, 
 | 
			
		||||
            (F - 1) // self.vae_stride[0] + 1,
 | 
			
		||||
            lat_h,
 | 
			
		||||
            lat_w,
 | 
			
		||||
            dtype=torch.float32,
 | 
			
		||||
            generator=seed_g,
 | 
			
		||||
            device=self.device)
 | 
			
		||||
 | 
			
		||||
        msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
 | 
			
		||||
        msk[:, 1:] = 0
 | 
			
		||||
        msk = torch.concat([
 | 
			
		||||
            torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
 | 
			
		||||
        ],
 | 
			
		||||
                           dim=1)
 | 
			
		||||
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
 | 
			
		||||
        msk = msk.transpose(1, 2)[0]
 | 
			
		||||
 | 
			
		||||
        if n_prompt == "":
 | 
			
		||||
            n_prompt = self.sample_neg_prompt
 | 
			
		||||
 | 
			
		||||
        # preprocess
 | 
			
		||||
        if not self.t5_cpu:
 | 
			
		||||
            self.text_encoder.model.to(self.device)
 | 
			
		||||
            context = self.text_encoder([input_prompt], self.device)
 | 
			
		||||
            context_null = self.text_encoder([n_prompt], self.device)
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                self.text_encoder.model.cpu()
 | 
			
		||||
        else:
 | 
			
		||||
            context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
			
		||||
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
			
		||||
            context = [t.to(self.device) for t in context]
 | 
			
		||||
            context_null = [t.to(self.device) for t in context_null]
 | 
			
		||||
 | 
			
		||||
        self.clip.model.to(self.device)
 | 
			
		||||
        clip_context = self.clip.visual([img[:, None, :, :]])
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            self.clip.model.cpu()
 | 
			
		||||
 | 
			
		||||
        y = self.vae.encode([
 | 
			
		||||
            torch.concat([
 | 
			
		||||
                torch.nn.functional.interpolate(
 | 
			
		||||
                    img[None].cpu(), size=(h, w), mode='bicubic').transpose(
 | 
			
		||||
                        0, 1),
 | 
			
		||||
                torch.zeros(3, F-1, h, w)
 | 
			
		||||
            ],
 | 
			
		||||
                         dim=1).to(self.device)
 | 
			
		||||
        ])[0]
 | 
			
		||||
        y = torch.concat([msk, y])
 | 
			
		||||
 | 
			
		||||
        @contextmanager
 | 
			
		||||
        def noop_no_sync():
 | 
			
		||||
            yield
 | 
			
		||||
 | 
			
		||||
        no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
			
		||||
 | 
			
		||||
        # evaluation mode
 | 
			
		||||
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
			
		||||
 | 
			
		||||
            if sample_solver == 'unipc':
 | 
			
		||||
                sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                    shift=1,
 | 
			
		||||
                    use_dynamic_shifting=False)
 | 
			
		||||
                sample_scheduler.set_timesteps(
 | 
			
		||||
                    sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
                timesteps = sample_scheduler.timesteps
 | 
			
		||||
            elif sample_solver == 'dpm++':
 | 
			
		||||
                sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                    shift=1,
 | 
			
		||||
                    use_dynamic_shifting=False)
 | 
			
		||||
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
                timesteps, _ = retrieve_timesteps(
 | 
			
		||||
                    sample_scheduler,
 | 
			
		||||
                    device=self.device,
 | 
			
		||||
                    sigmas=sampling_sigmas)
 | 
			
		||||
            else:
 | 
			
		||||
                raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
 | 
			
		||||
            # sample videos
 | 
			
		||||
            latent = noise
 | 
			
		||||
 | 
			
		||||
            arg_c = {
 | 
			
		||||
                'context': [context[0]],
 | 
			
		||||
                'clip_fea': clip_context,
 | 
			
		||||
                'seq_len': max_seq_len,
 | 
			
		||||
                'y': [y],
 | 
			
		||||
                # 'cond_flag': True,
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            arg_null = {
 | 
			
		||||
                'context': context_null,
 | 
			
		||||
                'clip_fea': clip_context,
 | 
			
		||||
                'seq_len': max_seq_len,
 | 
			
		||||
                'y': [y],
 | 
			
		||||
                # 'cond_flag': False,
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
            self.model.to(self.device)
 | 
			
		||||
            for _, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
                latent_model_input = [latent.to(self.device)]
 | 
			
		||||
                timestep = [t]
 | 
			
		||||
 | 
			
		||||
                timestep = torch.stack(timestep).to(self.device)
 | 
			
		||||
 | 
			
		||||
                noise_pred_cond = self.model(
 | 
			
		||||
                    latent_model_input, t=timestep, **arg_c)[0].to(
 | 
			
		||||
                        torch.device('cpu') if offload_model else self.device)
 | 
			
		||||
                if offload_model:
 | 
			
		||||
                    torch.cuda.empty_cache()
 | 
			
		||||
                noise_pred_uncond = self.model(
 | 
			
		||||
                    latent_model_input, t=timestep, **arg_null)[0].to(
 | 
			
		||||
                        torch.device('cpu') if offload_model else self.device)
 | 
			
		||||
                if offload_model:
 | 
			
		||||
                    torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
                noise_pred = noise_pred_uncond + guide_scale * (
 | 
			
		||||
                    noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
 | 
			
		||||
                latent = latent.to(
 | 
			
		||||
                    torch.device('cpu') if offload_model else self.device)
 | 
			
		||||
 | 
			
		||||
                temp_x0 = sample_scheduler.step(
 | 
			
		||||
                    noise_pred.unsqueeze(0),
 | 
			
		||||
                    t,
 | 
			
		||||
                    latent.unsqueeze(0),
 | 
			
		||||
                    return_dict=False,
 | 
			
		||||
                    generator=seed_g)[0]
 | 
			
		||||
                latent = temp_x0.squeeze(0)
 | 
			
		||||
 | 
			
		||||
                x0 = [latent.to(self.device)]
 | 
			
		||||
                del latent_model_input, timestep
 | 
			
		||||
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                self.model.cpu()
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
            if self.rank == 0:
 | 
			
		||||
                videos = self.vae.decode(x0)
 | 
			
		||||
 | 
			
		||||
        del noise, latent
 | 
			
		||||
        del sample_scheduler
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            torch.cuda.synchronize()
 | 
			
		||||
        if dist.is_initialized():
 | 
			
		||||
            dist.barrier()
 | 
			
		||||
 | 
			
		||||
        return videos[0] if self.rank == 0 else None
 | 
			
		||||
 | 
			
		||||
def teacache_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    x,
 | 
			
		||||
    t,
 | 
			
		||||
    context,
 | 
			
		||||
    seq_len,
 | 
			
		||||
    clip_fea=None,
 | 
			
		||||
    y=None,
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Forward pass through the diffusion model
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        x (List[Tensor]):
 | 
			
		||||
            List of input video tensors, each with shape [C_in, F, H, W]
 | 
			
		||||
        t (Tensor):
 | 
			
		||||
            Diffusion timesteps tensor of shape [B]
 | 
			
		||||
        context (List[Tensor]):
 | 
			
		||||
            List of text embeddings each with shape [L, C]
 | 
			
		||||
        seq_len (`int`):
 | 
			
		||||
            Maximum sequence length for positional encoding
 | 
			
		||||
        clip_fea (Tensor, *optional*):
 | 
			
		||||
            CLIP image features for image-to-video mode
 | 
			
		||||
        y (List[Tensor], *optional*):
 | 
			
		||||
            Conditional video inputs for image-to-video mode, same shape as x
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        List[Tensor]:
 | 
			
		||||
            List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    logging.info("via teacache forward process")
 | 
			
		||||
    if self.model_type == 'i2v':
 | 
			
		||||
        assert clip_fea is not None and y is not None
 | 
			
		||||
    # params
 | 
			
		||||
    device = self.patch_embedding.weight.device
 | 
			
		||||
    if self.freqs.device != device:
 | 
			
		||||
        self.freqs = self.freqs.to(device)
 | 
			
		||||
 | 
			
		||||
    if y is not None:
 | 
			
		||||
        x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
 | 
			
		||||
 | 
			
		||||
    # embeddings
 | 
			
		||||
    x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
 | 
			
		||||
    grid_sizes = torch.stack(
 | 
			
		||||
        [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
 | 
			
		||||
    x = [u.flatten(2).transpose(1, 2) for u in x]
 | 
			
		||||
    seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
 | 
			
		||||
    assert seq_lens.max() <= seq_len
 | 
			
		||||
    x = torch.cat([
 | 
			
		||||
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
			
		||||
                    dim=1) for u in x
 | 
			
		||||
    ])
 | 
			
		||||
 | 
			
		||||
    # time embeddings
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        e = self.time_embedding(
 | 
			
		||||
            sinusoidal_embedding_1d(self.freq_dim, t).float())
 | 
			
		||||
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
 | 
			
		||||
        assert e.dtype == torch.float32 and e0.dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
    # context
 | 
			
		||||
    context_lens = None
 | 
			
		||||
    context = self.text_embedding(
 | 
			
		||||
        torch.stack([
 | 
			
		||||
            torch.cat(
 | 
			
		||||
                [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
 | 
			
		||||
            for u in context
 | 
			
		||||
        ]))
 | 
			
		||||
 | 
			
		||||
    if clip_fea is not None:
 | 
			
		||||
        context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
			
		||||
        context = torch.concat([context_clip, context], dim=1)
 | 
			
		||||
 | 
			
		||||
    # arguments
 | 
			
		||||
    kwargs = dict(
 | 
			
		||||
        e=e0,
 | 
			
		||||
        seq_lens=seq_lens,
 | 
			
		||||
        grid_sizes=grid_sizes,
 | 
			
		||||
        freqs=self.freqs,
 | 
			
		||||
        context=context,
 | 
			
		||||
        context_lens=context_lens)
 | 
			
		||||
        
 | 
			
		||||
    if self.enable_teacache:
 | 
			
		||||
        modulated_inp = e0 if self.use_ref_steps else e
 | 
			
		||||
        # teacache
 | 
			
		||||
        if self.cnt%2==0: # even -> conditon
 | 
			
		||||
            self.is_even = True
 | 
			
		||||
            if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
 | 
			
		||||
                    should_calc_even = True
 | 
			
		||||
                    self.accumulated_rel_l1_distance_even = 0
 | 
			
		||||
            else:
 | 
			
		||||
                rescale_func = np.poly1d(self.coefficients)
 | 
			
		||||
                self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item())
 | 
			
		||||
                if self.accumulated_rel_l1_distance_even < self.teacache_thresh:
 | 
			
		||||
                    should_calc_even = False
 | 
			
		||||
                else:
 | 
			
		||||
                    should_calc_even = True
 | 
			
		||||
                    self.accumulated_rel_l1_distance_even = 0
 | 
			
		||||
            self.previous_e0_even = modulated_inp.clone()
 | 
			
		||||
 | 
			
		||||
        else: # odd -> unconditon
 | 
			
		||||
            self.is_even = False
 | 
			
		||||
            if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
 | 
			
		||||
                    should_calc_odd = True
 | 
			
		||||
                    self.accumulated_rel_l1_distance_odd = 0
 | 
			
		||||
            else: 
 | 
			
		||||
                rescale_func = np.poly1d(self.coefficients)
 | 
			
		||||
                self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item())
 | 
			
		||||
                if self.accumulated_rel_l1_distance_odd < self.teacache_thresh:
 | 
			
		||||
                    should_calc_odd = False
 | 
			
		||||
                else:
 | 
			
		||||
                    should_calc_odd = True
 | 
			
		||||
                    self.accumulated_rel_l1_distance_odd = 0
 | 
			
		||||
            self.previous_e0_odd = modulated_inp.clone()
 | 
			
		||||
 | 
			
		||||
    if self.enable_teacache: 
 | 
			
		||||
        if self.is_even:
 | 
			
		||||
            if not should_calc_even:
 | 
			
		||||
                logging.info("use residual estimation for this difusion step")
 | 
			
		||||
                x += self.previous_residual_even
 | 
			
		||||
            else:
 | 
			
		||||
                ori_x = x.clone()
 | 
			
		||||
                for block in self.blocks:
 | 
			
		||||
                    x = block(x, **kwargs)
 | 
			
		||||
                self.previous_residual_even = x - ori_x
 | 
			
		||||
        else:
 | 
			
		||||
            if not should_calc_odd:
 | 
			
		||||
                logging.info("use residual estimation for thi8s difusion step")
 | 
			
		||||
                x += self.previous_residual_odd
 | 
			
		||||
            else:
 | 
			
		||||
                ori_x = x.clone()
 | 
			
		||||
                for block in self.blocks:
 | 
			
		||||
                    x = block(x, **kwargs)
 | 
			
		||||
                self.previous_residual_odd = x - ori_x
 | 
			
		||||
    
 | 
			
		||||
    else:
 | 
			
		||||
        for block in self.blocks:
 | 
			
		||||
            x = block(x, **kwargs)
 | 
			
		||||
 | 
			
		||||
    # head
 | 
			
		||||
    x = self.head(x, e)
 | 
			
		||||
 | 
			
		||||
    # unpatchify
 | 
			
		||||
    x = self.unpatchify(x, grid_sizes)
 | 
			
		||||
    self.cnt += 1
 | 
			
		||||
    if self.cnt >= self.num_steps:
 | 
			
		||||
        self.cnt = 0
 | 
			
		||||
    return [u.float() for u in x]
 | 
			
		||||
 | 
			
		||||
def _validate_args(args):
 | 
			
		||||
    # Basic check
 | 
			
		||||
@ -243,6 +785,25 @@ def _parse_args():
 | 
			
		||||
        type=float,
 | 
			
		||||
        default=5.0,
 | 
			
		||||
        help="Classifier free guidance scale.")
 | 
			
		||||
    
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--use_ret_steps",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help=" use ret_steps or not")
 | 
			
		||||
    
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--enable_teacache",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help=" use ret_steps or not")
 | 
			
		||||
    
 | 
			
		||||
    #teacache_thresh
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--teacache_thresh",
 | 
			
		||||
        type=float,
 | 
			
		||||
        default= 0.2,
 | 
			
		||||
        help="tea_cache threshold")
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
@ -367,6 +928,35 @@ def generate(args):
 | 
			
		||||
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
 | 
			
		||||
            t5_cpu=args.t5_cpu,
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        if args.enable_teacache:
 | 
			
		||||
            wan_t2v.__class__.generate = t2v_generate
 | 
			
		||||
            wan_t2v.model.__class__.enable_teacache = True
 | 
			
		||||
            wan_t2v.model.__class__.forward = teacache_forward
 | 
			
		||||
            wan_t2v.model.__class__.cnt = 0
 | 
			
		||||
            wan_t2v.model.__class__.num_steps = args.sample_steps*2
 | 
			
		||||
            wan_t2v.model.__class__.teacache_thresh = args.teacache_thresh
 | 
			
		||||
            wan_t2v.model.__class__.accumulated_rel_l1_distance_even = 0
 | 
			
		||||
            wan_t2v.model.__class__.accumulated_rel_l1_distance_odd = 0
 | 
			
		||||
            wan_t2v.model.__class__.previous_e0_even = None
 | 
			
		||||
            wan_t2v.model.__class__.previous_e0_odd = None
 | 
			
		||||
            wan_t2v.model.__class__.previous_residual_even = None
 | 
			
		||||
            wan_t2v.model.__class__.previous_residual_odd = None
 | 
			
		||||
            wan_t2v.model.__class__.use_ref_steps = args.use_ret_steps
 | 
			
		||||
            if args.use_ret_steps:
 | 
			
		||||
                if '1.3B' in args.ckpt_dir:
 | 
			
		||||
                    wan_t2v.model.__class__.coefficients = [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02]
 | 
			
		||||
                if '14B' in args.ckpt_dir:
 | 
			
		||||
                    wan_t2v.model.__class__.coefficients = [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01]
 | 
			
		||||
                wan_t2v.model.__class__.ret_steps = 5*2
 | 
			
		||||
                wan_t2v.model.__class__.cutoff_steps = args.sample_steps*2
 | 
			
		||||
            else:
 | 
			
		||||
                if '1.3B' in args.ckpt_dir:
 | 
			
		||||
                    wan_t2v.model.__class__.coefficients = [2.39676752e+03, -1.31110545e+03,  2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
 | 
			
		||||
                if '14B' in args.ckpt_dir:
 | 
			
		||||
                    wan_t2v.model.__class__.coefficients = [-5784.54975374,  5449.50911966, -1811.16591783,   256.27178429, -13.02252404]
 | 
			
		||||
                wan_t2v.model.__class__.ret_steps = 1*2
 | 
			
		||||
                wan_t2v.model.__class__.cutoff_steps = args.sample_steps*2 - 2
 | 
			
		||||
 | 
			
		||||
        logging.info(
 | 
			
		||||
            f"Generating {'image' if 't2i' in args.task else 'video'} ...")
 | 
			
		||||
@ -424,7 +1014,36 @@ def generate(args):
 | 
			
		||||
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
 | 
			
		||||
            t5_cpu=args.t5_cpu,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        if args.enable_teacache:
 | 
			
		||||
            wan_i2v.__class__.generate = i2v_generate
 | 
			
		||||
            wan_i2v.model.__class__.enable_teacache = True
 | 
			
		||||
            wan_i2v.model.__class__.forward = teacache_forward
 | 
			
		||||
            wan_i2v.model.__class__.cnt = 0
 | 
			
		||||
            wan_i2v.model.__class__.num_steps = args.sample_steps*2
 | 
			
		||||
            wan_i2v.model.__class__.teacache_thresh = args.teacache_thresh
 | 
			
		||||
            wan_i2v.model.__class__.accumulated_rel_l1_distance_even = 0
 | 
			
		||||
            wan_i2v.model.__class__.accumulated_rel_l1_distance_odd = 0
 | 
			
		||||
            wan_i2v.model.__class__.previous_e0_even = None
 | 
			
		||||
            wan_i2v.model.__class__.previous_e0_odd = None
 | 
			
		||||
            wan_i2v.model.__class__.previous_residual_even = None
 | 
			
		||||
            wan_i2v.model.__class__.previous_residual_odd = None
 | 
			
		||||
            wan_i2v.model.__class__.use_ref_steps = args.use_ret_steps
 | 
			
		||||
            if args.use_ret_steps:
 | 
			
		||||
                if '480P' in args.ckpt_dir:
 | 
			
		||||
                    wan_i2v.model.__class__.coefficients = [ 2.57151496e+05, -3.54229917e+04,  1.40286849e+03, -1.35890334e+01, 1.32517977e-01]
 | 
			
		||||
                if '720P' in args.ckpt_dir:
 | 
			
		||||
                    wan_i2v.model.__class__.coefficients = [ 8.10705460e+03,  2.13393892e+03, -3.72934672e+02,  1.66203073e+01, -4.17769401e-02]
 | 
			
		||||
                wan_i2v.model.__class__.ret_steps = 5*2
 | 
			
		||||
                wan_i2v.model.__class__.cutoff_steps = args.sample_steps*2
 | 
			
		||||
            else:
 | 
			
		||||
                if '480P' in args.ckpt_dir:
 | 
			
		||||
                    wan_i2v.model.__class__.coefficients = [-3.02331670e+02,  2.23948934e+02, -5.25463970e+01,  5.87348440e+00, -2.01973289e-01]
 | 
			
		||||
                if '720P' in args.ckpt_dir:
 | 
			
		||||
                    wan_i2v.model.__class__.coefficients = [-114.36346466,   65.26524496,  -18.82220707,    4.91518089,   -0.23412683]
 | 
			
		||||
                wan_i2v.model.__class__.ret_steps = 1*2
 | 
			
		||||
                wan_i2v.model.__class__.cutoff_steps = args.sample_steps*2 - 2
 | 
			
		||||
        
 | 
			
		||||
        logging.info("Generating video ...")
 | 
			
		||||
        video = wan_i2v.generate(
 | 
			
		||||
            args.prompt,
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user