mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
missing qwen
This commit is contained in:
parent
979bc20625
commit
3f20921e7a
1070
models/qwen/autoencoder_kl_qwenimage.py
Normal file
1070
models/qwen/autoencoder_kl_qwenimage.py
Normal file
File diff suppressed because it is too large
Load Diff
728
models/qwen/pipeline_qwenimage.py
Normal file
728
models/qwen/pipeline_qwenimage.py
Normal file
@ -0,0 +1,728 @@
|
|||||||
|
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from mmgp import offload
|
||||||
|
import inspect
|
||||||
|
from typing import Any, Callable, Dict, List, Optional, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch, json
|
||||||
|
|
||||||
|
from diffusers.image_processor import VaeImageProcessor
|
||||||
|
from .transformer_qwenimage import QwenImageTransformer2DModel
|
||||||
|
|
||||||
|
from diffusers.utils import logging, replace_example_docstring
|
||||||
|
from diffusers.utils.torch_utils import randn_tensor
|
||||||
|
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, AutoTokenizer
|
||||||
|
from .autoencoder_kl_qwenimage import AutoencoderKLQwenImage
|
||||||
|
from diffusers import FlowMatchEulerDiscreteScheduler
|
||||||
|
|
||||||
|
XLA_AVAILABLE = False
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||||
|
|
||||||
|
EXAMPLE_DOC_STRING = """
|
||||||
|
Examples:
|
||||||
|
```py
|
||||||
|
>>> import torch
|
||||||
|
>>> from diffusers import QwenImagePipeline
|
||||||
|
|
||||||
|
>>> pipe = QwenImagePipeline.from_pretrained("Qwen/QwenImage-20B", torch_dtype=torch.bfloat16)
|
||||||
|
>>> pipe.to("cuda")
|
||||||
|
>>> prompt = "A cat holding a sign that says hello world"
|
||||||
|
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
||||||
|
>>> # Refer to the pipeline documentation for more details.
|
||||||
|
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
|
||||||
|
>>> image.save("qwenimage.png")
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_shift(
|
||||||
|
image_seq_len,
|
||||||
|
base_seq_len: int = 256,
|
||||||
|
max_seq_len: int = 4096,
|
||||||
|
base_shift: float = 0.5,
|
||||||
|
max_shift: float = 1.15,
|
||||||
|
):
|
||||||
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||||
|
b = base_shift - m * base_seq_len
|
||||||
|
mu = image_seq_len * m + b
|
||||||
|
return mu
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||||
|
def retrieve_timesteps(
|
||||||
|
scheduler,
|
||||||
|
num_inference_steps: Optional[int] = None,
|
||||||
|
device: Optional[Union[str, torch.device]] = None,
|
||||||
|
timesteps: Optional[List[int]] = None,
|
||||||
|
sigmas: Optional[List[float]] = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||||
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
scheduler (`SchedulerMixin`):
|
||||||
|
The scheduler to get timesteps from.
|
||||||
|
num_inference_steps (`int`):
|
||||||
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||||
|
must be `None`.
|
||||||
|
device (`str` or `torch.device`, *optional*):
|
||||||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||||
|
timesteps (`List[int]`, *optional*):
|
||||||
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||||
|
`num_inference_steps` and `sigmas` must be `None`.
|
||||||
|
sigmas (`List[float]`, *optional*):
|
||||||
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||||
|
`num_inference_steps` and `timesteps` must be `None`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||||
|
second element is the number of inference steps.
|
||||||
|
"""
|
||||||
|
if timesteps is not None and sigmas is not None:
|
||||||
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||||
|
if timesteps is not None:
|
||||||
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||||
|
if not accepts_timesteps:
|
||||||
|
raise ValueError(
|
||||||
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||||
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||||
|
)
|
||||||
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||||
|
timesteps = scheduler.timesteps
|
||||||
|
num_inference_steps = len(timesteps)
|
||||||
|
elif sigmas is not None:
|
||||||
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||||
|
if not accept_sigmas:
|
||||||
|
raise ValueError(
|
||||||
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||||
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||||
|
)
|
||||||
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||||
|
timesteps = scheduler.timesteps
|
||||||
|
num_inference_steps = len(timesteps)
|
||||||
|
else:
|
||||||
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||||
|
timesteps = scheduler.timesteps
|
||||||
|
return timesteps, num_inference_steps
|
||||||
|
|
||||||
|
|
||||||
|
class QwenImagePipeline(): #DiffusionPipeline
|
||||||
|
r"""
|
||||||
|
The QwenImage pipeline for text-to-image generation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
transformer ([`QwenImageTransformer2DModel`]):
|
||||||
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
||||||
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||||
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||||
|
vae ([`AutoencoderKL`]):
|
||||||
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||||
|
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
|
||||||
|
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
|
||||||
|
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
|
||||||
|
tokenizer (`QwenTokenizer`):
|
||||||
|
Tokenizer of class
|
||||||
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||||
|
"""
|
||||||
|
|
||||||
|
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||||
|
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vae,
|
||||||
|
text_encoder,
|
||||||
|
tokenizer,
|
||||||
|
transformer,
|
||||||
|
scheduler,
|
||||||
|
):
|
||||||
|
|
||||||
|
self.vae=vae
|
||||||
|
self.text_encoder=text_encoder
|
||||||
|
self.tokenizer=tokenizer
|
||||||
|
self.transformer=transformer
|
||||||
|
self.scheduler=scheduler
|
||||||
|
|
||||||
|
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
|
||||||
|
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
||||||
|
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
||||||
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||||
|
self.tokenizer_max_length = 1024
|
||||||
|
self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||||
|
self.prompt_template_encode_start_idx = 34
|
||||||
|
self.default_sample_size = 128
|
||||||
|
|
||||||
|
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
|
||||||
|
bool_mask = mask.bool()
|
||||||
|
valid_lengths = bool_mask.sum(dim=1)
|
||||||
|
selected = hidden_states[bool_mask]
|
||||||
|
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
|
||||||
|
|
||||||
|
return split_result
|
||||||
|
|
||||||
|
def _get_qwen_prompt_embeds(
|
||||||
|
self,
|
||||||
|
prompt: Union[str, List[str]] = None,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
):
|
||||||
|
device = device or self._execution_device
|
||||||
|
dtype = dtype or self.text_encoder.dtype
|
||||||
|
|
||||||
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||||
|
|
||||||
|
template = self.prompt_template_encode
|
||||||
|
drop_idx = self.prompt_template_encode_start_idx
|
||||||
|
txt = [template.format(e) for e in prompt]
|
||||||
|
txt_tokens = self.tokenizer(
|
||||||
|
txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
|
||||||
|
).to(device)
|
||||||
|
encoder_hidden_states = self.text_encoder(
|
||||||
|
input_ids=txt_tokens.input_ids,
|
||||||
|
attention_mask=txt_tokens.attention_mask,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)
|
||||||
|
hidden_states = encoder_hidden_states.hidden_states[-1]
|
||||||
|
split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
|
||||||
|
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
|
||||||
|
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
|
||||||
|
max_seq_len = max([e.size(0) for e in split_hidden_states])
|
||||||
|
prompt_embeds = torch.stack(
|
||||||
|
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
|
||||||
|
)
|
||||||
|
encoder_attention_mask = torch.stack(
|
||||||
|
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||||
|
|
||||||
|
return prompt_embeds, encoder_attention_mask
|
||||||
|
|
||||||
|
def encode_prompt(
|
||||||
|
self,
|
||||||
|
prompt: Union[str, List[str]],
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
num_images_per_prompt: int = 1,
|
||||||
|
prompt_embeds: Optional[torch.Tensor] = None,
|
||||||
|
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
||||||
|
max_sequence_length: int = 1024,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt (`str` or `List[str]`, *optional*):
|
||||||
|
prompt to be encoded
|
||||||
|
device: (`torch.device`):
|
||||||
|
torch device
|
||||||
|
num_images_per_prompt (`int`):
|
||||||
|
number of images that should be generated per prompt
|
||||||
|
prompt_embeds (`torch.Tensor`, *optional*):
|
||||||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||||
|
provided, text embeddings will be generated from `prompt` input argument.
|
||||||
|
"""
|
||||||
|
device = device or self._execution_device
|
||||||
|
|
||||||
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||||
|
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
|
||||||
|
|
||||||
|
if prompt_embeds is None:
|
||||||
|
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
|
||||||
|
|
||||||
|
_, seq_len, _ = prompt_embeds.shape
|
||||||
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||||
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||||
|
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
|
||||||
|
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
|
||||||
|
|
||||||
|
return prompt_embeds, prompt_embeds_mask
|
||||||
|
|
||||||
|
def check_inputs(
|
||||||
|
self,
|
||||||
|
prompt,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
negative_prompt=None,
|
||||||
|
prompt_embeds=None,
|
||||||
|
negative_prompt_embeds=None,
|
||||||
|
prompt_embeds_mask=None,
|
||||||
|
negative_prompt_embeds_mask=None,
|
||||||
|
callback_on_step_end_tensor_inputs=None,
|
||||||
|
max_sequence_length=None,
|
||||||
|
):
|
||||||
|
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
||||||
|
logger.warning(
|
||||||
|
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
||||||
|
)
|
||||||
|
|
||||||
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||||
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||||
|
):
|
||||||
|
raise ValueError(
|
||||||
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if prompt is not None and prompt_embeds is not None:
|
||||||
|
raise ValueError(
|
||||||
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||||
|
" only forward one of the two."
|
||||||
|
)
|
||||||
|
elif prompt is None and prompt_embeds is None:
|
||||||
|
raise ValueError(
|
||||||
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||||
|
)
|
||||||
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||||
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||||
|
|
||||||
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||||
|
raise ValueError(
|
||||||
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||||
|
)
|
||||||
|
|
||||||
|
if prompt_embeds is not None and prompt_embeds_mask is None:
|
||||||
|
raise ValueError(
|
||||||
|
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
|
||||||
|
)
|
||||||
|
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
|
||||||
|
raise ValueError(
|
||||||
|
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
||||||
|
)
|
||||||
|
|
||||||
|
if max_sequence_length is not None and max_sequence_length > 1024:
|
||||||
|
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
||||||
|
latent_image_ids = torch.zeros(height, width, 3)
|
||||||
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
||||||
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
||||||
|
|
||||||
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
||||||
|
|
||||||
|
latent_image_ids = latent_image_ids.reshape(
|
||||||
|
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
||||||
|
)
|
||||||
|
|
||||||
|
return latent_image_ids.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
||||||
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
||||||
|
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
||||||
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
||||||
|
|
||||||
|
return latents
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _unpack_latents(latents, height, width, vae_scale_factor):
|
||||||
|
batch_size, num_patches, channels = latents.shape
|
||||||
|
|
||||||
|
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||||
|
# latent height and width to be divisible by 2.
|
||||||
|
height = 2 * (int(height) // (vae_scale_factor * 2))
|
||||||
|
width = 2 * (int(width) // (vae_scale_factor * 2))
|
||||||
|
|
||||||
|
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
||||||
|
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
||||||
|
|
||||||
|
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
|
||||||
|
|
||||||
|
return latents
|
||||||
|
|
||||||
|
def enable_vae_slicing(self):
|
||||||
|
r"""
|
||||||
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||||
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||||
|
"""
|
||||||
|
self.vae.enable_slicing()
|
||||||
|
|
||||||
|
def disable_vae_slicing(self):
|
||||||
|
r"""
|
||||||
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||||
|
computing decoding in one step.
|
||||||
|
"""
|
||||||
|
self.vae.disable_slicing()
|
||||||
|
|
||||||
|
def enable_vae_tiling(self):
|
||||||
|
r"""
|
||||||
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||||
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||||
|
processing larger images.
|
||||||
|
"""
|
||||||
|
self.vae.enable_tiling()
|
||||||
|
|
||||||
|
def disable_vae_tiling(self):
|
||||||
|
r"""
|
||||||
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||||
|
computing decoding in one step.
|
||||||
|
"""
|
||||||
|
self.vae.disable_tiling()
|
||||||
|
|
||||||
|
def prepare_latents(
|
||||||
|
self,
|
||||||
|
batch_size,
|
||||||
|
num_channels_latents,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
dtype,
|
||||||
|
device,
|
||||||
|
generator,
|
||||||
|
latents=None,
|
||||||
|
):
|
||||||
|
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||||
|
# latent height and width to be divisible by 2.
|
||||||
|
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||||
|
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||||
|
|
||||||
|
shape = (batch_size, 1, num_channels_latents, height, width)
|
||||||
|
|
||||||
|
if latents is not None:
|
||||||
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
||||||
|
return latents.to(device=device, dtype=dtype), latent_image_ids
|
||||||
|
|
||||||
|
if isinstance(generator, list) and len(generator) != batch_size:
|
||||||
|
raise ValueError(
|
||||||
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||||
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||||
|
)
|
||||||
|
|
||||||
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||||
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
||||||
|
|
||||||
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
||||||
|
|
||||||
|
return latents, latent_image_ids
|
||||||
|
|
||||||
|
@property
|
||||||
|
def guidance_scale(self):
|
||||||
|
return self._guidance_scale
|
||||||
|
|
||||||
|
@property
|
||||||
|
def attention_kwargs(self):
|
||||||
|
return self._attention_kwargs
|
||||||
|
|
||||||
|
@property
|
||||||
|
def num_timesteps(self):
|
||||||
|
return self._num_timesteps
|
||||||
|
|
||||||
|
@property
|
||||||
|
def current_timestep(self):
|
||||||
|
return self._current_timestep
|
||||||
|
|
||||||
|
@property
|
||||||
|
def interrupt(self):
|
||||||
|
return self._interrupt
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
prompt: Union[str, List[str]] = None,
|
||||||
|
negative_prompt: Union[str, List[str]] = None,
|
||||||
|
true_cfg_scale: float = 4.0,
|
||||||
|
height: Optional[int] = None,
|
||||||
|
width: Optional[int] = None,
|
||||||
|
num_inference_steps: int = 50,
|
||||||
|
sigmas: Optional[List[float]] = None,
|
||||||
|
guidance_scale: float = 1.0,
|
||||||
|
num_images_per_prompt: int = 1,
|
||||||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||||
|
latents: Optional[torch.Tensor] = None,
|
||||||
|
prompt_embeds: Optional[torch.Tensor] = None,
|
||||||
|
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
||||||
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||||
|
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
||||||
|
output_type: Optional[str] = "pil",
|
||||||
|
return_dict: bool = True,
|
||||||
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||||
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||||
|
max_sequence_length: int = 512,
|
||||||
|
callback=None,
|
||||||
|
pipeline=None,
|
||||||
|
loras_slists=None,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Function invoked when calling the pipeline for generation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt (`str` or `List[str]`, *optional*):
|
||||||
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||||
|
instead.
|
||||||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
||||||
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||||
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
||||||
|
not greater than `1`).
|
||||||
|
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
||||||
|
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
||||||
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||||
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||||
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||||
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||||
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||||
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||||
|
expense of slower inference.
|
||||||
|
sigmas (`List[float]`, *optional*):
|
||||||
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||||
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||||
|
will be used.
|
||||||
|
guidance_scale (`float`, *optional*, defaults to 3.5):
|
||||||
|
Guidance scale as defined in [Classifier-Free Diffusion
|
||||||
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
||||||
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
||||||
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
||||||
|
the text `prompt`, usually at the expense of lower image quality.
|
||||||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||||
|
The number of images to generate per prompt.
|
||||||
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||||
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||||
|
to make generation deterministic.
|
||||||
|
latents (`torch.Tensor`, *optional*):
|
||||||
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||||
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||||
|
tensor will be generated by sampling using the supplied random `generator`.
|
||||||
|
prompt_embeds (`torch.Tensor`, *optional*):
|
||||||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||||
|
provided, text embeddings will be generated from `prompt` input argument.
|
||||||
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||||
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||||
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||||
|
argument.
|
||||||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||||
|
The output format of the generate image. Choose between
|
||||||
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
|
||||||
|
attention_kwargs (`dict`, *optional*):
|
||||||
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||||
|
`self.processor` in
|
||||||
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||||
|
callback_on_step_end (`Callable`, *optional*):
|
||||||
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||||
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||||
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||||
|
`callback_on_step_end_tensor_inputs`.
|
||||||
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||||
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||||
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||||
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||||
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
|
||||||
|
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
||||||
|
returning a tuple, the first element is a list with the generated images.
|
||||||
|
"""
|
||||||
|
|
||||||
|
kwargs = {'pipeline': pipeline, 'callback': callback}
|
||||||
|
if callback != None:
|
||||||
|
callback(-1, None, True)
|
||||||
|
|
||||||
|
|
||||||
|
height = height or self.default_sample_size * self.vae_scale_factor
|
||||||
|
width = width or self.default_sample_size * self.vae_scale_factor
|
||||||
|
|
||||||
|
# 1. Check inputs. Raise error if not correct
|
||||||
|
self.check_inputs(
|
||||||
|
prompt,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
negative_prompt=negative_prompt,
|
||||||
|
prompt_embeds=prompt_embeds,
|
||||||
|
negative_prompt_embeds=negative_prompt_embeds,
|
||||||
|
prompt_embeds_mask=prompt_embeds_mask,
|
||||||
|
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
||||||
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||||
|
max_sequence_length=max_sequence_length,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._guidance_scale = guidance_scale
|
||||||
|
self._attention_kwargs = attention_kwargs
|
||||||
|
self._current_timestep = None
|
||||||
|
self._interrupt = False
|
||||||
|
|
||||||
|
# 2. Define call parameters
|
||||||
|
if prompt is not None and isinstance(prompt, str):
|
||||||
|
batch_size = 1
|
||||||
|
elif prompt is not None and isinstance(prompt, list):
|
||||||
|
batch_size = len(prompt)
|
||||||
|
else:
|
||||||
|
batch_size = prompt_embeds.shape[0]
|
||||||
|
device = "cuda"
|
||||||
|
# device = self._execution_device
|
||||||
|
|
||||||
|
has_neg_prompt = negative_prompt is not None or (
|
||||||
|
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
|
||||||
|
)
|
||||||
|
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
||||||
|
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
|
||||||
|
prompt=prompt,
|
||||||
|
prompt_embeds=prompt_embeds,
|
||||||
|
prompt_embeds_mask=prompt_embeds_mask,
|
||||||
|
device=device,
|
||||||
|
num_images_per_prompt=num_images_per_prompt,
|
||||||
|
max_sequence_length=max_sequence_length,
|
||||||
|
)
|
||||||
|
if do_true_cfg:
|
||||||
|
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
|
||||||
|
prompt=negative_prompt,
|
||||||
|
prompt_embeds=negative_prompt_embeds,
|
||||||
|
prompt_embeds_mask=negative_prompt_embeds_mask,
|
||||||
|
device=device,
|
||||||
|
num_images_per_prompt=num_images_per_prompt,
|
||||||
|
max_sequence_length=max_sequence_length,
|
||||||
|
)
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
prompt_embeds = prompt_embeds.to(dtype)
|
||||||
|
if do_true_cfg:
|
||||||
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype)
|
||||||
|
|
||||||
|
# 4. Prepare latent variables
|
||||||
|
num_channels_latents = self.transformer.in_channels // 4
|
||||||
|
latents, latent_image_ids = self.prepare_latents(
|
||||||
|
batch_size * num_images_per_prompt,
|
||||||
|
num_channels_latents,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
prompt_embeds.dtype,
|
||||||
|
device,
|
||||||
|
generator,
|
||||||
|
latents,
|
||||||
|
)
|
||||||
|
img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
|
||||||
|
|
||||||
|
# 5. Prepare timesteps
|
||||||
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
||||||
|
image_seq_len = latents.shape[1]
|
||||||
|
mu = calculate_shift(
|
||||||
|
image_seq_len,
|
||||||
|
self.scheduler.config.get("base_image_seq_len", 256),
|
||||||
|
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||||
|
self.scheduler.config.get("base_shift", 0.5),
|
||||||
|
self.scheduler.config.get("max_shift", 1.15),
|
||||||
|
)
|
||||||
|
timesteps, num_inference_steps = retrieve_timesteps(
|
||||||
|
self.scheduler,
|
||||||
|
num_inference_steps,
|
||||||
|
device,
|
||||||
|
sigmas=sigmas,
|
||||||
|
mu=mu,
|
||||||
|
)
|
||||||
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||||
|
self._num_timesteps = len(timesteps)
|
||||||
|
|
||||||
|
# handle guidance
|
||||||
|
if self.transformer.guidance_embeds:
|
||||||
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
||||||
|
guidance = guidance.expand(latents.shape[0])
|
||||||
|
else:
|
||||||
|
guidance = None
|
||||||
|
|
||||||
|
if self.attention_kwargs is None:
|
||||||
|
self._attention_kwargs = {}
|
||||||
|
|
||||||
|
# 6. Denoising loop
|
||||||
|
self.scheduler.set_begin_index(0)
|
||||||
|
updated_num_steps= len(timesteps)
|
||||||
|
if callback != None:
|
||||||
|
from shared.utils.loras_mutipliers import update_loras_slists
|
||||||
|
update_loras_slists(self.transformer, loras_slists, updated_num_steps)
|
||||||
|
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
|
||||||
|
|
||||||
|
for i, t in enumerate(timesteps):
|
||||||
|
if self.interrupt:
|
||||||
|
continue
|
||||||
|
|
||||||
|
self._current_timestep = t
|
||||||
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||||
|
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||||
|
|
||||||
|
noise_pred = self.transformer(
|
||||||
|
hidden_states=latents,
|
||||||
|
timestep=timestep / 1000,
|
||||||
|
guidance=guidance,
|
||||||
|
encoder_hidden_states_mask=prompt_embeds_mask,
|
||||||
|
encoder_hidden_states=prompt_embeds,
|
||||||
|
img_shapes=img_shapes,
|
||||||
|
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
|
||||||
|
attention_kwargs=self.attention_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
**kwargs
|
||||||
|
)[0]
|
||||||
|
if noise_pred == None: return None
|
||||||
|
|
||||||
|
|
||||||
|
if do_true_cfg:
|
||||||
|
# with self.transformer.cache_context("uncond"):
|
||||||
|
neg_noise_pred = self.transformer(
|
||||||
|
hidden_states=latents,
|
||||||
|
timestep=timestep / 1000,
|
||||||
|
guidance=guidance,
|
||||||
|
encoder_hidden_states_mask=negative_prompt_embeds_mask,
|
||||||
|
encoder_hidden_states=negative_prompt_embeds,
|
||||||
|
img_shapes=img_shapes,
|
||||||
|
txt_seq_lens=negative_prompt_embeds_mask.sum(dim=1).tolist(),
|
||||||
|
attention_kwargs=self.attention_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
**kwargs
|
||||||
|
)[0]
|
||||||
|
if neg_noise_pred == None: return None
|
||||||
|
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
||||||
|
if comb_pred == None: return None
|
||||||
|
|
||||||
|
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
|
||||||
|
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
|
||||||
|
noise_pred = comb_pred * (cond_norm / noise_norm)
|
||||||
|
|
||||||
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
|
latents_dtype = latents.dtype
|
||||||
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||||
|
|
||||||
|
if latents.dtype != latents_dtype:
|
||||||
|
if torch.backends.mps.is_available():
|
||||||
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||||
|
latents = latents.to(latents_dtype)
|
||||||
|
|
||||||
|
if callback is not None:
|
||||||
|
# preview = unpack_latent(img).transpose(0,1)
|
||||||
|
callback(i, None, False)
|
||||||
|
|
||||||
|
|
||||||
|
self._current_timestep = None
|
||||||
|
if output_type == "latent":
|
||||||
|
image = latents
|
||||||
|
else:
|
||||||
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
||||||
|
latents = latents.to(self.vae.dtype)
|
||||||
|
latents_mean = (
|
||||||
|
torch.tensor(self.vae.config.latents_mean)
|
||||||
|
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
||||||
|
.to(latents.device, latents.dtype)
|
||||||
|
)
|
||||||
|
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
||||||
|
latents.device, latents.dtype
|
||||||
|
)
|
||||||
|
latents = latents / latents_std + latents_mean
|
||||||
|
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
||||||
|
|
||||||
|
|
||||||
|
return image
|
||||||
78
models/qwen/qwen_handler.py
Normal file
78
models/qwen/qwen_handler.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
def get_qwen_text_encoder_filename(text_encoder_quantization):
|
||||||
|
text_encoder_filename = "ckpts/Qwen2.5-VL-7B-Instruct/Qwen2.5-VL-7B-Instruct_bf16.safetensors"
|
||||||
|
if text_encoder_quantization =="int8" and False:
|
||||||
|
text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_bf16_int8")
|
||||||
|
return text_encoder_filename
|
||||||
|
|
||||||
|
class family_handler():
|
||||||
|
@staticmethod
|
||||||
|
def query_model_def(base_model_type, model_def):
|
||||||
|
model_def_output = {
|
||||||
|
"image_outputs" : True,
|
||||||
|
"no_negative_prompt" : True,
|
||||||
|
}
|
||||||
|
|
||||||
|
model_def_output["embedded_guidance"] = True
|
||||||
|
|
||||||
|
return model_def_output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def query_supported_types():
|
||||||
|
return ["qwen_image_20B"]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def query_family_maps():
|
||||||
|
return {}, {}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def query_model_family():
|
||||||
|
return "qwen"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def query_family_infos():
|
||||||
|
return {"qwen":(40, "Qwen")}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
|
||||||
|
text_encoder_filename = get_qwen_text_encoder_filename(text_encoder_quantization)
|
||||||
|
return {
|
||||||
|
"repoId" : "DeepBeepMeep/Qwen_image",
|
||||||
|
"sourceFolderList" : ["", "Qwen2.5-VL-7B-Instruct"],
|
||||||
|
"fileList" : [ ["qwen_vae.safetensors", "qwen_vae_config.json", "qwen_scheduler_config.json"], ["merges.txt", "tokenizer_config.json", "config.json", "vocab.json"] + computeList(text_encoder_filename) ]
|
||||||
|
}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized = False):
|
||||||
|
from .qwen_main import model_factory
|
||||||
|
from mmgp import offload
|
||||||
|
|
||||||
|
pipe_processor = model_factory(
|
||||||
|
checkpoint_dir="ckpts",
|
||||||
|
model_filename=model_filename,
|
||||||
|
model_type = model_type,
|
||||||
|
model_def = model_def,
|
||||||
|
base_model_type=base_model_type,
|
||||||
|
text_encoder_filename= get_qwen_text_encoder_filename(text_encoder_quantization),
|
||||||
|
quantizeTransformer = quantizeTransformer,
|
||||||
|
dtype = dtype,
|
||||||
|
VAE_dtype = VAE_dtype,
|
||||||
|
mixed_precision_transformer = mixed_precision_transformer,
|
||||||
|
save_quantized = save_quantized
|
||||||
|
)
|
||||||
|
|
||||||
|
pipe = {"tokenizer" : pipe_processor.tokenizer, "transformer" : pipe_processor.transformer, "text_encoder" : pipe_processor.text_encoder, "vae" : pipe_processor.vae}
|
||||||
|
|
||||||
|
return pipe_processor, pipe
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def update_default_settings(base_model_type, model_def, ui_defaults):
|
||||||
|
ui_defaults.update({
|
||||||
|
"embedded_guidance": 4,
|
||||||
|
})
|
||||||
|
if model_def.get("reference_image", False):
|
||||||
|
ui_defaults.update({
|
||||||
|
"video_prompt_type": "KI",
|
||||||
|
})
|
||||||
|
|
||||||
113
models/qwen/qwen_main.py
Normal file
113
models/qwen/qwen_main.py
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
|
||||||
|
from mmgp import offload
|
||||||
|
import inspect
|
||||||
|
from typing import Any, Callable, Dict, List, Optional, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch, json, os
|
||||||
|
|
||||||
|
from diffusers.image_processor import VaeImageProcessor
|
||||||
|
from .transformer_qwenimage import QwenImageTransformer2DModel
|
||||||
|
|
||||||
|
from diffusers.utils import logging, replace_example_docstring
|
||||||
|
from diffusers.utils.torch_utils import randn_tensor
|
||||||
|
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, AutoTokenizer
|
||||||
|
from .autoencoder_kl_qwenimage import AutoencoderKLQwenImage
|
||||||
|
from diffusers import FlowMatchEulerDiscreteScheduler
|
||||||
|
from .pipeline_qwenimage import QwenImagePipeline
|
||||||
|
|
||||||
|
class model_factory():
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
checkpoint_dir,
|
||||||
|
model_filename = None,
|
||||||
|
model_type = None,
|
||||||
|
model_def = None,
|
||||||
|
base_model_type = None,
|
||||||
|
text_encoder_filename = None,
|
||||||
|
quantizeTransformer = False,
|
||||||
|
save_quantized = False,
|
||||||
|
dtype = torch.bfloat16,
|
||||||
|
VAE_dtype = torch.float32,
|
||||||
|
mixed_precision_transformer = False
|
||||||
|
):
|
||||||
|
|
||||||
|
with open( os.path.join(checkpoint_dir, "qwen_scheduler_config.json"), 'r', encoding='utf-8') as f:
|
||||||
|
scheduler_config = json.load(f)
|
||||||
|
scheduler_config.pop("_class_name")
|
||||||
|
scheduler_config.pop("_diffusers_version")
|
||||||
|
|
||||||
|
scheduler = FlowMatchEulerDiscreteScheduler(**scheduler_config)
|
||||||
|
|
||||||
|
transformer_filename = model_filename[0]
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(os.path.join(checkpoint_dir,"Qwen2.5-VL-7B-Instruct"))
|
||||||
|
|
||||||
|
with open("configs/qwen_image_20B.json", 'r', encoding='utf-8') as f:
|
||||||
|
transformer_config = json.load(f)
|
||||||
|
transformer_config.pop("_diffusers_version")
|
||||||
|
transformer_config.pop("_class_name")
|
||||||
|
transformer_config.pop("pooled_projection_dim")
|
||||||
|
|
||||||
|
from accelerate import init_empty_weights
|
||||||
|
with init_empty_weights():
|
||||||
|
transformer = QwenImageTransformer2DModel(**transformer_config)
|
||||||
|
offload.load_model_data(transformer, transformer_filename)
|
||||||
|
# transformer = offload.fast_load_transformers_model("transformer_quanto.safetensors", writable_tensors= True , modelClass=QwenImageTransformer2DModel, defaultConfigPath="transformer_config.json")
|
||||||
|
|
||||||
|
text_encoder = offload.fast_load_transformers_model(text_encoder_filename, writable_tensors= True , modelClass=Qwen2_5_VLForConditionalGeneration, defaultConfigPath= os.path.join(checkpoint_dir, "Qwen2.5-VL-7B-Instruct", "config.json"))
|
||||||
|
# text_encoder = offload.fast_load_transformers_model(text_encoder_filename, do_quantize=True, writable_tensors= True , modelClass=Qwen2_5_VLForConditionalGeneration, defaultConfigPath="text_encoder_config.json", verboseLevel=2)
|
||||||
|
# text_encoder.to(torch.float16)
|
||||||
|
# offload.save_model(text_encoder, "text_encoder_quanto_fp16.safetensors", do_quantize= True)
|
||||||
|
|
||||||
|
vae = offload.fast_load_transformers_model( os.path.join(checkpoint_dir,"qwen_vae.safetensors"), writable_tensors= True , modelClass=AutoencoderKLQwenImage, defaultConfigPath=os.path.join(checkpoint_dir,"qwen_vae_config.json"))
|
||||||
|
|
||||||
|
self.pipeline = QwenImagePipeline(vae, text_encoder, tokenizer, transformer, scheduler)
|
||||||
|
self.vae=vae
|
||||||
|
self.text_encoder=text_encoder
|
||||||
|
self.tokenizer=tokenizer
|
||||||
|
self.transformer=transformer
|
||||||
|
self.scheduler=scheduler
|
||||||
|
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
seed: int | None = None,
|
||||||
|
input_prompt: str = "replace the logo with the text 'Black Forest Labs'",
|
||||||
|
sampling_steps: int = 20,
|
||||||
|
input_ref_images = None,
|
||||||
|
width= 832,
|
||||||
|
height=480,
|
||||||
|
embedded_guidance_scale: float = 4,
|
||||||
|
fit_into_canvas = None,
|
||||||
|
callback = None,
|
||||||
|
loras_slists = None,
|
||||||
|
batch_size = 1,
|
||||||
|
video_prompt_type = "",
|
||||||
|
**bbargs
|
||||||
|
):
|
||||||
|
# Generate with different aspect ratios
|
||||||
|
aspect_ratios = {
|
||||||
|
"1:1": (1328, 1328),
|
||||||
|
"16:9": (1664, 928),
|
||||||
|
"9:16": (928, 1664),
|
||||||
|
"4:3": (1472, 1140),
|
||||||
|
"3:4": (1140, 1472)
|
||||||
|
}
|
||||||
|
|
||||||
|
# width, height = aspect_ratios["16:9"]
|
||||||
|
|
||||||
|
image = self.pipeline(
|
||||||
|
prompt=input_prompt,
|
||||||
|
width=width,
|
||||||
|
height=height,
|
||||||
|
num_inference_steps=sampling_steps,
|
||||||
|
num_images_per_prompt = batch_size,
|
||||||
|
true_cfg_scale=embedded_guidance_scale,
|
||||||
|
callback = callback,
|
||||||
|
pipeline=self,
|
||||||
|
loras_slists=loras_slists,
|
||||||
|
generator=torch.Generator(device="cuda").manual_seed(seed)
|
||||||
|
)
|
||||||
|
if image is None: return None
|
||||||
|
return image.transpose(0, 1)
|
||||||
|
|
||||||
594
models/qwen/transformer_qwenimage.py
Normal file
594
models/qwen/transformer_qwenimage.py
Normal file
@ -0,0 +1,594 @@
|
|||||||
|
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from diffusers.models.attention import FeedForward
|
||||||
|
from diffusers.models.attention_processor import Attention
|
||||||
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
||||||
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||||
|
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
|
||||||
|
from shared.attention import pay_attention
|
||||||
|
|
||||||
|
def get_timestep_embedding(
|
||||||
|
timesteps: torch.Tensor,
|
||||||
|
embedding_dim: int,
|
||||||
|
flip_sin_to_cos: bool = False,
|
||||||
|
downscale_freq_shift: float = 1,
|
||||||
|
scale: float = 1,
|
||||||
|
max_period: int = 10000,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
||||||
|
|
||||||
|
Args
|
||||||
|
timesteps (torch.Tensor):
|
||||||
|
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
||||||
|
embedding_dim (int):
|
||||||
|
the dimension of the output.
|
||||||
|
flip_sin_to_cos (bool):
|
||||||
|
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
||||||
|
downscale_freq_shift (float):
|
||||||
|
Controls the delta between frequencies between dimensions
|
||||||
|
scale (float):
|
||||||
|
Scaling factor applied to the embeddings.
|
||||||
|
max_period (int):
|
||||||
|
Controls the maximum frequency of the embeddings
|
||||||
|
Returns
|
||||||
|
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
||||||
|
"""
|
||||||
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
||||||
|
|
||||||
|
half_dim = embedding_dim // 2
|
||||||
|
exponent = -math.log(max_period) * torch.arange(
|
||||||
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
||||||
|
)
|
||||||
|
exponent = exponent / (half_dim - downscale_freq_shift)
|
||||||
|
|
||||||
|
emb = torch.exp(exponent).to(timesteps.dtype)
|
||||||
|
emb = timesteps[:, None].float() * emb[None, :]
|
||||||
|
|
||||||
|
# scale embeddings
|
||||||
|
emb = scale * emb
|
||||||
|
|
||||||
|
# concat sine and cosine embeddings
|
||||||
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
||||||
|
|
||||||
|
# flip sine and cosine embeddings
|
||||||
|
if flip_sin_to_cos:
|
||||||
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
||||||
|
|
||||||
|
# zero pad
|
||||||
|
if embedding_dim % 2 == 1:
|
||||||
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||||
|
return emb
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rotary_emb_qwen(
|
||||||
|
x: torch.Tensor,
|
||||||
|
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||||
|
use_real: bool = True,
|
||||||
|
use_real_unbind_dim: int = -1,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
||||||
|
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
||||||
|
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
||||||
|
tensors contain rotary embeddings and are returned as real tensors.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (`torch.Tensor`):
|
||||||
|
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
|
||||||
|
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||||
|
"""
|
||||||
|
if use_real:
|
||||||
|
cos, sin = freqs_cis # [S, D]
|
||||||
|
cos = cos[None, None]
|
||||||
|
sin = sin[None, None]
|
||||||
|
cos, sin = cos.to(x.device), sin.to(x.device)
|
||||||
|
|
||||||
|
if use_real_unbind_dim == -1:
|
||||||
|
# Used for flux, cogvideox, hunyuan-dit
|
||||||
|
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||||
|
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||||
|
elif use_real_unbind_dim == -2:
|
||||||
|
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
|
||||||
|
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
||||||
|
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
||||||
|
|
||||||
|
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
||||||
|
|
||||||
|
return out
|
||||||
|
else:
|
||||||
|
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
||||||
|
freqs_cis = freqs_cis.unsqueeze(1)
|
||||||
|
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
||||||
|
|
||||||
|
return x_out.type_as(x)
|
||||||
|
|
||||||
|
|
||||||
|
class QwenTimestepProjEmbeddings(nn.Module):
|
||||||
|
def __init__(self, embedding_dim):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
||||||
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||||
|
|
||||||
|
def forward(self, timestep, hidden_states):
|
||||||
|
timesteps_proj = self.time_proj(timestep)
|
||||||
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
|
||||||
|
|
||||||
|
conditioning = timesteps_emb
|
||||||
|
|
||||||
|
return conditioning
|
||||||
|
|
||||||
|
|
||||||
|
class QwenEmbedRope(nn.Module):
|
||||||
|
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
|
||||||
|
super().__init__()
|
||||||
|
self.theta = theta
|
||||||
|
self.axes_dim = axes_dim
|
||||||
|
pos_index = torch.arange(1024)
|
||||||
|
neg_index = torch.arange(1024).flip(0) * -1 - 1
|
||||||
|
self.pos_freqs = torch.cat(
|
||||||
|
[
|
||||||
|
self.rope_params(pos_index, self.axes_dim[0], self.theta),
|
||||||
|
self.rope_params(pos_index, self.axes_dim[1], self.theta),
|
||||||
|
self.rope_params(pos_index, self.axes_dim[2], self.theta),
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
self.neg_freqs = torch.cat(
|
||||||
|
[
|
||||||
|
self.rope_params(neg_index, self.axes_dim[0], self.theta),
|
||||||
|
self.rope_params(neg_index, self.axes_dim[1], self.theta),
|
||||||
|
self.rope_params(neg_index, self.axes_dim[2], self.theta),
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
self.rope_cache = {}
|
||||||
|
|
||||||
|
# 是否使用 scale rope
|
||||||
|
self.scale_rope = scale_rope
|
||||||
|
|
||||||
|
def rope_params(self, index, dim, theta=10000):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
|
||||||
|
"""
|
||||||
|
assert dim % 2 == 0
|
||||||
|
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
|
||||||
|
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
||||||
|
return freqs
|
||||||
|
|
||||||
|
def forward(self, video_fhw, txt_seq_lens, device):
|
||||||
|
"""
|
||||||
|
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
|
||||||
|
txt_length: [bs] a list of 1 integers representing the length of the text
|
||||||
|
"""
|
||||||
|
if self.pos_freqs.device != device:
|
||||||
|
self.pos_freqs = self.pos_freqs.to(device)
|
||||||
|
self.neg_freqs = self.neg_freqs.to(device)
|
||||||
|
|
||||||
|
if isinstance(video_fhw, list):
|
||||||
|
video_fhw = video_fhw[0]
|
||||||
|
frame, height, width = video_fhw
|
||||||
|
rope_key = f"{frame}_{height}_{width}"
|
||||||
|
|
||||||
|
if rope_key not in self.rope_cache:
|
||||||
|
seq_lens = frame * height * width
|
||||||
|
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
||||||
|
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
||||||
|
freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
|
||||||
|
if self.scale_rope:
|
||||||
|
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
|
||||||
|
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
|
||||||
|
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
|
||||||
|
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
|
||||||
|
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
|
||||||
|
|
||||||
|
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
|
||||||
|
self.rope_cache[rope_key] = freqs.clone().contiguous()
|
||||||
|
vid_freqs = self.rope_cache[rope_key]
|
||||||
|
|
||||||
|
if self.scale_rope:
|
||||||
|
max_vid_index = max(height // 2, width // 2)
|
||||||
|
else:
|
||||||
|
max_vid_index = max(height, width)
|
||||||
|
|
||||||
|
max_len = max(txt_seq_lens)
|
||||||
|
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
|
||||||
|
|
||||||
|
return vid_freqs, txt_freqs
|
||||||
|
|
||||||
|
|
||||||
|
class QwenDoubleStreamAttnProcessor2_0:
|
||||||
|
"""
|
||||||
|
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
|
||||||
|
implements joint attention computation where text and image streams are processed together.
|
||||||
|
"""
|
||||||
|
|
||||||
|
_attention_backend = None
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
if not hasattr(F, "scaled_dot_product_attention"):
|
||||||
|
raise ImportError(
|
||||||
|
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
attn: Attention,
|
||||||
|
hidden_states: torch.FloatTensor, # Image stream
|
||||||
|
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
||||||
|
encoder_hidden_states_mask: torch.FloatTensor = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
if encoder_hidden_states is None:
|
||||||
|
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
|
||||||
|
|
||||||
|
seq_txt = encoder_hidden_states.shape[1]
|
||||||
|
|
||||||
|
# Compute QKV for image stream (sample projections)
|
||||||
|
img_query = attn.to_q(hidden_states)
|
||||||
|
img_key = attn.to_k(hidden_states)
|
||||||
|
img_value = attn.to_v(hidden_states)
|
||||||
|
|
||||||
|
# Compute QKV for text stream (context projections)
|
||||||
|
txt_query = attn.add_q_proj(encoder_hidden_states)
|
||||||
|
txt_key = attn.add_k_proj(encoder_hidden_states)
|
||||||
|
txt_value = attn.add_v_proj(encoder_hidden_states)
|
||||||
|
|
||||||
|
# Reshape for multi-head attention
|
||||||
|
img_query = img_query.unflatten(-1, (attn.heads, -1))
|
||||||
|
img_key = img_key.unflatten(-1, (attn.heads, -1))
|
||||||
|
img_value = img_value.unflatten(-1, (attn.heads, -1))
|
||||||
|
|
||||||
|
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
|
||||||
|
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
|
||||||
|
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
|
||||||
|
|
||||||
|
# Apply QK normalization
|
||||||
|
if attn.norm_q is not None:
|
||||||
|
img_query = attn.norm_q(img_query)
|
||||||
|
if attn.norm_k is not None:
|
||||||
|
img_key = attn.norm_k(img_key)
|
||||||
|
if attn.norm_added_q is not None:
|
||||||
|
txt_query = attn.norm_added_q(txt_query)
|
||||||
|
if attn.norm_added_k is not None:
|
||||||
|
txt_key = attn.norm_added_k(txt_key)
|
||||||
|
|
||||||
|
# Apply RoPE
|
||||||
|
if image_rotary_emb is not None:
|
||||||
|
img_freqs, txt_freqs = image_rotary_emb
|
||||||
|
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
|
||||||
|
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
|
||||||
|
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
|
||||||
|
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
|
||||||
|
|
||||||
|
# Concatenate for joint attention
|
||||||
|
# Order: [text, image]
|
||||||
|
joint_query = torch.cat([txt_query, img_query], dim=1)
|
||||||
|
joint_key = torch.cat([txt_key, img_key], dim=1)
|
||||||
|
joint_value = torch.cat([txt_value, img_value], dim=1)
|
||||||
|
|
||||||
|
# Compute joint attention
|
||||||
|
dtype = joint_query.dtype
|
||||||
|
qkv_list = [joint_query, joint_key, joint_value ]
|
||||||
|
joint_query = joint_key = joint_value = None
|
||||||
|
joint_hidden_states = pay_attention(qkv_list)
|
||||||
|
|
||||||
|
# Reshape back
|
||||||
|
joint_hidden_states = joint_hidden_states.flatten(2, 3)
|
||||||
|
joint_hidden_states = joint_hidden_states.to(dtype)
|
||||||
|
|
||||||
|
# Split attention outputs back
|
||||||
|
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
|
||||||
|
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
|
||||||
|
|
||||||
|
# Apply output projections
|
||||||
|
img_attn_output = attn.to_out[0](img_attn_output)
|
||||||
|
if len(attn.to_out) > 1:
|
||||||
|
img_attn_output = attn.to_out[1](img_attn_output) # dropout
|
||||||
|
|
||||||
|
txt_attn_output = attn.to_add_out(txt_attn_output)
|
||||||
|
|
||||||
|
return img_attn_output, txt_attn_output
|
||||||
|
|
||||||
|
|
||||||
|
class QwenImageTransformerBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.attention_head_dim = attention_head_dim
|
||||||
|
|
||||||
|
# Image processing modules
|
||||||
|
self.img_mod = nn.Sequential(
|
||||||
|
nn.SiLU(),
|
||||||
|
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
||||||
|
)
|
||||||
|
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
||||||
|
self.attn = Attention(
|
||||||
|
query_dim=dim,
|
||||||
|
cross_attention_dim=None, # Enable cross attention for joint computation
|
||||||
|
added_kv_proj_dim=dim, # Enable added KV projections for text stream
|
||||||
|
dim_head=attention_head_dim,
|
||||||
|
heads=num_attention_heads,
|
||||||
|
out_dim=dim,
|
||||||
|
context_pre_only=False,
|
||||||
|
bias=True,
|
||||||
|
processor=QwenDoubleStreamAttnProcessor2_0(),
|
||||||
|
qk_norm=qk_norm,
|
||||||
|
eps=eps,
|
||||||
|
)
|
||||||
|
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
||||||
|
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||||
|
|
||||||
|
# Text processing modules
|
||||||
|
self.txt_mod = nn.Sequential(
|
||||||
|
nn.SiLU(),
|
||||||
|
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
||||||
|
)
|
||||||
|
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
||||||
|
# Text doesn't need separate attention - it's handled by img_attn joint computation
|
||||||
|
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
||||||
|
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||||
|
|
||||||
|
def _modulate(self, x, mod_params):
|
||||||
|
"""Apply modulation to input tensor"""
|
||||||
|
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
||||||
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
encoder_hidden_states: torch.Tensor,
|
||||||
|
encoder_hidden_states_mask: torch.Tensor,
|
||||||
|
temb: torch.Tensor,
|
||||||
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||||
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
# Get modulation parameters for both streams
|
||||||
|
img_mod_params = self.img_mod(temb) # [B, 6*dim]
|
||||||
|
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
|
||||||
|
|
||||||
|
# Split modulation parameters for norm1 and norm2
|
||||||
|
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
||||||
|
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
||||||
|
|
||||||
|
# Process image stream - norm1 + modulation
|
||||||
|
img_normed = self.img_norm1(hidden_states)
|
||||||
|
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
||||||
|
|
||||||
|
# Process text stream - norm1 + modulation
|
||||||
|
txt_normed = self.txt_norm1(encoder_hidden_states)
|
||||||
|
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
||||||
|
|
||||||
|
# Use QwenAttnProcessor2_0 for joint attention computation
|
||||||
|
# This directly implements the DoubleStreamLayerMegatron logic:
|
||||||
|
# 1. Computes QKV for both streams
|
||||||
|
# 2. Applies QK normalization and RoPE
|
||||||
|
# 3. Concatenates and runs joint attention
|
||||||
|
# 4. Splits results back to separate streams
|
||||||
|
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||||
|
attn_output = self.attn(
|
||||||
|
hidden_states=img_modulated, # Image stream (will be processed as "sample")
|
||||||
|
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
|
||||||
|
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||||
|
image_rotary_emb=image_rotary_emb,
|
||||||
|
**joint_attention_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
|
||||||
|
img_attn_output, txt_attn_output = attn_output
|
||||||
|
|
||||||
|
# Apply attention gates and add residual (like in Megatron)
|
||||||
|
hidden_states = hidden_states + img_gate1 * img_attn_output
|
||||||
|
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
||||||
|
|
||||||
|
# Process image stream - norm2 + MLP
|
||||||
|
img_normed2 = self.img_norm2(hidden_states)
|
||||||
|
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
||||||
|
img_mlp_output = self.img_mlp(img_modulated2)
|
||||||
|
hidden_states = hidden_states + img_gate2 * img_mlp_output
|
||||||
|
|
||||||
|
# Process text stream - norm2 + MLP
|
||||||
|
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
||||||
|
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
||||||
|
txt_mlp_output = self.txt_mlp(txt_modulated2)
|
||||||
|
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
|
||||||
|
|
||||||
|
# Clip to prevent overflow for fp16
|
||||||
|
if encoder_hidden_states.dtype == torch.float16:
|
||||||
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
||||||
|
if hidden_states.dtype == torch.float16:
|
||||||
|
hidden_states = hidden_states.clip(-65504, 65504)
|
||||||
|
|
||||||
|
return encoder_hidden_states, hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class QwenImageTransformer2DModel(nn.Module):
|
||||||
|
"""
|
||||||
|
The Transformer model introduced in Qwen.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
patch_size (`int`, defaults to `2`):
|
||||||
|
Patch size to turn the input data into small patches.
|
||||||
|
in_channels (`int`, defaults to `64`):
|
||||||
|
The number of channels in the input.
|
||||||
|
out_channels (`int`, *optional*, defaults to `None`):
|
||||||
|
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
||||||
|
num_layers (`int`, defaults to `60`):
|
||||||
|
The number of layers of dual stream DiT blocks to use.
|
||||||
|
attention_head_dim (`int`, defaults to `128`):
|
||||||
|
The number of dimensions to use for each attention head.
|
||||||
|
num_attention_heads (`int`, defaults to `24`):
|
||||||
|
The number of attention heads to use.
|
||||||
|
joint_attention_dim (`int`, defaults to `3584`):
|
||||||
|
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
||||||
|
`encoder_hidden_states`).
|
||||||
|
guidance_embeds (`bool`, defaults to `False`):
|
||||||
|
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
||||||
|
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
||||||
|
The dimensions to use for the rotary positional embeddings.
|
||||||
|
"""
|
||||||
|
|
||||||
|
_supports_gradient_checkpointing = True
|
||||||
|
_no_split_modules = ["QwenImageTransformerBlock"]
|
||||||
|
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
patch_size: int = 2,
|
||||||
|
in_channels: int = 64,
|
||||||
|
out_channels: Optional[int] = 16,
|
||||||
|
num_layers: int = 60,
|
||||||
|
attention_head_dim: int = 128,
|
||||||
|
num_attention_heads: int = 24,
|
||||||
|
joint_attention_dim: int = 3584,
|
||||||
|
guidance_embeds: bool = False, # TODO: this should probably be removed
|
||||||
|
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.out_channels = out_channels or in_channels
|
||||||
|
self.inner_dim = num_attention_heads * attention_head_dim
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.guidance_embeds = guidance_embeds
|
||||||
|
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
||||||
|
|
||||||
|
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
||||||
|
|
||||||
|
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
||||||
|
|
||||||
|
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
||||||
|
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
||||||
|
|
||||||
|
self.transformer_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
QwenImageTransformerBlock(
|
||||||
|
dim=self.inner_dim,
|
||||||
|
num_attention_heads=num_attention_heads,
|
||||||
|
attention_head_dim=attention_head_dim,
|
||||||
|
)
|
||||||
|
for _ in range(num_layers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||||
|
|
||||||
|
self.gradient_checkpointing = False
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
encoder_hidden_states: torch.Tensor = None,
|
||||||
|
encoder_hidden_states_mask: torch.Tensor = None,
|
||||||
|
timestep: torch.LongTensor = None,
|
||||||
|
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
||||||
|
txt_seq_lens: Optional[List[int]] = None,
|
||||||
|
guidance: torch.Tensor = None, # TODO: this should probably be removed
|
||||||
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
return_dict: bool = True,
|
||||||
|
callback= None,
|
||||||
|
pipeline =None,
|
||||||
|
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
||||||
|
"""
|
||||||
|
The [`QwenTransformer2DModel`] forward method.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
||||||
|
Input `hidden_states`.
|
||||||
|
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
||||||
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||||
|
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
|
||||||
|
Mask of the input conditions.
|
||||||
|
timestep ( `torch.LongTensor`):
|
||||||
|
Used to indicate denoising step.
|
||||||
|
attention_kwargs (`dict`, *optional*):
|
||||||
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||||
|
`self.processor` in
|
||||||
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||||
|
tuple.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||||
|
`tuple` where the first element is the sample tensor.
|
||||||
|
"""
|
||||||
|
if attention_kwargs is not None:
|
||||||
|
attention_kwargs = attention_kwargs.copy()
|
||||||
|
lora_scale = attention_kwargs.pop("scale", 1.0)
|
||||||
|
else:
|
||||||
|
lora_scale = 1.0
|
||||||
|
|
||||||
|
hidden_states = self.img_in(hidden_states)
|
||||||
|
|
||||||
|
timestep = timestep.to(hidden_states.dtype)
|
||||||
|
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
||||||
|
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
||||||
|
|
||||||
|
if guidance is not None:
|
||||||
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
||||||
|
|
||||||
|
temb = (
|
||||||
|
self.time_text_embed(timestep, hidden_states)
|
||||||
|
if guidance is None
|
||||||
|
else self.time_text_embed(timestep, guidance, hidden_states)
|
||||||
|
)
|
||||||
|
|
||||||
|
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
|
||||||
|
|
||||||
|
for index_block, block in enumerate(self.transformer_blocks):
|
||||||
|
if callback != None:
|
||||||
|
callback(-1, None, False, True)
|
||||||
|
if pipeline._interrupt:
|
||||||
|
return [None]
|
||||||
|
encoder_hidden_states, hidden_states = block(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||||
|
temb=temb,
|
||||||
|
image_rotary_emb=image_rotary_emb,
|
||||||
|
joint_attention_kwargs=attention_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Use only the image part (hidden_states) from the dual-stream blocks
|
||||||
|
hidden_states = self.norm_out(hidden_states, temb)
|
||||||
|
output = self.proj_out(hidden_states)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return (output,)
|
||||||
|
|
||||||
|
return Transformer2DModelOutput(sample=output)
|
||||||
Loading…
Reference in New Issue
Block a user