mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
595 lines
25 KiB
Python
595 lines
25 KiB
Python
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import math
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from diffusers.models.attention import FeedForward
|
|
from diffusers.models.attention_processor import Attention
|
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
|
|
from shared.attention import pay_attention
|
|
|
|
def get_timestep_embedding(
|
|
timesteps: torch.Tensor,
|
|
embedding_dim: int,
|
|
flip_sin_to_cos: bool = False,
|
|
downscale_freq_shift: float = 1,
|
|
scale: float = 1,
|
|
max_period: int = 10000,
|
|
) -> torch.Tensor:
|
|
"""
|
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
|
|
|
Args
|
|
timesteps (torch.Tensor):
|
|
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
|
embedding_dim (int):
|
|
the dimension of the output.
|
|
flip_sin_to_cos (bool):
|
|
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
|
downscale_freq_shift (float):
|
|
Controls the delta between frequencies between dimensions
|
|
scale (float):
|
|
Scaling factor applied to the embeddings.
|
|
max_period (int):
|
|
Controls the maximum frequency of the embeddings
|
|
Returns
|
|
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
|
"""
|
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
|
|
|
half_dim = embedding_dim // 2
|
|
exponent = -math.log(max_period) * torch.arange(
|
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
|
)
|
|
exponent = exponent / (half_dim - downscale_freq_shift)
|
|
|
|
emb = torch.exp(exponent).to(timesteps.dtype)
|
|
emb = timesteps[:, None].float() * emb[None, :]
|
|
|
|
# scale embeddings
|
|
emb = scale * emb
|
|
|
|
# concat sine and cosine embeddings
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
|
|
|
# flip sine and cosine embeddings
|
|
if flip_sin_to_cos:
|
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
|
|
|
# zero pad
|
|
if embedding_dim % 2 == 1:
|
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
|
return emb
|
|
|
|
|
|
def apply_rotary_emb_qwen(
|
|
x: torch.Tensor,
|
|
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
|
use_real: bool = True,
|
|
use_real_unbind_dim: int = -1,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
|
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
|
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
|
tensors contain rotary embeddings and are returned as real tensors.
|
|
|
|
Args:
|
|
x (`torch.Tensor`):
|
|
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
|
|
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
|
"""
|
|
if use_real:
|
|
cos, sin = freqs_cis # [S, D]
|
|
cos = cos[None, None]
|
|
sin = sin[None, None]
|
|
cos, sin = cos.to(x.device), sin.to(x.device)
|
|
|
|
if use_real_unbind_dim == -1:
|
|
# Used for flux, cogvideox, hunyuan-dit
|
|
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
|
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
|
elif use_real_unbind_dim == -2:
|
|
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
|
|
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
|
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
|
else:
|
|
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
|
|
|
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
|
|
|
return out
|
|
else:
|
|
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
|
freqs_cis = freqs_cis.unsqueeze(1)
|
|
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
|
|
|
return x_out.type_as(x)
|
|
|
|
|
|
class QwenTimestepProjEmbeddings(nn.Module):
|
|
def __init__(self, embedding_dim):
|
|
super().__init__()
|
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
|
|
|
def forward(self, timestep, hidden_states):
|
|
timesteps_proj = self.time_proj(timestep)
|
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
|
|
|
|
conditioning = timesteps_emb
|
|
|
|
return conditioning
|
|
|
|
|
|
class QwenEmbedRope(nn.Module):
|
|
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
|
|
super().__init__()
|
|
self.theta = theta
|
|
self.axes_dim = axes_dim
|
|
pos_index = torch.arange(1024)
|
|
neg_index = torch.arange(1024).flip(0) * -1 - 1
|
|
self.pos_freqs = torch.cat(
|
|
[
|
|
self.rope_params(pos_index, self.axes_dim[0], self.theta),
|
|
self.rope_params(pos_index, self.axes_dim[1], self.theta),
|
|
self.rope_params(pos_index, self.axes_dim[2], self.theta),
|
|
],
|
|
dim=1,
|
|
)
|
|
self.neg_freqs = torch.cat(
|
|
[
|
|
self.rope_params(neg_index, self.axes_dim[0], self.theta),
|
|
self.rope_params(neg_index, self.axes_dim[1], self.theta),
|
|
self.rope_params(neg_index, self.axes_dim[2], self.theta),
|
|
],
|
|
dim=1,
|
|
)
|
|
self.rope_cache = {}
|
|
|
|
# 是否使用 scale rope
|
|
self.scale_rope = scale_rope
|
|
|
|
def rope_params(self, index, dim, theta=10000):
|
|
"""
|
|
Args:
|
|
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
|
|
"""
|
|
assert dim % 2 == 0
|
|
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
|
|
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
|
return freqs
|
|
|
|
def forward(self, video_fhw, txt_seq_lens, device):
|
|
"""
|
|
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
|
|
txt_length: [bs] a list of 1 integers representing the length of the text
|
|
"""
|
|
if self.pos_freqs.device != device:
|
|
self.pos_freqs = self.pos_freqs.to(device)
|
|
self.neg_freqs = self.neg_freqs.to(device)
|
|
|
|
if isinstance(video_fhw, list):
|
|
video_fhw = video_fhw[0]
|
|
frame, height, width = video_fhw
|
|
rope_key = f"{frame}_{height}_{width}"
|
|
|
|
if rope_key not in self.rope_cache:
|
|
seq_lens = frame * height * width
|
|
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
|
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
|
freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
|
|
if self.scale_rope:
|
|
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
|
|
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
|
|
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
|
|
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
|
|
|
|
else:
|
|
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
|
|
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
|
|
|
|
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
|
|
self.rope_cache[rope_key] = freqs.clone().contiguous()
|
|
vid_freqs = self.rope_cache[rope_key]
|
|
|
|
if self.scale_rope:
|
|
max_vid_index = max(height // 2, width // 2)
|
|
else:
|
|
max_vid_index = max(height, width)
|
|
|
|
max_len = max(txt_seq_lens)
|
|
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
|
|
|
|
return vid_freqs, txt_freqs
|
|
|
|
|
|
class QwenDoubleStreamAttnProcessor2_0:
|
|
"""
|
|
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
|
|
implements joint attention computation where text and image streams are processed together.
|
|
"""
|
|
|
|
_attention_backend = None
|
|
|
|
def __init__(self):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError(
|
|
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.FloatTensor, # Image stream
|
|
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
|
encoder_hidden_states_mask: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
if encoder_hidden_states is None:
|
|
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
|
|
|
|
seq_txt = encoder_hidden_states.shape[1]
|
|
|
|
# Compute QKV for image stream (sample projections)
|
|
img_query = attn.to_q(hidden_states)
|
|
img_key = attn.to_k(hidden_states)
|
|
img_value = attn.to_v(hidden_states)
|
|
|
|
# Compute QKV for text stream (context projections)
|
|
txt_query = attn.add_q_proj(encoder_hidden_states)
|
|
txt_key = attn.add_k_proj(encoder_hidden_states)
|
|
txt_value = attn.add_v_proj(encoder_hidden_states)
|
|
|
|
# Reshape for multi-head attention
|
|
img_query = img_query.unflatten(-1, (attn.heads, -1))
|
|
img_key = img_key.unflatten(-1, (attn.heads, -1))
|
|
img_value = img_value.unflatten(-1, (attn.heads, -1))
|
|
|
|
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
|
|
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
|
|
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
|
|
|
|
# Apply QK normalization
|
|
if attn.norm_q is not None:
|
|
img_query = attn.norm_q(img_query)
|
|
if attn.norm_k is not None:
|
|
img_key = attn.norm_k(img_key)
|
|
if attn.norm_added_q is not None:
|
|
txt_query = attn.norm_added_q(txt_query)
|
|
if attn.norm_added_k is not None:
|
|
txt_key = attn.norm_added_k(txt_key)
|
|
|
|
# Apply RoPE
|
|
if image_rotary_emb is not None:
|
|
img_freqs, txt_freqs = image_rotary_emb
|
|
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
|
|
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
|
|
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
|
|
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
|
|
|
|
# Concatenate for joint attention
|
|
# Order: [text, image]
|
|
joint_query = torch.cat([txt_query, img_query], dim=1)
|
|
joint_key = torch.cat([txt_key, img_key], dim=1)
|
|
joint_value = torch.cat([txt_value, img_value], dim=1)
|
|
|
|
# Compute joint attention
|
|
dtype = joint_query.dtype
|
|
qkv_list = [joint_query, joint_key, joint_value ]
|
|
joint_query = joint_key = joint_value = None
|
|
joint_hidden_states = pay_attention(qkv_list)
|
|
|
|
# Reshape back
|
|
joint_hidden_states = joint_hidden_states.flatten(2, 3)
|
|
joint_hidden_states = joint_hidden_states.to(dtype)
|
|
|
|
# Split attention outputs back
|
|
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
|
|
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
|
|
|
|
# Apply output projections
|
|
img_attn_output = attn.to_out[0](img_attn_output)
|
|
if len(attn.to_out) > 1:
|
|
img_attn_output = attn.to_out[1](img_attn_output) # dropout
|
|
|
|
txt_attn_output = attn.to_add_out(txt_attn_output)
|
|
|
|
return img_attn_output, txt_attn_output
|
|
|
|
|
|
class QwenImageTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
|
):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
|
|
# Image processing modules
|
|
self.img_mod = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
|
)
|
|
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
|
self.attn = Attention(
|
|
query_dim=dim,
|
|
cross_attention_dim=None, # Enable cross attention for joint computation
|
|
added_kv_proj_dim=dim, # Enable added KV projections for text stream
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
out_dim=dim,
|
|
context_pre_only=False,
|
|
bias=True,
|
|
processor=QwenDoubleStreamAttnProcessor2_0(),
|
|
qk_norm=qk_norm,
|
|
eps=eps,
|
|
)
|
|
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
|
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
# Text processing modules
|
|
self.txt_mod = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
|
)
|
|
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
|
# Text doesn't need separate attention - it's handled by img_attn joint computation
|
|
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
|
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
def _modulate(self, x, mod_params):
|
|
"""Apply modulation to input tensor"""
|
|
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
encoder_hidden_states_mask: torch.Tensor,
|
|
temb: torch.Tensor,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Get modulation parameters for both streams
|
|
img_mod_params = self.img_mod(temb) # [B, 6*dim]
|
|
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
|
|
|
|
# Split modulation parameters for norm1 and norm2
|
|
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
|
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
|
|
|
# Process image stream - norm1 + modulation
|
|
img_normed = self.img_norm1(hidden_states)
|
|
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
|
|
|
# Process text stream - norm1 + modulation
|
|
txt_normed = self.txt_norm1(encoder_hidden_states)
|
|
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
|
|
|
# Use QwenAttnProcessor2_0 for joint attention computation
|
|
# This directly implements the DoubleStreamLayerMegatron logic:
|
|
# 1. Computes QKV for both streams
|
|
# 2. Applies QK normalization and RoPE
|
|
# 3. Concatenates and runs joint attention
|
|
# 4. Splits results back to separate streams
|
|
joint_attention_kwargs = joint_attention_kwargs or {}
|
|
attn_output = self.attn(
|
|
hidden_states=img_modulated, # Image stream (will be processed as "sample")
|
|
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
|
|
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
|
image_rotary_emb=image_rotary_emb,
|
|
**joint_attention_kwargs,
|
|
)
|
|
|
|
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
|
|
img_attn_output, txt_attn_output = attn_output
|
|
|
|
# Apply attention gates and add residual (like in Megatron)
|
|
hidden_states = hidden_states + img_gate1 * img_attn_output
|
|
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
|
|
|
# Process image stream - norm2 + MLP
|
|
img_normed2 = self.img_norm2(hidden_states)
|
|
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
|
img_mlp_output = self.img_mlp(img_modulated2)
|
|
hidden_states = hidden_states + img_gate2 * img_mlp_output
|
|
|
|
# Process text stream - norm2 + MLP
|
|
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
|
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
|
txt_mlp_output = self.txt_mlp(txt_modulated2)
|
|
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
|
|
|
|
# Clip to prevent overflow for fp16
|
|
if encoder_hidden_states.dtype == torch.float16:
|
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
|
if hidden_states.dtype == torch.float16:
|
|
hidden_states = hidden_states.clip(-65504, 65504)
|
|
|
|
return encoder_hidden_states, hidden_states
|
|
|
|
|
|
class QwenImageTransformer2DModel(nn.Module):
|
|
"""
|
|
The Transformer model introduced in Qwen.
|
|
|
|
Args:
|
|
patch_size (`int`, defaults to `2`):
|
|
Patch size to turn the input data into small patches.
|
|
in_channels (`int`, defaults to `64`):
|
|
The number of channels in the input.
|
|
out_channels (`int`, *optional*, defaults to `None`):
|
|
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
|
num_layers (`int`, defaults to `60`):
|
|
The number of layers of dual stream DiT blocks to use.
|
|
attention_head_dim (`int`, defaults to `128`):
|
|
The number of dimensions to use for each attention head.
|
|
num_attention_heads (`int`, defaults to `24`):
|
|
The number of attention heads to use.
|
|
joint_attention_dim (`int`, defaults to `3584`):
|
|
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
|
`encoder_hidden_states`).
|
|
guidance_embeds (`bool`, defaults to `False`):
|
|
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
|
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
|
The dimensions to use for the rotary positional embeddings.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
_no_split_modules = ["QwenImageTransformerBlock"]
|
|
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
|
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 2,
|
|
in_channels: int = 64,
|
|
out_channels: Optional[int] = 16,
|
|
num_layers: int = 60,
|
|
attention_head_dim: int = 128,
|
|
num_attention_heads: int = 24,
|
|
joint_attention_dim: int = 3584,
|
|
guidance_embeds: bool = False, # TODO: this should probably be removed
|
|
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
|
):
|
|
super().__init__()
|
|
self.out_channels = out_channels or in_channels
|
|
self.inner_dim = num_attention_heads * attention_head_dim
|
|
self.in_channels = in_channels
|
|
self.guidance_embeds = guidance_embeds
|
|
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
|
|
|
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
|
|
|
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
|
|
|
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
|
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
QwenImageTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor = None,
|
|
encoder_hidden_states_mask: torch.Tensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
|
txt_seq_lens: Optional[List[int]] = None,
|
|
guidance: torch.Tensor = None, # TODO: this should probably be removed
|
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
return_dict: bool = True,
|
|
callback= None,
|
|
pipeline =None,
|
|
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`QwenTransformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
|
|
Mask of the input conditions.
|
|
timestep ( `torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if attention_kwargs is not None:
|
|
attention_kwargs = attention_kwargs.copy()
|
|
lora_scale = attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
hidden_states = self.img_in(hidden_states)
|
|
|
|
timestep = timestep.to(hidden_states.dtype)
|
|
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
|
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
|
|
|
if guidance is not None:
|
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
|
|
|
temb = (
|
|
self.time_text_embed(timestep, hidden_states)
|
|
if guidance is None
|
|
else self.time_text_embed(timestep, guidance, hidden_states)
|
|
)
|
|
|
|
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
if callback != None:
|
|
callback(-1, None, False, True)
|
|
if pipeline._interrupt:
|
|
return [None]
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
joint_attention_kwargs=attention_kwargs,
|
|
)
|
|
|
|
# Use only the image part (hidden_states) from the dual-stream blocks
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
output = self.proj_out(hidden_states)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer2DModelOutput(sample=output)
|