mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	missing qwen
This commit is contained in:
		
							parent
							
								
									979bc20625
								
							
						
					
					
						commit
						3f20921e7a
					
				
							
								
								
									
										1070
									
								
								models/qwen/autoencoder_kl_qwenimage.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1070
									
								
								models/qwen/autoencoder_kl_qwenimage.py
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										728
									
								
								models/qwen/pipeline_qwenimage.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										728
									
								
								models/qwen/pipeline_qwenimage.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,728 @@
 | 
			
		||||
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
from mmgp import offload
 | 
			
		||||
import inspect
 | 
			
		||||
from typing import Any, Callable, Dict, List, Optional, Union
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch, json
 | 
			
		||||
 | 
			
		||||
from diffusers.image_processor import VaeImageProcessor
 | 
			
		||||
from .transformer_qwenimage import QwenImageTransformer2DModel
 | 
			
		||||
 | 
			
		||||
from diffusers.utils import logging, replace_example_docstring
 | 
			
		||||
from diffusers.utils.torch_utils import randn_tensor
 | 
			
		||||
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, AutoTokenizer
 | 
			
		||||
from .autoencoder_kl_qwenimage import AutoencoderKLQwenImage
 | 
			
		||||
from diffusers import FlowMatchEulerDiscreteScheduler
 | 
			
		||||
 | 
			
		||||
XLA_AVAILABLE = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
 | 
			
		||||
 | 
			
		||||
EXAMPLE_DOC_STRING = """
 | 
			
		||||
    Examples:
 | 
			
		||||
        ```py
 | 
			
		||||
        >>> import torch
 | 
			
		||||
        >>> from diffusers import QwenImagePipeline
 | 
			
		||||
 | 
			
		||||
        >>> pipe = QwenImagePipeline.from_pretrained("Qwen/QwenImage-20B", torch_dtype=torch.bfloat16)
 | 
			
		||||
        >>> pipe.to("cuda")
 | 
			
		||||
        >>> prompt = "A cat holding a sign that says hello world"
 | 
			
		||||
        >>> # Depending on the variant being used, the pipeline call will slightly vary.
 | 
			
		||||
        >>> # Refer to the pipeline documentation for more details.
 | 
			
		||||
        >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
 | 
			
		||||
        >>> image.save("qwenimage.png")
 | 
			
		||||
        ```
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def calculate_shift(
 | 
			
		||||
    image_seq_len,
 | 
			
		||||
    base_seq_len: int = 256,
 | 
			
		||||
    max_seq_len: int = 4096,
 | 
			
		||||
    base_shift: float = 0.5,
 | 
			
		||||
    max_shift: float = 1.15,
 | 
			
		||||
):
 | 
			
		||||
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
 | 
			
		||||
    b = base_shift - m * base_seq_len
 | 
			
		||||
    mu = image_seq_len * m + b
 | 
			
		||||
    return mu
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
 | 
			
		||||
def retrieve_timesteps(
 | 
			
		||||
    scheduler,
 | 
			
		||||
    num_inference_steps: Optional[int] = None,
 | 
			
		||||
    device: Optional[Union[str, torch.device]] = None,
 | 
			
		||||
    timesteps: Optional[List[int]] = None,
 | 
			
		||||
    sigmas: Optional[List[float]] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
 | 
			
		||||
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        scheduler (`SchedulerMixin`):
 | 
			
		||||
            The scheduler to get timesteps from.
 | 
			
		||||
        num_inference_steps (`int`):
 | 
			
		||||
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
 | 
			
		||||
            must be `None`.
 | 
			
		||||
        device (`str` or `torch.device`, *optional*):
 | 
			
		||||
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
 | 
			
		||||
        timesteps (`List[int]`, *optional*):
 | 
			
		||||
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
 | 
			
		||||
            `num_inference_steps` and `sigmas` must be `None`.
 | 
			
		||||
        sigmas (`List[float]`, *optional*):
 | 
			
		||||
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
 | 
			
		||||
            `num_inference_steps` and `timesteps` must be `None`.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
 | 
			
		||||
        second element is the number of inference steps.
 | 
			
		||||
    """
 | 
			
		||||
    if timesteps is not None and sigmas is not None:
 | 
			
		||||
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
 | 
			
		||||
    if timesteps is not None:
 | 
			
		||||
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
 | 
			
		||||
        if not accepts_timesteps:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
			
		||||
                f" timestep schedules. Please check whether you are using the correct scheduler."
 | 
			
		||||
            )
 | 
			
		||||
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
 | 
			
		||||
        timesteps = scheduler.timesteps
 | 
			
		||||
        num_inference_steps = len(timesteps)
 | 
			
		||||
    elif sigmas is not None:
 | 
			
		||||
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
 | 
			
		||||
        if not accept_sigmas:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
			
		||||
                f" sigmas schedules. Please check whether you are using the correct scheduler."
 | 
			
		||||
            )
 | 
			
		||||
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
 | 
			
		||||
        timesteps = scheduler.timesteps
 | 
			
		||||
        num_inference_steps = len(timesteps)
 | 
			
		||||
    else:
 | 
			
		||||
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
 | 
			
		||||
        timesteps = scheduler.timesteps
 | 
			
		||||
    return timesteps, num_inference_steps
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
    r"""
 | 
			
		||||
    The QwenImage pipeline for text-to-image generation.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        transformer ([`QwenImageTransformer2DModel`]):
 | 
			
		||||
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
 | 
			
		||||
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
 | 
			
		||||
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
 | 
			
		||||
        vae ([`AutoencoderKL`]):
 | 
			
		||||
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
 | 
			
		||||
        text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
 | 
			
		||||
            [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
 | 
			
		||||
            [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
 | 
			
		||||
        tokenizer (`QwenTokenizer`):
 | 
			
		||||
            Tokenizer of class
 | 
			
		||||
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    model_cpu_offload_seq = "text_encoder->transformer->vae"
 | 
			
		||||
    _callback_tensor_inputs = ["latents", "prompt_embeds"]
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        vae,
 | 
			
		||||
        text_encoder,
 | 
			
		||||
        tokenizer,
 | 
			
		||||
        transformer,
 | 
			
		||||
        scheduler,
 | 
			
		||||
    ):
 | 
			
		||||
        
 | 
			
		||||
        self.vae=vae
 | 
			
		||||
        self.text_encoder=text_encoder
 | 
			
		||||
        self.tokenizer=tokenizer
 | 
			
		||||
        self.transformer=transformer
 | 
			
		||||
        self.scheduler=scheduler
 | 
			
		||||
 | 
			
		||||
        self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
 | 
			
		||||
        # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
 | 
			
		||||
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
 | 
			
		||||
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
 | 
			
		||||
        self.tokenizer_max_length = 1024
 | 
			
		||||
        self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
 | 
			
		||||
        self.prompt_template_encode_start_idx = 34
 | 
			
		||||
        self.default_sample_size = 128
 | 
			
		||||
 | 
			
		||||
    def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
 | 
			
		||||
        bool_mask = mask.bool()
 | 
			
		||||
        valid_lengths = bool_mask.sum(dim=1)
 | 
			
		||||
        selected = hidden_states[bool_mask]
 | 
			
		||||
        split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
 | 
			
		||||
 | 
			
		||||
        return split_result
 | 
			
		||||
 | 
			
		||||
    def _get_qwen_prompt_embeds(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: Union[str, List[str]] = None,
 | 
			
		||||
        device: Optional[torch.device] = None,
 | 
			
		||||
        dtype: Optional[torch.dtype] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        device = device or self._execution_device
 | 
			
		||||
        dtype = dtype or self.text_encoder.dtype
 | 
			
		||||
 | 
			
		||||
        prompt = [prompt] if isinstance(prompt, str) else prompt
 | 
			
		||||
 | 
			
		||||
        template = self.prompt_template_encode
 | 
			
		||||
        drop_idx = self.prompt_template_encode_start_idx
 | 
			
		||||
        txt = [template.format(e) for e in prompt]
 | 
			
		||||
        txt_tokens = self.tokenizer(
 | 
			
		||||
            txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
 | 
			
		||||
        ).to(device)
 | 
			
		||||
        encoder_hidden_states = self.text_encoder(
 | 
			
		||||
            input_ids=txt_tokens.input_ids,
 | 
			
		||||
            attention_mask=txt_tokens.attention_mask,
 | 
			
		||||
            output_hidden_states=True,
 | 
			
		||||
        )
 | 
			
		||||
        hidden_states = encoder_hidden_states.hidden_states[-1]
 | 
			
		||||
        split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
 | 
			
		||||
        split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
 | 
			
		||||
        attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
 | 
			
		||||
        max_seq_len = max([e.size(0) for e in split_hidden_states])
 | 
			
		||||
        prompt_embeds = torch.stack(
 | 
			
		||||
            [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
 | 
			
		||||
        )
 | 
			
		||||
        encoder_attention_mask = torch.stack(
 | 
			
		||||
            [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
 | 
			
		||||
 | 
			
		||||
        return prompt_embeds, encoder_attention_mask
 | 
			
		||||
 | 
			
		||||
    def encode_prompt(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: Union[str, List[str]],
 | 
			
		||||
        device: Optional[torch.device] = None,
 | 
			
		||||
        num_images_per_prompt: int = 1,
 | 
			
		||||
        prompt_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
        prompt_embeds_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        max_sequence_length: int = 1024,
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            prompt (`str` or `List[str]`, *optional*):
 | 
			
		||||
                prompt to be encoded
 | 
			
		||||
            device: (`torch.device`):
 | 
			
		||||
                torch device
 | 
			
		||||
            num_images_per_prompt (`int`):
 | 
			
		||||
                number of images that should be generated per prompt
 | 
			
		||||
            prompt_embeds (`torch.Tensor`, *optional*):
 | 
			
		||||
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
			
		||||
                provided, text embeddings will be generated from `prompt` input argument.
 | 
			
		||||
        """
 | 
			
		||||
        device = device or self._execution_device
 | 
			
		||||
 | 
			
		||||
        prompt = [prompt] if isinstance(prompt, str) else prompt
 | 
			
		||||
        batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
 | 
			
		||||
 | 
			
		||||
        if prompt_embeds is None:
 | 
			
		||||
            prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
 | 
			
		||||
 | 
			
		||||
        _, seq_len, _ = prompt_embeds.shape
 | 
			
		||||
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
 | 
			
		||||
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
 | 
			
		||||
        prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
 | 
			
		||||
        prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
 | 
			
		||||
 | 
			
		||||
        return prompt_embeds, prompt_embeds_mask
 | 
			
		||||
 | 
			
		||||
    def check_inputs(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt,
 | 
			
		||||
        height,
 | 
			
		||||
        width,
 | 
			
		||||
        negative_prompt=None,
 | 
			
		||||
        prompt_embeds=None,
 | 
			
		||||
        negative_prompt_embeds=None,
 | 
			
		||||
        prompt_embeds_mask=None,
 | 
			
		||||
        negative_prompt_embeds_mask=None,
 | 
			
		||||
        callback_on_step_end_tensor_inputs=None,
 | 
			
		||||
        max_sequence_length=None,
 | 
			
		||||
    ):
 | 
			
		||||
        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
 | 
			
		||||
            logger.warning(
 | 
			
		||||
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if callback_on_step_end_tensor_inputs is not None and not all(
 | 
			
		||||
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
 | 
			
		||||
        ):
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if prompt is not None and prompt_embeds is not None:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
 | 
			
		||||
                " only forward one of the two."
 | 
			
		||||
            )
 | 
			
		||||
        elif prompt is None and prompt_embeds is None:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
 | 
			
		||||
            )
 | 
			
		||||
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
 | 
			
		||||
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
 | 
			
		||||
 | 
			
		||||
        if negative_prompt is not None and negative_prompt_embeds is not None:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
 | 
			
		||||
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if prompt_embeds is not None and prompt_embeds_mask is None:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
 | 
			
		||||
            )
 | 
			
		||||
        if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if max_sequence_length is not None and max_sequence_length > 1024:
 | 
			
		||||
            raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
 | 
			
		||||
        latent_image_ids = torch.zeros(height, width, 3)
 | 
			
		||||
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
 | 
			
		||||
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
 | 
			
		||||
 | 
			
		||||
        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
 | 
			
		||||
 | 
			
		||||
        latent_image_ids = latent_image_ids.reshape(
 | 
			
		||||
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        return latent_image_ids.to(device=device, dtype=dtype)
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
 | 
			
		||||
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
 | 
			
		||||
        latents = latents.permute(0, 2, 4, 1, 3, 5)
 | 
			
		||||
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
 | 
			
		||||
 | 
			
		||||
        return latents
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _unpack_latents(latents, height, width, vae_scale_factor):
 | 
			
		||||
        batch_size, num_patches, channels = latents.shape
 | 
			
		||||
 | 
			
		||||
        # VAE applies 8x compression on images but we must also account for packing which requires
 | 
			
		||||
        # latent height and width to be divisible by 2.
 | 
			
		||||
        height = 2 * (int(height) // (vae_scale_factor * 2))
 | 
			
		||||
        width = 2 * (int(width) // (vae_scale_factor * 2))
 | 
			
		||||
 | 
			
		||||
        latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
 | 
			
		||||
        latents = latents.permute(0, 3, 1, 4, 2, 5)
 | 
			
		||||
 | 
			
		||||
        latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
 | 
			
		||||
 | 
			
		||||
        return latents
 | 
			
		||||
 | 
			
		||||
    def enable_vae_slicing(self):
 | 
			
		||||
        r"""
 | 
			
		||||
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
 | 
			
		||||
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
 | 
			
		||||
        """
 | 
			
		||||
        self.vae.enable_slicing()
 | 
			
		||||
 | 
			
		||||
    def disable_vae_slicing(self):
 | 
			
		||||
        r"""
 | 
			
		||||
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
 | 
			
		||||
        computing decoding in one step.
 | 
			
		||||
        """
 | 
			
		||||
        self.vae.disable_slicing()
 | 
			
		||||
 | 
			
		||||
    def enable_vae_tiling(self):
 | 
			
		||||
        r"""
 | 
			
		||||
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
 | 
			
		||||
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
 | 
			
		||||
        processing larger images.
 | 
			
		||||
        """
 | 
			
		||||
        self.vae.enable_tiling()
 | 
			
		||||
 | 
			
		||||
    def disable_vae_tiling(self):
 | 
			
		||||
        r"""
 | 
			
		||||
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
 | 
			
		||||
        computing decoding in one step.
 | 
			
		||||
        """
 | 
			
		||||
        self.vae.disable_tiling()
 | 
			
		||||
 | 
			
		||||
    def prepare_latents(
 | 
			
		||||
        self,
 | 
			
		||||
        batch_size,
 | 
			
		||||
        num_channels_latents,
 | 
			
		||||
        height,
 | 
			
		||||
        width,
 | 
			
		||||
        dtype,
 | 
			
		||||
        device,
 | 
			
		||||
        generator,
 | 
			
		||||
        latents=None,
 | 
			
		||||
    ):
 | 
			
		||||
        # VAE applies 8x compression on images but we must also account for packing which requires
 | 
			
		||||
        # latent height and width to be divisible by 2.
 | 
			
		||||
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
 | 
			
		||||
        width = 2 * (int(width) // (self.vae_scale_factor * 2))
 | 
			
		||||
 | 
			
		||||
        shape = (batch_size, 1, num_channels_latents, height, width)
 | 
			
		||||
 | 
			
		||||
        if latents is not None:
 | 
			
		||||
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
 | 
			
		||||
            return latents.to(device=device, dtype=dtype), latent_image_ids
 | 
			
		||||
 | 
			
		||||
        if isinstance(generator, list) and len(generator) != batch_size:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
 | 
			
		||||
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
 | 
			
		||||
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
 | 
			
		||||
 | 
			
		||||
        latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
 | 
			
		||||
 | 
			
		||||
        return latents, latent_image_ids
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def guidance_scale(self):
 | 
			
		||||
        return self._guidance_scale
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def attention_kwargs(self):
 | 
			
		||||
        return self._attention_kwargs
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def num_timesteps(self):
 | 
			
		||||
        return self._num_timesteps
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def current_timestep(self):
 | 
			
		||||
        return self._current_timestep
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def interrupt(self):
 | 
			
		||||
        return self._interrupt
 | 
			
		||||
 | 
			
		||||
    @torch.no_grad()
 | 
			
		||||
    @replace_example_docstring(EXAMPLE_DOC_STRING)
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: Union[str, List[str]] = None,
 | 
			
		||||
        negative_prompt: Union[str, List[str]] = None,
 | 
			
		||||
        true_cfg_scale: float = 4.0,
 | 
			
		||||
        height: Optional[int] = None,
 | 
			
		||||
        width: Optional[int] = None,
 | 
			
		||||
        num_inference_steps: int = 50,
 | 
			
		||||
        sigmas: Optional[List[float]] = None,
 | 
			
		||||
        guidance_scale: float = 1.0,
 | 
			
		||||
        num_images_per_prompt: int = 1,
 | 
			
		||||
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
			
		||||
        latents: Optional[torch.Tensor] = None,
 | 
			
		||||
        prompt_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
        prompt_embeds_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        negative_prompt_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
        negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        output_type: Optional[str] = "pil",
 | 
			
		||||
        return_dict: bool = True,
 | 
			
		||||
        attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
			
		||||
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
 | 
			
		||||
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
 | 
			
		||||
        max_sequence_length: int = 512,
 | 
			
		||||
        callback=None,
 | 
			
		||||
        pipeline=None,
 | 
			
		||||
        loras_slists=None,
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
        Function invoked when calling the pipeline for generation.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            prompt (`str` or `List[str]`, *optional*):
 | 
			
		||||
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
 | 
			
		||||
                instead.
 | 
			
		||||
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
			
		||||
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
 | 
			
		||||
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
 | 
			
		||||
                not greater than `1`).
 | 
			
		||||
            true_cfg_scale (`float`, *optional*, defaults to 1.0):
 | 
			
		||||
                When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
 | 
			
		||||
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
 | 
			
		||||
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
 | 
			
		||||
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
 | 
			
		||||
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
 | 
			
		||||
            num_inference_steps (`int`, *optional*, defaults to 50):
 | 
			
		||||
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
 | 
			
		||||
                expense of slower inference.
 | 
			
		||||
            sigmas (`List[float]`, *optional*):
 | 
			
		||||
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
 | 
			
		||||
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
 | 
			
		||||
                will be used.
 | 
			
		||||
            guidance_scale (`float`, *optional*, defaults to 3.5):
 | 
			
		||||
                Guidance scale as defined in [Classifier-Free Diffusion
 | 
			
		||||
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
 | 
			
		||||
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
 | 
			
		||||
                `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
 | 
			
		||||
                the text `prompt`, usually at the expense of lower image quality.
 | 
			
		||||
            num_images_per_prompt (`int`, *optional*, defaults to 1):
 | 
			
		||||
                The number of images to generate per prompt.
 | 
			
		||||
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
 | 
			
		||||
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
 | 
			
		||||
                to make generation deterministic.
 | 
			
		||||
            latents (`torch.Tensor`, *optional*):
 | 
			
		||||
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
 | 
			
		||||
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
 | 
			
		||||
                tensor will be generated by sampling using the supplied random `generator`.
 | 
			
		||||
            prompt_embeds (`torch.Tensor`, *optional*):
 | 
			
		||||
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
			
		||||
                provided, text embeddings will be generated from `prompt` input argument.
 | 
			
		||||
            negative_prompt_embeds (`torch.Tensor`, *optional*):
 | 
			
		||||
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
 | 
			
		||||
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
 | 
			
		||||
                argument.
 | 
			
		||||
            output_type (`str`, *optional*, defaults to `"pil"`):
 | 
			
		||||
                The output format of the generate image. Choose between
 | 
			
		||||
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
 | 
			
		||||
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
			
		||||
                Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
 | 
			
		||||
            attention_kwargs (`dict`, *optional*):
 | 
			
		||||
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
 | 
			
		||||
                `self.processor` in
 | 
			
		||||
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
 | 
			
		||||
            callback_on_step_end (`Callable`, *optional*):
 | 
			
		||||
                A function that calls at the end of each denoising steps during the inference. The function is called
 | 
			
		||||
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
 | 
			
		||||
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
 | 
			
		||||
                `callback_on_step_end_tensor_inputs`.
 | 
			
		||||
            callback_on_step_end_tensor_inputs (`List`, *optional*):
 | 
			
		||||
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
 | 
			
		||||
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
 | 
			
		||||
                `._callback_tensor_inputs` attribute of your pipeline class.
 | 
			
		||||
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
 | 
			
		||||
 | 
			
		||||
        Examples:
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
 | 
			
		||||
            [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
 | 
			
		||||
            returning a tuple, the first element is a list with the generated images.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        kwargs = {'pipeline': pipeline, 'callback': callback}
 | 
			
		||||
        if callback != None:
 | 
			
		||||
            callback(-1, None, True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        height = height or self.default_sample_size * self.vae_scale_factor
 | 
			
		||||
        width = width or self.default_sample_size * self.vae_scale_factor
 | 
			
		||||
 | 
			
		||||
        # 1. Check inputs. Raise error if not correct
 | 
			
		||||
        self.check_inputs(
 | 
			
		||||
            prompt,
 | 
			
		||||
            height,
 | 
			
		||||
            width,
 | 
			
		||||
            negative_prompt=negative_prompt,
 | 
			
		||||
            prompt_embeds=prompt_embeds,
 | 
			
		||||
            negative_prompt_embeds=negative_prompt_embeds,
 | 
			
		||||
            prompt_embeds_mask=prompt_embeds_mask,
 | 
			
		||||
            negative_prompt_embeds_mask=negative_prompt_embeds_mask,
 | 
			
		||||
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
 | 
			
		||||
            max_sequence_length=max_sequence_length,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self._guidance_scale = guidance_scale
 | 
			
		||||
        self._attention_kwargs = attention_kwargs
 | 
			
		||||
        self._current_timestep = None
 | 
			
		||||
        self._interrupt = False
 | 
			
		||||
 | 
			
		||||
        # 2. Define call parameters
 | 
			
		||||
        if prompt is not None and isinstance(prompt, str):
 | 
			
		||||
            batch_size = 1
 | 
			
		||||
        elif prompt is not None and isinstance(prompt, list):
 | 
			
		||||
            batch_size = len(prompt)
 | 
			
		||||
        else:
 | 
			
		||||
            batch_size = prompt_embeds.shape[0]
 | 
			
		||||
        device = "cuda"
 | 
			
		||||
        # device = self._execution_device
 | 
			
		||||
 | 
			
		||||
        has_neg_prompt = negative_prompt is not None or (
 | 
			
		||||
            negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
 | 
			
		||||
        )
 | 
			
		||||
        do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
 | 
			
		||||
        prompt_embeds, prompt_embeds_mask = self.encode_prompt(
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            prompt_embeds=prompt_embeds,
 | 
			
		||||
            prompt_embeds_mask=prompt_embeds_mask,
 | 
			
		||||
            device=device,
 | 
			
		||||
            num_images_per_prompt=num_images_per_prompt,
 | 
			
		||||
            max_sequence_length=max_sequence_length,
 | 
			
		||||
        )
 | 
			
		||||
        if do_true_cfg:
 | 
			
		||||
            negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
 | 
			
		||||
                prompt=negative_prompt,
 | 
			
		||||
                prompt_embeds=negative_prompt_embeds,
 | 
			
		||||
                prompt_embeds_mask=negative_prompt_embeds_mask,
 | 
			
		||||
                device=device,
 | 
			
		||||
                num_images_per_prompt=num_images_per_prompt,
 | 
			
		||||
                max_sequence_length=max_sequence_length,
 | 
			
		||||
            )
 | 
			
		||||
        dtype = torch.bfloat16
 | 
			
		||||
        prompt_embeds = prompt_embeds.to(dtype)        
 | 
			
		||||
        if do_true_cfg:
 | 
			
		||||
            negative_prompt_embeds = negative_prompt_embeds.to(dtype)        
 | 
			
		||||
 | 
			
		||||
        # 4. Prepare latent variables
 | 
			
		||||
        num_channels_latents = self.transformer.in_channels // 4
 | 
			
		||||
        latents, latent_image_ids = self.prepare_latents(
 | 
			
		||||
            batch_size * num_images_per_prompt,
 | 
			
		||||
            num_channels_latents,
 | 
			
		||||
            height,
 | 
			
		||||
            width,
 | 
			
		||||
            prompt_embeds.dtype,
 | 
			
		||||
            device,
 | 
			
		||||
            generator,
 | 
			
		||||
            latents,
 | 
			
		||||
        )
 | 
			
		||||
        img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
 | 
			
		||||
 | 
			
		||||
        # 5. Prepare timesteps
 | 
			
		||||
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
 | 
			
		||||
        image_seq_len = latents.shape[1]
 | 
			
		||||
        mu = calculate_shift(
 | 
			
		||||
            image_seq_len,
 | 
			
		||||
            self.scheduler.config.get("base_image_seq_len", 256),
 | 
			
		||||
            self.scheduler.config.get("max_image_seq_len", 4096),
 | 
			
		||||
            self.scheduler.config.get("base_shift", 0.5),
 | 
			
		||||
            self.scheduler.config.get("max_shift", 1.15),
 | 
			
		||||
        )
 | 
			
		||||
        timesteps, num_inference_steps = retrieve_timesteps(
 | 
			
		||||
            self.scheduler,
 | 
			
		||||
            num_inference_steps,
 | 
			
		||||
            device,
 | 
			
		||||
            sigmas=sigmas,
 | 
			
		||||
            mu=mu,
 | 
			
		||||
        )
 | 
			
		||||
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
 | 
			
		||||
        self._num_timesteps = len(timesteps)
 | 
			
		||||
 | 
			
		||||
        # handle guidance
 | 
			
		||||
        if self.transformer.guidance_embeds:
 | 
			
		||||
            guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
 | 
			
		||||
            guidance = guidance.expand(latents.shape[0])
 | 
			
		||||
        else:
 | 
			
		||||
            guidance = None
 | 
			
		||||
 | 
			
		||||
        if self.attention_kwargs is None:
 | 
			
		||||
            self._attention_kwargs = {}
 | 
			
		||||
 | 
			
		||||
        # 6. Denoising loop
 | 
			
		||||
        self.scheduler.set_begin_index(0)
 | 
			
		||||
        updated_num_steps= len(timesteps)
 | 
			
		||||
        if callback != None:
 | 
			
		||||
            from shared.utils.loras_mutipliers import update_loras_slists
 | 
			
		||||
            update_loras_slists(self.transformer, loras_slists, updated_num_steps)
 | 
			
		||||
            callback(-1, None, True, override_num_inference_steps = updated_num_steps)
 | 
			
		||||
 | 
			
		||||
        for i, t in enumerate(timesteps):
 | 
			
		||||
            if self.interrupt:
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            self._current_timestep = t
 | 
			
		||||
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
 | 
			
		||||
            timestep = t.expand(latents.shape[0]).to(latents.dtype)
 | 
			
		||||
 | 
			
		||||
            noise_pred = self.transformer(
 | 
			
		||||
                hidden_states=latents,
 | 
			
		||||
                timestep=timestep / 1000,
 | 
			
		||||
                guidance=guidance,
 | 
			
		||||
                encoder_hidden_states_mask=prompt_embeds_mask,
 | 
			
		||||
                encoder_hidden_states=prompt_embeds,
 | 
			
		||||
                img_shapes=img_shapes,
 | 
			
		||||
                txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
 | 
			
		||||
                attention_kwargs=self.attention_kwargs,
 | 
			
		||||
                return_dict=False,
 | 
			
		||||
                **kwargs
 | 
			
		||||
            )[0]
 | 
			
		||||
            if noise_pred == None: return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            if do_true_cfg:
 | 
			
		||||
                # with self.transformer.cache_context("uncond"):
 | 
			
		||||
                neg_noise_pred = self.transformer(
 | 
			
		||||
                    hidden_states=latents,
 | 
			
		||||
                    timestep=timestep / 1000,
 | 
			
		||||
                    guidance=guidance,
 | 
			
		||||
                    encoder_hidden_states_mask=negative_prompt_embeds_mask,
 | 
			
		||||
                    encoder_hidden_states=negative_prompt_embeds,
 | 
			
		||||
                    img_shapes=img_shapes,
 | 
			
		||||
                    txt_seq_lens=negative_prompt_embeds_mask.sum(dim=1).tolist(),
 | 
			
		||||
                    attention_kwargs=self.attention_kwargs,
 | 
			
		||||
                    return_dict=False,
 | 
			
		||||
                    **kwargs
 | 
			
		||||
                )[0]
 | 
			
		||||
                if neg_noise_pred == None: return None
 | 
			
		||||
                comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
 | 
			
		||||
                if comb_pred == None: return None
 | 
			
		||||
 | 
			
		||||
                cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
 | 
			
		||||
                noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
 | 
			
		||||
                noise_pred = comb_pred * (cond_norm / noise_norm)
 | 
			
		||||
 | 
			
		||||
            # compute the previous noisy sample x_t -> x_t-1
 | 
			
		||||
            latents_dtype = latents.dtype
 | 
			
		||||
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
 | 
			
		||||
 | 
			
		||||
            if latents.dtype != latents_dtype:
 | 
			
		||||
                if torch.backends.mps.is_available():
 | 
			
		||||
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
 | 
			
		||||
                    latents = latents.to(latents_dtype)
 | 
			
		||||
 | 
			
		||||
            if callback is not None:
 | 
			
		||||
                # preview = unpack_latent(img).transpose(0,1)
 | 
			
		||||
                callback(i, None, False)         
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        self._current_timestep = None
 | 
			
		||||
        if output_type == "latent":
 | 
			
		||||
            image = latents
 | 
			
		||||
        else:
 | 
			
		||||
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
 | 
			
		||||
            latents = latents.to(self.vae.dtype)
 | 
			
		||||
            latents_mean = (
 | 
			
		||||
                torch.tensor(self.vae.config.latents_mean)
 | 
			
		||||
                .view(1, self.vae.config.z_dim, 1, 1, 1)
 | 
			
		||||
                .to(latents.device, latents.dtype)
 | 
			
		||||
            )
 | 
			
		||||
            latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
 | 
			
		||||
                latents.device, latents.dtype
 | 
			
		||||
            )
 | 
			
		||||
            latents = latents / latents_std + latents_mean
 | 
			
		||||
            image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        return image
 | 
			
		||||
							
								
								
									
										78
									
								
								models/qwen/qwen_handler.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								models/qwen/qwen_handler.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,78 @@
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
def get_qwen_text_encoder_filename(text_encoder_quantization):
 | 
			
		||||
    text_encoder_filename = "ckpts/Qwen2.5-VL-7B-Instruct/Qwen2.5-VL-7B-Instruct_bf16.safetensors"
 | 
			
		||||
    if text_encoder_quantization =="int8" and False:
 | 
			
		||||
        text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_bf16_int8") 
 | 
			
		||||
    return text_encoder_filename
 | 
			
		||||
 | 
			
		||||
class family_handler():
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_model_def(base_model_type, model_def):
 | 
			
		||||
        model_def_output = {
 | 
			
		||||
            "image_outputs" : True,
 | 
			
		||||
            "no_negative_prompt" : True,
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        model_def_output["embedded_guidance"] = True
 | 
			
		||||
 | 
			
		||||
        return model_def_output
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_supported_types():
 | 
			
		||||
        return ["qwen_image_20B"]
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_family_maps():
 | 
			
		||||
        return {}, {}
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_model_family():
 | 
			
		||||
        return "qwen"
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_family_infos():
 | 
			
		||||
        return {"qwen":(40, "Qwen")}
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
 | 
			
		||||
        text_encoder_filename = get_qwen_text_encoder_filename(text_encoder_quantization)    
 | 
			
		||||
        return  {  
 | 
			
		||||
            "repoId" : "DeepBeepMeep/Qwen_image", 
 | 
			
		||||
            "sourceFolderList" :  ["", "Qwen2.5-VL-7B-Instruct"],
 | 
			
		||||
            "fileList" : [ ["qwen_vae.safetensors", "qwen_vae_config.json", "qwen_scheduler_config.json"], ["merges.txt", "tokenizer_config.json", "config.json", "vocab.json"] + computeList(text_encoder_filename)  ]
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized = False):
 | 
			
		||||
        from .qwen_main import model_factory
 | 
			
		||||
        from mmgp import offload
 | 
			
		||||
 | 
			
		||||
        pipe_processor = model_factory(
 | 
			
		||||
            checkpoint_dir="ckpts",
 | 
			
		||||
            model_filename=model_filename,
 | 
			
		||||
            model_type = model_type, 
 | 
			
		||||
            model_def = model_def,
 | 
			
		||||
            base_model_type=base_model_type,
 | 
			
		||||
            text_encoder_filename= get_qwen_text_encoder_filename(text_encoder_quantization),
 | 
			
		||||
            quantizeTransformer = quantizeTransformer,
 | 
			
		||||
            dtype = dtype,
 | 
			
		||||
            VAE_dtype = VAE_dtype, 
 | 
			
		||||
            mixed_precision_transformer = mixed_precision_transformer,
 | 
			
		||||
            save_quantized = save_quantized
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        pipe = {"tokenizer" : pipe_processor.tokenizer, "transformer" : pipe_processor.transformer, "text_encoder" : pipe_processor.text_encoder, "vae" : pipe_processor.vae}
 | 
			
		||||
 | 
			
		||||
        return pipe_processor, pipe
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def update_default_settings(base_model_type, model_def, ui_defaults):
 | 
			
		||||
        ui_defaults.update({
 | 
			
		||||
            "embedded_guidance":  4,
 | 
			
		||||
        })            
 | 
			
		||||
        if model_def.get("reference_image", False):
 | 
			
		||||
            ui_defaults.update({
 | 
			
		||||
                "video_prompt_type": "KI",
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										113
									
								
								models/qwen/qwen_main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										113
									
								
								models/qwen/qwen_main.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,113 @@
 | 
			
		||||
 | 
			
		||||
from mmgp import offload
 | 
			
		||||
import inspect
 | 
			
		||||
from typing import Any, Callable, Dict, List, Optional, Union
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch, json, os
 | 
			
		||||
 | 
			
		||||
from diffusers.image_processor import VaeImageProcessor
 | 
			
		||||
from .transformer_qwenimage import QwenImageTransformer2DModel
 | 
			
		||||
 | 
			
		||||
from diffusers.utils import logging, replace_example_docstring
 | 
			
		||||
from diffusers.utils.torch_utils import randn_tensor
 | 
			
		||||
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, AutoTokenizer
 | 
			
		||||
from .autoencoder_kl_qwenimage import AutoencoderKLQwenImage
 | 
			
		||||
from diffusers import FlowMatchEulerDiscreteScheduler
 | 
			
		||||
from .pipeline_qwenimage import QwenImagePipeline
 | 
			
		||||
 | 
			
		||||
class model_factory():
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        checkpoint_dir,
 | 
			
		||||
        model_filename = None,
 | 
			
		||||
        model_type = None, 
 | 
			
		||||
        model_def = None,
 | 
			
		||||
        base_model_type = None,
 | 
			
		||||
        text_encoder_filename = None,
 | 
			
		||||
        quantizeTransformer = False,
 | 
			
		||||
        save_quantized = False,
 | 
			
		||||
        dtype = torch.bfloat16,
 | 
			
		||||
        VAE_dtype = torch.float32,
 | 
			
		||||
        mixed_precision_transformer = False
 | 
			
		||||
    ):
 | 
			
		||||
        
 | 
			
		||||
        with open( os.path.join(checkpoint_dir, "qwen_scheduler_config.json"), 'r', encoding='utf-8') as f:
 | 
			
		||||
            scheduler_config = json.load(f)
 | 
			
		||||
        scheduler_config.pop("_class_name")
 | 
			
		||||
        scheduler_config.pop("_diffusers_version")
 | 
			
		||||
 | 
			
		||||
        scheduler = FlowMatchEulerDiscreteScheduler(**scheduler_config)
 | 
			
		||||
 | 
			
		||||
        transformer_filename = model_filename[0]
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(checkpoint_dir,"Qwen2.5-VL-7B-Instruct")) 
 | 
			
		||||
 | 
			
		||||
        with open("configs/qwen_image_20B.json", 'r', encoding='utf-8') as f:
 | 
			
		||||
            transformer_config = json.load(f)
 | 
			
		||||
        transformer_config.pop("_diffusers_version")
 | 
			
		||||
        transformer_config.pop("_class_name")
 | 
			
		||||
        transformer_config.pop("pooled_projection_dim")
 | 
			
		||||
        
 | 
			
		||||
        from accelerate import init_empty_weights
 | 
			
		||||
        with init_empty_weights():
 | 
			
		||||
            transformer = QwenImageTransformer2DModel(**transformer_config)
 | 
			
		||||
        offload.load_model_data(transformer, transformer_filename)
 | 
			
		||||
        # transformer = offload.fast_load_transformers_model("transformer_quanto.safetensors", writable_tensors= True , modelClass=QwenImageTransformer2DModel, defaultConfigPath="transformer_config.json")
 | 
			
		||||
 | 
			
		||||
        text_encoder = offload.fast_load_transformers_model(text_encoder_filename,  writable_tensors= True , modelClass=Qwen2_5_VLForConditionalGeneration,  defaultConfigPath= os.path.join(checkpoint_dir, "Qwen2.5-VL-7B-Instruct", "config.json"))
 | 
			
		||||
        # text_encoder = offload.fast_load_transformers_model(text_encoder_filename, do_quantize=True,  writable_tensors= True , modelClass=Qwen2_5_VLForConditionalGeneration, defaultConfigPath="text_encoder_config.json", verboseLevel=2)
 | 
			
		||||
        # text_encoder.to(torch.float16)
 | 
			
		||||
        # offload.save_model(text_encoder, "text_encoder_quanto_fp16.safetensors", do_quantize= True)
 | 
			
		||||
 | 
			
		||||
        vae = offload.fast_load_transformers_model( os.path.join(checkpoint_dir,"qwen_vae.safetensors"), writable_tensors= True , modelClass=AutoencoderKLQwenImage, defaultConfigPath=os.path.join(checkpoint_dir,"qwen_vae_config.json"))
 | 
			
		||||
        
 | 
			
		||||
        self.pipeline = QwenImagePipeline(vae, text_encoder, tokenizer, transformer, scheduler)
 | 
			
		||||
        self.vae=vae
 | 
			
		||||
        self.text_encoder=text_encoder
 | 
			
		||||
        self.tokenizer=tokenizer
 | 
			
		||||
        self.transformer=transformer
 | 
			
		||||
        self.scheduler=scheduler
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def generate(
 | 
			
		||||
        self,
 | 
			
		||||
        seed: int | None = None,
 | 
			
		||||
        input_prompt: str = "replace the logo with the text 'Black Forest Labs'",
 | 
			
		||||
        sampling_steps: int = 20,
 | 
			
		||||
        input_ref_images = None,
 | 
			
		||||
        width= 832,
 | 
			
		||||
        height=480,
 | 
			
		||||
        embedded_guidance_scale: float = 4,
 | 
			
		||||
        fit_into_canvas = None,
 | 
			
		||||
        callback = None,
 | 
			
		||||
        loras_slists = None,
 | 
			
		||||
        batch_size = 1,
 | 
			
		||||
        video_prompt_type = "",
 | 
			
		||||
        **bbargs
 | 
			
		||||
    ):
 | 
			
		||||
        # Generate with different aspect ratios
 | 
			
		||||
        aspect_ratios = {
 | 
			
		||||
        "1:1": (1328, 1328),
 | 
			
		||||
        "16:9": (1664, 928),
 | 
			
		||||
        "9:16": (928, 1664),
 | 
			
		||||
        "4:3": (1472, 1140),
 | 
			
		||||
        "3:4": (1140, 1472)
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        # width, height = aspect_ratios["16:9"]
 | 
			
		||||
 | 
			
		||||
        image = self.pipeline(
 | 
			
		||||
        prompt=input_prompt,
 | 
			
		||||
        width=width,
 | 
			
		||||
        height=height,
 | 
			
		||||
        num_inference_steps=sampling_steps,
 | 
			
		||||
        num_images_per_prompt = batch_size,
 | 
			
		||||
        true_cfg_scale=embedded_guidance_scale,
 | 
			
		||||
        callback = callback,
 | 
			
		||||
        pipeline=self,
 | 
			
		||||
        loras_slists=loras_slists,
 | 
			
		||||
        generator=torch.Generator(device="cuda").manual_seed(seed)
 | 
			
		||||
        )        
 | 
			
		||||
        if image is None: return None
 | 
			
		||||
        return image.transpose(0, 1)
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										594
									
								
								models/qwen/transformer_qwenimage.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										594
									
								
								models/qwen/transformer_qwenimage.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,594 @@
 | 
			
		||||
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import Any, Dict, List, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
 | 
			
		||||
from diffusers.models.attention import FeedForward
 | 
			
		||||
from diffusers.models.attention_processor import Attention
 | 
			
		||||
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
 | 
			
		||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
 | 
			
		||||
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
 | 
			
		||||
from shared.attention import pay_attention
 | 
			
		||||
 | 
			
		||||
def get_timestep_embedding(
 | 
			
		||||
    timesteps: torch.Tensor,
 | 
			
		||||
    embedding_dim: int,
 | 
			
		||||
    flip_sin_to_cos: bool = False,
 | 
			
		||||
    downscale_freq_shift: float = 1,
 | 
			
		||||
    scale: float = 1,
 | 
			
		||||
    max_period: int = 10000,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
 | 
			
		||||
 | 
			
		||||
    Args
 | 
			
		||||
        timesteps (torch.Tensor):
 | 
			
		||||
            a 1-D Tensor of N indices, one per batch element. These may be fractional.
 | 
			
		||||
        embedding_dim (int):
 | 
			
		||||
            the dimension of the output.
 | 
			
		||||
        flip_sin_to_cos (bool):
 | 
			
		||||
            Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
 | 
			
		||||
        downscale_freq_shift (float):
 | 
			
		||||
            Controls the delta between frequencies between dimensions
 | 
			
		||||
        scale (float):
 | 
			
		||||
            Scaling factor applied to the embeddings.
 | 
			
		||||
        max_period (int):
 | 
			
		||||
            Controls the maximum frequency of the embeddings
 | 
			
		||||
    Returns
 | 
			
		||||
        torch.Tensor: an [N x dim] Tensor of positional embeddings.
 | 
			
		||||
    """
 | 
			
		||||
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
 | 
			
		||||
 | 
			
		||||
    half_dim = embedding_dim // 2
 | 
			
		||||
    exponent = -math.log(max_period) * torch.arange(
 | 
			
		||||
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
 | 
			
		||||
    )
 | 
			
		||||
    exponent = exponent / (half_dim - downscale_freq_shift)
 | 
			
		||||
 | 
			
		||||
    emb = torch.exp(exponent).to(timesteps.dtype)
 | 
			
		||||
    emb = timesteps[:, None].float() * emb[None, :]
 | 
			
		||||
 | 
			
		||||
    # scale embeddings
 | 
			
		||||
    emb = scale * emb
 | 
			
		||||
 | 
			
		||||
    # concat sine and cosine embeddings
 | 
			
		||||
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
 | 
			
		||||
 | 
			
		||||
    # flip sine and cosine embeddings
 | 
			
		||||
    if flip_sin_to_cos:
 | 
			
		||||
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
 | 
			
		||||
 | 
			
		||||
    # zero pad
 | 
			
		||||
    if embedding_dim % 2 == 1:
 | 
			
		||||
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
 | 
			
		||||
    return emb
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_emb_qwen(
 | 
			
		||||
    x: torch.Tensor,
 | 
			
		||||
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
 | 
			
		||||
    use_real: bool = True,
 | 
			
		||||
    use_real_unbind_dim: int = -1,
 | 
			
		||||
) -> Tuple[torch.Tensor, torch.Tensor]:
 | 
			
		||||
    """
 | 
			
		||||
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
 | 
			
		||||
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
 | 
			
		||||
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
 | 
			
		||||
    tensors contain rotary embeddings and are returned as real tensors.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        x (`torch.Tensor`):
 | 
			
		||||
            Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
 | 
			
		||||
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
 | 
			
		||||
    """
 | 
			
		||||
    if use_real:
 | 
			
		||||
        cos, sin = freqs_cis  # [S, D]
 | 
			
		||||
        cos = cos[None, None]
 | 
			
		||||
        sin = sin[None, None]
 | 
			
		||||
        cos, sin = cos.to(x.device), sin.to(x.device)
 | 
			
		||||
 | 
			
		||||
        if use_real_unbind_dim == -1:
 | 
			
		||||
            # Used for flux, cogvideox, hunyuan-dit
 | 
			
		||||
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
 | 
			
		||||
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
 | 
			
		||||
        elif use_real_unbind_dim == -2:
 | 
			
		||||
            # Used for Stable Audio, OmniGen, CogView4 and Cosmos
 | 
			
		||||
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, S, H, D//2]
 | 
			
		||||
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
 | 
			
		||||
 | 
			
		||||
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
 | 
			
		||||
 | 
			
		||||
        return out
 | 
			
		||||
    else:
 | 
			
		||||
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
 | 
			
		||||
        freqs_cis = freqs_cis.unsqueeze(1)
 | 
			
		||||
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
 | 
			
		||||
 | 
			
		||||
        return x_out.type_as(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QwenTimestepProjEmbeddings(nn.Module):
 | 
			
		||||
    def __init__(self, embedding_dim):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
 | 
			
		||||
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
 | 
			
		||||
 | 
			
		||||
    def forward(self, timestep, hidden_states):
 | 
			
		||||
        timesteps_proj = self.time_proj(timestep)
 | 
			
		||||
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))  # (N, D)
 | 
			
		||||
 | 
			
		||||
        conditioning = timesteps_emb
 | 
			
		||||
 | 
			
		||||
        return conditioning
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QwenEmbedRope(nn.Module):
 | 
			
		||||
    def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.theta = theta
 | 
			
		||||
        self.axes_dim = axes_dim
 | 
			
		||||
        pos_index = torch.arange(1024)
 | 
			
		||||
        neg_index = torch.arange(1024).flip(0) * -1 - 1
 | 
			
		||||
        self.pos_freqs = torch.cat(
 | 
			
		||||
            [
 | 
			
		||||
                self.rope_params(pos_index, self.axes_dim[0], self.theta),
 | 
			
		||||
                self.rope_params(pos_index, self.axes_dim[1], self.theta),
 | 
			
		||||
                self.rope_params(pos_index, self.axes_dim[2], self.theta),
 | 
			
		||||
            ],
 | 
			
		||||
            dim=1,
 | 
			
		||||
        )
 | 
			
		||||
        self.neg_freqs = torch.cat(
 | 
			
		||||
            [
 | 
			
		||||
                self.rope_params(neg_index, self.axes_dim[0], self.theta),
 | 
			
		||||
                self.rope_params(neg_index, self.axes_dim[1], self.theta),
 | 
			
		||||
                self.rope_params(neg_index, self.axes_dim[2], self.theta),
 | 
			
		||||
            ],
 | 
			
		||||
            dim=1,
 | 
			
		||||
        )
 | 
			
		||||
        self.rope_cache = {}
 | 
			
		||||
 | 
			
		||||
        # 是否使用 scale rope
 | 
			
		||||
        self.scale_rope = scale_rope
 | 
			
		||||
 | 
			
		||||
    def rope_params(self, index, dim, theta=10000):
 | 
			
		||||
        """
 | 
			
		||||
        Args:
 | 
			
		||||
            index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
 | 
			
		||||
        """
 | 
			
		||||
        assert dim % 2 == 0
 | 
			
		||||
        freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
 | 
			
		||||
        freqs = torch.polar(torch.ones_like(freqs), freqs)
 | 
			
		||||
        return freqs
 | 
			
		||||
 | 
			
		||||
    def forward(self, video_fhw, txt_seq_lens, device):
 | 
			
		||||
        """
 | 
			
		||||
        Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
 | 
			
		||||
        txt_length: [bs] a list of 1 integers representing the length of the text
 | 
			
		||||
        """
 | 
			
		||||
        if self.pos_freqs.device != device:
 | 
			
		||||
            self.pos_freqs = self.pos_freqs.to(device)
 | 
			
		||||
            self.neg_freqs = self.neg_freqs.to(device)
 | 
			
		||||
 | 
			
		||||
        if isinstance(video_fhw, list):
 | 
			
		||||
            video_fhw = video_fhw[0]
 | 
			
		||||
        frame, height, width = video_fhw
 | 
			
		||||
        rope_key = f"{frame}_{height}_{width}"
 | 
			
		||||
 | 
			
		||||
        if rope_key not in self.rope_cache:
 | 
			
		||||
            seq_lens = frame * height * width
 | 
			
		||||
            freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
 | 
			
		||||
            freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
 | 
			
		||||
            freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
 | 
			
		||||
            if self.scale_rope:
 | 
			
		||||
                freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
 | 
			
		||||
                freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
 | 
			
		||||
                freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
 | 
			
		||||
                freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
 | 
			
		||||
 | 
			
		||||
            else:
 | 
			
		||||
                freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
 | 
			
		||||
                freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
 | 
			
		||||
 | 
			
		||||
            freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
 | 
			
		||||
            self.rope_cache[rope_key] = freqs.clone().contiguous()
 | 
			
		||||
        vid_freqs = self.rope_cache[rope_key]
 | 
			
		||||
 | 
			
		||||
        if self.scale_rope:
 | 
			
		||||
            max_vid_index = max(height // 2, width // 2)
 | 
			
		||||
        else:
 | 
			
		||||
            max_vid_index = max(height, width)
 | 
			
		||||
 | 
			
		||||
        max_len = max(txt_seq_lens)
 | 
			
		||||
        txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
 | 
			
		||||
 | 
			
		||||
        return vid_freqs, txt_freqs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QwenDoubleStreamAttnProcessor2_0:
 | 
			
		||||
    """
 | 
			
		||||
    Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
 | 
			
		||||
    implements joint attention computation where text and image streams are processed together.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    _attention_backend = None
 | 
			
		||||
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        if not hasattr(F, "scaled_dot_product_attention"):
 | 
			
		||||
            raise ImportError(
 | 
			
		||||
                "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        attn: Attention,
 | 
			
		||||
        hidden_states: torch.FloatTensor,  # Image stream
 | 
			
		||||
        encoder_hidden_states: torch.FloatTensor = None,  # Text stream
 | 
			
		||||
        encoder_hidden_states_mask: torch.FloatTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        image_rotary_emb: Optional[torch.Tensor] = None,
 | 
			
		||||
    ) -> torch.FloatTensor:
 | 
			
		||||
        if encoder_hidden_states is None:
 | 
			
		||||
            raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
 | 
			
		||||
 | 
			
		||||
        seq_txt = encoder_hidden_states.shape[1]
 | 
			
		||||
 | 
			
		||||
        # Compute QKV for image stream (sample projections)
 | 
			
		||||
        img_query = attn.to_q(hidden_states)
 | 
			
		||||
        img_key = attn.to_k(hidden_states)
 | 
			
		||||
        img_value = attn.to_v(hidden_states)
 | 
			
		||||
 | 
			
		||||
        # Compute QKV for text stream (context projections)
 | 
			
		||||
        txt_query = attn.add_q_proj(encoder_hidden_states)
 | 
			
		||||
        txt_key = attn.add_k_proj(encoder_hidden_states)
 | 
			
		||||
        txt_value = attn.add_v_proj(encoder_hidden_states)
 | 
			
		||||
 | 
			
		||||
        # Reshape for multi-head attention
 | 
			
		||||
        img_query = img_query.unflatten(-1, (attn.heads, -1))
 | 
			
		||||
        img_key = img_key.unflatten(-1, (attn.heads, -1))
 | 
			
		||||
        img_value = img_value.unflatten(-1, (attn.heads, -1))
 | 
			
		||||
 | 
			
		||||
        txt_query = txt_query.unflatten(-1, (attn.heads, -1))
 | 
			
		||||
        txt_key = txt_key.unflatten(-1, (attn.heads, -1))
 | 
			
		||||
        txt_value = txt_value.unflatten(-1, (attn.heads, -1))
 | 
			
		||||
 | 
			
		||||
        # Apply QK normalization
 | 
			
		||||
        if attn.norm_q is not None:
 | 
			
		||||
            img_query = attn.norm_q(img_query)
 | 
			
		||||
        if attn.norm_k is not None:
 | 
			
		||||
            img_key = attn.norm_k(img_key)
 | 
			
		||||
        if attn.norm_added_q is not None:
 | 
			
		||||
            txt_query = attn.norm_added_q(txt_query)
 | 
			
		||||
        if attn.norm_added_k is not None:
 | 
			
		||||
            txt_key = attn.norm_added_k(txt_key)
 | 
			
		||||
 | 
			
		||||
        # Apply RoPE
 | 
			
		||||
        if image_rotary_emb is not None:
 | 
			
		||||
            img_freqs, txt_freqs = image_rotary_emb
 | 
			
		||||
            img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
 | 
			
		||||
            img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
 | 
			
		||||
            txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
 | 
			
		||||
            txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
 | 
			
		||||
 | 
			
		||||
        # Concatenate for joint attention
 | 
			
		||||
        # Order: [text, image]
 | 
			
		||||
        joint_query = torch.cat([txt_query, img_query], dim=1)
 | 
			
		||||
        joint_key = torch.cat([txt_key, img_key], dim=1)
 | 
			
		||||
        joint_value = torch.cat([txt_value, img_value], dim=1)
 | 
			
		||||
 | 
			
		||||
        # Compute joint attention
 | 
			
		||||
        dtype = joint_query.dtype
 | 
			
		||||
        qkv_list = [joint_query, joint_key, joint_value ]
 | 
			
		||||
        joint_query = joint_key = joint_value = None
 | 
			
		||||
        joint_hidden_states = pay_attention(qkv_list)
 | 
			
		||||
 | 
			
		||||
        # Reshape back
 | 
			
		||||
        joint_hidden_states = joint_hidden_states.flatten(2, 3)
 | 
			
		||||
        joint_hidden_states = joint_hidden_states.to(dtype)
 | 
			
		||||
 | 
			
		||||
        # Split attention outputs back
 | 
			
		||||
        txt_attn_output = joint_hidden_states[:, :seq_txt, :]  # Text part
 | 
			
		||||
        img_attn_output = joint_hidden_states[:, seq_txt:, :]  # Image part
 | 
			
		||||
 | 
			
		||||
        # Apply output projections
 | 
			
		||||
        img_attn_output = attn.to_out[0](img_attn_output)
 | 
			
		||||
        if len(attn.to_out) > 1:
 | 
			
		||||
            img_attn_output = attn.to_out[1](img_attn_output)  # dropout
 | 
			
		||||
 | 
			
		||||
        txt_attn_output = attn.to_add_out(txt_attn_output)
 | 
			
		||||
 | 
			
		||||
        return img_attn_output, txt_attn_output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QwenImageTransformerBlock(nn.Module):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        self.dim = dim
 | 
			
		||||
        self.num_attention_heads = num_attention_heads
 | 
			
		||||
        self.attention_head_dim = attention_head_dim
 | 
			
		||||
 | 
			
		||||
        # Image processing modules
 | 
			
		||||
        self.img_mod = nn.Sequential(
 | 
			
		||||
            nn.SiLU(),
 | 
			
		||||
            nn.Linear(dim, 6 * dim, bias=True),  # For scale, shift, gate for norm1 and norm2
 | 
			
		||||
        )
 | 
			
		||||
        self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
 | 
			
		||||
        self.attn = Attention(
 | 
			
		||||
            query_dim=dim,
 | 
			
		||||
            cross_attention_dim=None,  # Enable cross attention for joint computation
 | 
			
		||||
            added_kv_proj_dim=dim,  # Enable added KV projections for text stream
 | 
			
		||||
            dim_head=attention_head_dim,
 | 
			
		||||
            heads=num_attention_heads,
 | 
			
		||||
            out_dim=dim,
 | 
			
		||||
            context_pre_only=False,
 | 
			
		||||
            bias=True,
 | 
			
		||||
            processor=QwenDoubleStreamAttnProcessor2_0(),
 | 
			
		||||
            qk_norm=qk_norm,
 | 
			
		||||
            eps=eps,
 | 
			
		||||
        )
 | 
			
		||||
        self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
 | 
			
		||||
        self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
 | 
			
		||||
 | 
			
		||||
        # Text processing modules
 | 
			
		||||
        self.txt_mod = nn.Sequential(
 | 
			
		||||
            nn.SiLU(),
 | 
			
		||||
            nn.Linear(dim, 6 * dim, bias=True),  # For scale, shift, gate for norm1 and norm2
 | 
			
		||||
        )
 | 
			
		||||
        self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
 | 
			
		||||
        # Text doesn't need separate attention - it's handled by img_attn joint computation
 | 
			
		||||
        self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
 | 
			
		||||
        self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
 | 
			
		||||
 | 
			
		||||
    def _modulate(self, x, mod_params):
 | 
			
		||||
        """Apply modulation to input tensor"""
 | 
			
		||||
        shift, scale, gate = mod_params.chunk(3, dim=-1)
 | 
			
		||||
        return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        encoder_hidden_states: torch.Tensor,
 | 
			
		||||
        encoder_hidden_states_mask: torch.Tensor,
 | 
			
		||||
        temb: torch.Tensor,
 | 
			
		||||
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
 | 
			
		||||
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
			
		||||
    ) -> Tuple[torch.Tensor, torch.Tensor]:
 | 
			
		||||
        # Get modulation parameters for both streams
 | 
			
		||||
        img_mod_params = self.img_mod(temb)  # [B, 6*dim]
 | 
			
		||||
        txt_mod_params = self.txt_mod(temb)  # [B, 6*dim]
 | 
			
		||||
 | 
			
		||||
        # Split modulation parameters for norm1 and norm2
 | 
			
		||||
        img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)  # Each [B, 3*dim]
 | 
			
		||||
        txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)  # Each [B, 3*dim]
 | 
			
		||||
 | 
			
		||||
        # Process image stream - norm1 + modulation
 | 
			
		||||
        img_normed = self.img_norm1(hidden_states)
 | 
			
		||||
        img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
 | 
			
		||||
 | 
			
		||||
        # Process text stream - norm1 + modulation
 | 
			
		||||
        txt_normed = self.txt_norm1(encoder_hidden_states)
 | 
			
		||||
        txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
 | 
			
		||||
 | 
			
		||||
        # Use QwenAttnProcessor2_0 for joint attention computation
 | 
			
		||||
        # This directly implements the DoubleStreamLayerMegatron logic:
 | 
			
		||||
        # 1. Computes QKV for both streams
 | 
			
		||||
        # 2. Applies QK normalization and RoPE
 | 
			
		||||
        # 3. Concatenates and runs joint attention
 | 
			
		||||
        # 4. Splits results back to separate streams
 | 
			
		||||
        joint_attention_kwargs = joint_attention_kwargs or {}
 | 
			
		||||
        attn_output = self.attn(
 | 
			
		||||
            hidden_states=img_modulated,  # Image stream (will be processed as "sample")
 | 
			
		||||
            encoder_hidden_states=txt_modulated,  # Text stream (will be processed as "context")
 | 
			
		||||
            encoder_hidden_states_mask=encoder_hidden_states_mask,
 | 
			
		||||
            image_rotary_emb=image_rotary_emb,
 | 
			
		||||
            **joint_attention_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
 | 
			
		||||
        img_attn_output, txt_attn_output = attn_output
 | 
			
		||||
 | 
			
		||||
        # Apply attention gates and add residual (like in Megatron)
 | 
			
		||||
        hidden_states = hidden_states + img_gate1 * img_attn_output
 | 
			
		||||
        encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
 | 
			
		||||
 | 
			
		||||
        # Process image stream - norm2 + MLP
 | 
			
		||||
        img_normed2 = self.img_norm2(hidden_states)
 | 
			
		||||
        img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
 | 
			
		||||
        img_mlp_output = self.img_mlp(img_modulated2)
 | 
			
		||||
        hidden_states = hidden_states + img_gate2 * img_mlp_output
 | 
			
		||||
 | 
			
		||||
        # Process text stream - norm2 + MLP
 | 
			
		||||
        txt_normed2 = self.txt_norm2(encoder_hidden_states)
 | 
			
		||||
        txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
 | 
			
		||||
        txt_mlp_output = self.txt_mlp(txt_modulated2)
 | 
			
		||||
        encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
 | 
			
		||||
 | 
			
		||||
        # Clip to prevent overflow for fp16
 | 
			
		||||
        if encoder_hidden_states.dtype == torch.float16:
 | 
			
		||||
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
 | 
			
		||||
        if hidden_states.dtype == torch.float16:
 | 
			
		||||
            hidden_states = hidden_states.clip(-65504, 65504)
 | 
			
		||||
 | 
			
		||||
        return encoder_hidden_states, hidden_states
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QwenImageTransformer2DModel(nn.Module): 
 | 
			
		||||
    """
 | 
			
		||||
    The Transformer model introduced in Qwen.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        patch_size (`int`, defaults to `2`):
 | 
			
		||||
            Patch size to turn the input data into small patches.
 | 
			
		||||
        in_channels (`int`, defaults to `64`):
 | 
			
		||||
            The number of channels in the input.
 | 
			
		||||
        out_channels (`int`, *optional*, defaults to `None`):
 | 
			
		||||
            The number of channels in the output. If not specified, it defaults to `in_channels`.
 | 
			
		||||
        num_layers (`int`, defaults to `60`):
 | 
			
		||||
            The number of layers of dual stream DiT blocks to use.
 | 
			
		||||
        attention_head_dim (`int`, defaults to `128`):
 | 
			
		||||
            The number of dimensions to use for each attention head.
 | 
			
		||||
        num_attention_heads (`int`, defaults to `24`):
 | 
			
		||||
            The number of attention heads to use.
 | 
			
		||||
        joint_attention_dim (`int`, defaults to `3584`):
 | 
			
		||||
            The number of dimensions to use for the joint attention (embedding/channel dimension of
 | 
			
		||||
            `encoder_hidden_states`).
 | 
			
		||||
        guidance_embeds (`bool`, defaults to `False`):
 | 
			
		||||
            Whether to use guidance embeddings for guidance-distilled variant of the model.
 | 
			
		||||
        axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
 | 
			
		||||
            The dimensions to use for the rotary positional embeddings.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    _supports_gradient_checkpointing = True
 | 
			
		||||
    _no_split_modules = ["QwenImageTransformerBlock"]
 | 
			
		||||
    _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        patch_size: int = 2,
 | 
			
		||||
        in_channels: int = 64,
 | 
			
		||||
        out_channels: Optional[int] = 16,
 | 
			
		||||
        num_layers: int = 60,
 | 
			
		||||
        attention_head_dim: int = 128,
 | 
			
		||||
        num_attention_heads: int = 24,
 | 
			
		||||
        joint_attention_dim: int = 3584,
 | 
			
		||||
        guidance_embeds: bool = False,  # TODO: this should probably be removed
 | 
			
		||||
        axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.out_channels = out_channels or in_channels
 | 
			
		||||
        self.inner_dim = num_attention_heads * attention_head_dim
 | 
			
		||||
        self.in_channels = in_channels
 | 
			
		||||
        self.guidance_embeds = guidance_embeds
 | 
			
		||||
        self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
 | 
			
		||||
 | 
			
		||||
        self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
 | 
			
		||||
 | 
			
		||||
        self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
 | 
			
		||||
 | 
			
		||||
        self.img_in = nn.Linear(in_channels, self.inner_dim)
 | 
			
		||||
        self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
 | 
			
		||||
 | 
			
		||||
        self.transformer_blocks = nn.ModuleList(
 | 
			
		||||
            [
 | 
			
		||||
                QwenImageTransformerBlock(
 | 
			
		||||
                    dim=self.inner_dim,
 | 
			
		||||
                    num_attention_heads=num_attention_heads,
 | 
			
		||||
                    attention_head_dim=attention_head_dim,
 | 
			
		||||
                )
 | 
			
		||||
                for _ in range(num_layers)
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
 | 
			
		||||
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
 | 
			
		||||
 | 
			
		||||
        self.gradient_checkpointing = False
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        encoder_hidden_states: torch.Tensor = None,
 | 
			
		||||
        encoder_hidden_states_mask: torch.Tensor = None,
 | 
			
		||||
        timestep: torch.LongTensor = None,
 | 
			
		||||
        img_shapes: Optional[List[Tuple[int, int, int]]] = None,
 | 
			
		||||
        txt_seq_lens: Optional[List[int]] = None,
 | 
			
		||||
        guidance: torch.Tensor = None,  # TODO: this should probably be removed
 | 
			
		||||
        attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
			
		||||
        return_dict: bool = True,
 | 
			
		||||
        callback= None,
 | 
			
		||||
        pipeline =None,
 | 
			
		||||
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
 | 
			
		||||
        """
 | 
			
		||||
        The [`QwenTransformer2DModel`] forward method.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
 | 
			
		||||
                Input `hidden_states`.
 | 
			
		||||
            encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
 | 
			
		||||
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
 | 
			
		||||
            encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
 | 
			
		||||
                Mask of the input conditions.
 | 
			
		||||
            timestep ( `torch.LongTensor`):
 | 
			
		||||
                Used to indicate denoising step.
 | 
			
		||||
            attention_kwargs (`dict`, *optional*):
 | 
			
		||||
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
 | 
			
		||||
                `self.processor` in
 | 
			
		||||
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
 | 
			
		||||
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
			
		||||
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
 | 
			
		||||
                tuple.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
 | 
			
		||||
            `tuple` where the first element is the sample tensor.
 | 
			
		||||
        """
 | 
			
		||||
        if attention_kwargs is not None:
 | 
			
		||||
            attention_kwargs = attention_kwargs.copy()
 | 
			
		||||
            lora_scale = attention_kwargs.pop("scale", 1.0)
 | 
			
		||||
        else:
 | 
			
		||||
            lora_scale = 1.0
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.img_in(hidden_states)
 | 
			
		||||
 | 
			
		||||
        timestep = timestep.to(hidden_states.dtype)
 | 
			
		||||
        encoder_hidden_states = self.txt_norm(encoder_hidden_states)
 | 
			
		||||
        encoder_hidden_states = self.txt_in(encoder_hidden_states)
 | 
			
		||||
 | 
			
		||||
        if guidance is not None:
 | 
			
		||||
            guidance = guidance.to(hidden_states.dtype) * 1000
 | 
			
		||||
 | 
			
		||||
        temb = (
 | 
			
		||||
            self.time_text_embed(timestep, hidden_states)
 | 
			
		||||
            if guidance is None
 | 
			
		||||
            else self.time_text_embed(timestep, guidance, hidden_states)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
 | 
			
		||||
 | 
			
		||||
        for index_block, block in enumerate(self.transformer_blocks):
 | 
			
		||||
            if callback != None:
 | 
			
		||||
                callback(-1, None, False, True)
 | 
			
		||||
            if pipeline._interrupt:
 | 
			
		||||
                return [None]
 | 
			
		||||
            encoder_hidden_states, hidden_states = block(
 | 
			
		||||
                hidden_states=hidden_states,
 | 
			
		||||
                encoder_hidden_states=encoder_hidden_states,
 | 
			
		||||
                encoder_hidden_states_mask=encoder_hidden_states_mask,
 | 
			
		||||
                temb=temb,
 | 
			
		||||
                image_rotary_emb=image_rotary_emb,
 | 
			
		||||
                joint_attention_kwargs=attention_kwargs,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        # Use only the image part (hidden_states) from the dual-stream blocks
 | 
			
		||||
        hidden_states = self.norm_out(hidden_states, temb)
 | 
			
		||||
        output = self.proj_out(hidden_states)
 | 
			
		||||
 | 
			
		||||
        if not return_dict:
 | 
			
		||||
            return (output,)
 | 
			
		||||
 | 
			
		||||
        return Transformer2DModelOutput(sample=output)
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user