mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-02 05:17:25 +00:00
Format the code (#402)
* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
This commit is contained in:
parent
c709fcf0e7
commit
76e9427657
393
.style.yapf
Normal file
393
.style.yapf
Normal file
@ -0,0 +1,393 @@
|
||||
[style]
|
||||
# Align closing bracket with visual indentation.
|
||||
align_closing_bracket_with_visual_indent=False
|
||||
|
||||
# Allow dictionary keys to exist on multiple lines. For example:
|
||||
#
|
||||
# x = {
|
||||
# ('this is the first element of a tuple',
|
||||
# 'this is the second element of a tuple'):
|
||||
# value,
|
||||
# }
|
||||
allow_multiline_dictionary_keys=False
|
||||
|
||||
# Allow lambdas to be formatted on more than one line.
|
||||
allow_multiline_lambdas=False
|
||||
|
||||
# Allow splitting before a default / named assignment in an argument list.
|
||||
allow_split_before_default_or_named_assigns=False
|
||||
|
||||
# Allow splits before the dictionary value.
|
||||
allow_split_before_dict_value=True
|
||||
|
||||
# Let spacing indicate operator precedence. For example:
|
||||
#
|
||||
# a = 1 * 2 + 3 / 4
|
||||
# b = 1 / 2 - 3 * 4
|
||||
# c = (1 + 2) * (3 - 4)
|
||||
# d = (1 - 2) / (3 + 4)
|
||||
# e = 1 * 2 - 3
|
||||
# f = 1 + 2 + 3 + 4
|
||||
#
|
||||
# will be formatted as follows to indicate precedence:
|
||||
#
|
||||
# a = 1*2 + 3/4
|
||||
# b = 1/2 - 3*4
|
||||
# c = (1+2) * (3-4)
|
||||
# d = (1-2) / (3+4)
|
||||
# e = 1*2 - 3
|
||||
# f = 1 + 2 + 3 + 4
|
||||
#
|
||||
arithmetic_precedence_indication=False
|
||||
|
||||
# Number of blank lines surrounding top-level function and class
|
||||
# definitions.
|
||||
blank_lines_around_top_level_definition=2
|
||||
|
||||
# Insert a blank line before a class-level docstring.
|
||||
blank_line_before_class_docstring=False
|
||||
|
||||
# Insert a blank line before a module docstring.
|
||||
blank_line_before_module_docstring=False
|
||||
|
||||
# Insert a blank line before a 'def' or 'class' immediately nested
|
||||
# within another 'def' or 'class'. For example:
|
||||
#
|
||||
# class Foo:
|
||||
# # <------ this blank line
|
||||
# def method():
|
||||
# ...
|
||||
blank_line_before_nested_class_or_def=True
|
||||
|
||||
# Do not split consecutive brackets. Only relevant when
|
||||
# dedent_closing_brackets is set. For example:
|
||||
#
|
||||
# call_func_that_takes_a_dict(
|
||||
# {
|
||||
# 'key1': 'value1',
|
||||
# 'key2': 'value2',
|
||||
# }
|
||||
# )
|
||||
#
|
||||
# would reformat to:
|
||||
#
|
||||
# call_func_that_takes_a_dict({
|
||||
# 'key1': 'value1',
|
||||
# 'key2': 'value2',
|
||||
# })
|
||||
coalesce_brackets=False
|
||||
|
||||
# The column limit.
|
||||
column_limit=80
|
||||
|
||||
# The style for continuation alignment. Possible values are:
|
||||
#
|
||||
# - SPACE: Use spaces for continuation alignment. This is default behavior.
|
||||
# - FIXED: Use fixed number (CONTINUATION_INDENT_WIDTH) of columns
|
||||
# (ie: CONTINUATION_INDENT_WIDTH/INDENT_WIDTH tabs or
|
||||
# CONTINUATION_INDENT_WIDTH spaces) for continuation alignment.
|
||||
# - VALIGN-RIGHT: Vertically align continuation lines to multiple of
|
||||
# INDENT_WIDTH columns. Slightly right (one tab or a few spaces) if
|
||||
# cannot vertically align continuation lines with indent characters.
|
||||
continuation_align_style=SPACE
|
||||
|
||||
# Indent width used for line continuations.
|
||||
continuation_indent_width=4
|
||||
|
||||
# Put closing brackets on a separate line, dedented, if the bracketed
|
||||
# expression can't fit in a single line. Applies to all kinds of brackets,
|
||||
# including function definitions and calls. For example:
|
||||
#
|
||||
# config = {
|
||||
# 'key1': 'value1',
|
||||
# 'key2': 'value2',
|
||||
# } # <--- this bracket is dedented and on a separate line
|
||||
#
|
||||
# time_series = self.remote_client.query_entity_counters(
|
||||
# entity='dev3246.region1',
|
||||
# key='dns.query_latency_tcp',
|
||||
# transform=Transformation.AVERAGE(window=timedelta(seconds=60)),
|
||||
# start_ts=now()-timedelta(days=3),
|
||||
# end_ts=now(),
|
||||
# ) # <--- this bracket is dedented and on a separate line
|
||||
dedent_closing_brackets=False
|
||||
|
||||
# Disable the heuristic which places each list element on a separate line
|
||||
# if the list is comma-terminated.
|
||||
disable_ending_comma_heuristic=False
|
||||
|
||||
# Place each dictionary entry onto its own line.
|
||||
each_dict_entry_on_separate_line=True
|
||||
|
||||
# Require multiline dictionary even if it would normally fit on one line.
|
||||
# For example:
|
||||
#
|
||||
# config = {
|
||||
# 'key1': 'value1'
|
||||
# }
|
||||
force_multiline_dict=False
|
||||
|
||||
# The regex for an i18n comment. The presence of this comment stops
|
||||
# reformatting of that line, because the comments are required to be
|
||||
# next to the string they translate.
|
||||
i18n_comment=#\..*
|
||||
|
||||
# The i18n function call names. The presence of this function stops
|
||||
# reformattting on that line, because the string it has cannot be moved
|
||||
# away from the i18n comment.
|
||||
i18n_function_call=N_, _
|
||||
|
||||
# Indent blank lines.
|
||||
indent_blank_lines=False
|
||||
|
||||
# Put closing brackets on a separate line, indented, if the bracketed
|
||||
# expression can't fit in a single line. Applies to all kinds of brackets,
|
||||
# including function definitions and calls. For example:
|
||||
#
|
||||
# config = {
|
||||
# 'key1': 'value1',
|
||||
# 'key2': 'value2',
|
||||
# } # <--- this bracket is indented and on a separate line
|
||||
#
|
||||
# time_series = self.remote_client.query_entity_counters(
|
||||
# entity='dev3246.region1',
|
||||
# key='dns.query_latency_tcp',
|
||||
# transform=Transformation.AVERAGE(window=timedelta(seconds=60)),
|
||||
# start_ts=now()-timedelta(days=3),
|
||||
# end_ts=now(),
|
||||
# ) # <--- this bracket is indented and on a separate line
|
||||
indent_closing_brackets=False
|
||||
|
||||
# Indent the dictionary value if it cannot fit on the same line as the
|
||||
# dictionary key. For example:
|
||||
#
|
||||
# config = {
|
||||
# 'key1':
|
||||
# 'value1',
|
||||
# 'key2': value1 +
|
||||
# value2,
|
||||
# }
|
||||
indent_dictionary_value=True
|
||||
|
||||
# The number of columns to use for indentation.
|
||||
indent_width=4
|
||||
|
||||
# Join short lines into one line. E.g., single line 'if' statements.
|
||||
join_multiple_lines=False
|
||||
|
||||
# Do not include spaces around selected binary operators. For example:
|
||||
#
|
||||
# 1 + 2 * 3 - 4 / 5
|
||||
#
|
||||
# will be formatted as follows when configured with "*,/":
|
||||
#
|
||||
# 1 + 2*3 - 4/5
|
||||
no_spaces_around_selected_binary_operators=
|
||||
|
||||
# Use spaces around default or named assigns.
|
||||
spaces_around_default_or_named_assign=False
|
||||
|
||||
# Adds a space after the opening '{' and before the ending '}' dict delimiters.
|
||||
#
|
||||
# {1: 2}
|
||||
#
|
||||
# will be formatted as:
|
||||
#
|
||||
# { 1: 2 }
|
||||
spaces_around_dict_delimiters=False
|
||||
|
||||
# Adds a space after the opening '[' and before the ending ']' list delimiters.
|
||||
#
|
||||
# [1, 2]
|
||||
#
|
||||
# will be formatted as:
|
||||
#
|
||||
# [ 1, 2 ]
|
||||
spaces_around_list_delimiters=False
|
||||
|
||||
# Use spaces around the power operator.
|
||||
spaces_around_power_operator=False
|
||||
|
||||
# Use spaces around the subscript / slice operator. For example:
|
||||
#
|
||||
# my_list[1 : 10 : 2]
|
||||
spaces_around_subscript_colon=False
|
||||
|
||||
# Adds a space after the opening '(' and before the ending ')' tuple delimiters.
|
||||
#
|
||||
# (1, 2, 3)
|
||||
#
|
||||
# will be formatted as:
|
||||
#
|
||||
# ( 1, 2, 3 )
|
||||
spaces_around_tuple_delimiters=False
|
||||
|
||||
# The number of spaces required before a trailing comment.
|
||||
# This can be a single value (representing the number of spaces
|
||||
# before each trailing comment) or list of values (representing
|
||||
# alignment column values; trailing comments within a block will
|
||||
# be aligned to the first column value that is greater than the maximum
|
||||
# line length within the block). For example:
|
||||
#
|
||||
# With spaces_before_comment=5:
|
||||
#
|
||||
# 1 + 1 # Adding values
|
||||
#
|
||||
# will be formatted as:
|
||||
#
|
||||
# 1 + 1 # Adding values <-- 5 spaces between the end of the statement and comment
|
||||
#
|
||||
# With spaces_before_comment=15, 20:
|
||||
#
|
||||
# 1 + 1 # Adding values
|
||||
# two + two # More adding
|
||||
#
|
||||
# longer_statement # This is a longer statement
|
||||
# short # This is a shorter statement
|
||||
#
|
||||
# a_very_long_statement_that_extends_beyond_the_final_column # Comment
|
||||
# short # This is a shorter statement
|
||||
#
|
||||
# will be formatted as:
|
||||
#
|
||||
# 1 + 1 # Adding values <-- end of line comments in block aligned to col 15
|
||||
# two + two # More adding
|
||||
#
|
||||
# longer_statement # This is a longer statement <-- end of line comments in block aligned to col 20
|
||||
# short # This is a shorter statement
|
||||
#
|
||||
# a_very_long_statement_that_extends_beyond_the_final_column # Comment <-- the end of line comments are aligned based on the line length
|
||||
# short # This is a shorter statement
|
||||
#
|
||||
spaces_before_comment=2
|
||||
|
||||
# Insert a space between the ending comma and closing bracket of a list,
|
||||
# etc.
|
||||
space_between_ending_comma_and_closing_bracket=False
|
||||
|
||||
# Use spaces inside brackets, braces, and parentheses. For example:
|
||||
#
|
||||
# method_call( 1 )
|
||||
# my_dict[ 3 ][ 1 ][ get_index( *args, **kwargs ) ]
|
||||
# my_set = { 1, 2, 3 }
|
||||
space_inside_brackets=False
|
||||
|
||||
# Split before arguments
|
||||
split_all_comma_separated_values=False
|
||||
|
||||
# Split before arguments, but do not split all subexpressions recursively
|
||||
# (unless needed).
|
||||
split_all_top_level_comma_separated_values=False
|
||||
|
||||
# Split before arguments if the argument list is terminated by a
|
||||
# comma.
|
||||
split_arguments_when_comma_terminated=False
|
||||
|
||||
# Set to True to prefer splitting before '+', '-', '*', '/', '//', or '@'
|
||||
# rather than after.
|
||||
split_before_arithmetic_operator=False
|
||||
|
||||
# Set to True to prefer splitting before '&', '|' or '^' rather than
|
||||
# after.
|
||||
split_before_bitwise_operator=False
|
||||
|
||||
# Split before the closing bracket if a list or dict literal doesn't fit on
|
||||
# a single line.
|
||||
split_before_closing_bracket=True
|
||||
|
||||
# Split before a dictionary or set generator (comp_for). For example, note
|
||||
# the split before the 'for':
|
||||
#
|
||||
# foo = {
|
||||
# variable: 'Hello world, have a nice day!'
|
||||
# for variable in bar if variable != 42
|
||||
# }
|
||||
split_before_dict_set_generator=False
|
||||
|
||||
# Split before the '.' if we need to split a longer expression:
|
||||
#
|
||||
# foo = ('This is a really long string: {}, {}, {}, {}'.format(a, b, c, d))
|
||||
#
|
||||
# would reformat to something like:
|
||||
#
|
||||
# foo = ('This is a really long string: {}, {}, {}, {}'
|
||||
# .format(a, b, c, d))
|
||||
split_before_dot=False
|
||||
|
||||
# Split after the opening paren which surrounds an expression if it doesn't
|
||||
# fit on a single line.
|
||||
split_before_expression_after_opening_paren=True
|
||||
|
||||
# If an argument / parameter list is going to be split, then split before
|
||||
# the first argument.
|
||||
split_before_first_argument=False
|
||||
|
||||
# Set to True to prefer splitting before 'and' or 'or' rather than
|
||||
# after.
|
||||
split_before_logical_operator=False
|
||||
|
||||
# Split named assignments onto individual lines.
|
||||
split_before_named_assigns=True
|
||||
|
||||
# Set to True to split list comprehensions and generators that have
|
||||
# non-trivial expressions and multiple clauses before each of these
|
||||
# clauses. For example:
|
||||
#
|
||||
# result = [
|
||||
# a_long_var + 100 for a_long_var in xrange(1000)
|
||||
# if a_long_var % 10]
|
||||
#
|
||||
# would reformat to something like:
|
||||
#
|
||||
# result = [
|
||||
# a_long_var + 100
|
||||
# for a_long_var in xrange(1000)
|
||||
# if a_long_var % 10]
|
||||
split_complex_comprehension=True
|
||||
|
||||
# The penalty for splitting right after the opening bracket.
|
||||
split_penalty_after_opening_bracket=300
|
||||
|
||||
# The penalty for splitting the line after a unary operator.
|
||||
split_penalty_after_unary_operator=10000
|
||||
|
||||
# The penalty of splitting the line around the '+', '-', '*', '/', '//',
|
||||
# ``%``, and '@' operators.
|
||||
split_penalty_arithmetic_operator=300
|
||||
|
||||
# The penalty for splitting right before an if expression.
|
||||
split_penalty_before_if_expr=0
|
||||
|
||||
# The penalty of splitting the line around the '&', '|', and '^'
|
||||
# operators.
|
||||
split_penalty_bitwise_operator=300
|
||||
|
||||
# The penalty for splitting a list comprehension or generator
|
||||
# expression.
|
||||
split_penalty_comprehension=2100
|
||||
|
||||
# The penalty for characters over the column limit.
|
||||
split_penalty_excess_character=7000
|
||||
|
||||
# The penalty incurred by adding a line split to the unwrapped line. The
|
||||
# more line splits added the higher the penalty.
|
||||
split_penalty_for_added_line_split=30
|
||||
|
||||
# The penalty of splitting a list of "import as" names. For example:
|
||||
#
|
||||
# from a_very_long_or_indented_module_name_yada_yad import (long_argument_1,
|
||||
# long_argument_2,
|
||||
# long_argument_3)
|
||||
#
|
||||
# would reformat to something like:
|
||||
#
|
||||
# from a_very_long_or_indented_module_name_yada_yad import (
|
||||
# long_argument_1, long_argument_2, long_argument_3)
|
||||
split_penalty_import_names=0
|
||||
|
||||
# The penalty of splitting the line around the 'and' and 'or'
|
||||
# operators.
|
||||
split_penalty_logical_operator=300
|
||||
|
||||
# Use the Tab character for indentation.
|
||||
use_tabs=False
|
5
Makefile
Normal file
5
Makefile
Normal file
@ -0,0 +1,5 @@
|
||||
.PHONY: format
|
||||
|
||||
format:
|
||||
isort generate.py gradio wan
|
||||
yapf -i -r *.py generate.py gradio wan
|
79
generate.py
79
generate.py
@ -1,28 +1,33 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
from datetime import datetime
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from datetime import datetime
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
import torch, random
|
||||
import random
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from PIL import Image
|
||||
|
||||
import wan
|
||||
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
||||
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
from wan.utils.utils import cache_video, cache_image, str2bool
|
||||
from wan.utils.utils import cache_image, cache_video, str2bool
|
||||
|
||||
|
||||
EXAMPLE_PROMPT = {
|
||||
"t2v-1.3B": {
|
||||
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||||
"prompt":
|
||||
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||||
},
|
||||
"t2v-14B": {
|
||||
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||||
"prompt":
|
||||
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||||
},
|
||||
"t2i-14B": {
|
||||
"prompt": "一个朴素端庄的美人",
|
||||
@ -34,20 +39,24 @@ EXAMPLE_PROMPT = {
|
||||
"examples/i2v_input.JPG",
|
||||
},
|
||||
"flf2v-14B": {
|
||||
"prompt":
|
||||
"CG动画风格,一只蓝色的小鸟从地面起飞,煽动翅膀。小鸟羽毛细腻,胸前有独特的花纹,背景是蓝天白云,阳光明媚。镜跟随小鸟向上移动,展现出小鸟飞翔的姿态和天空的广阔。近景,仰视视角。",
|
||||
"first_frame":
|
||||
"examples/flf2v_input_first_frame.png",
|
||||
"last_frame":
|
||||
"examples/flf2v_input_last_frame.png",
|
||||
"prompt":
|
||||
"CG动画风格,一只蓝色的小鸟从地面起飞,煽动翅膀。小鸟羽毛细腻,胸前有独特的花纹,背景是蓝天白云,阳光明媚。镜跟随小鸟向上移动,展现出小鸟飞翔的姿态和天空的广阔。近景,仰视视角。",
|
||||
"first_frame":
|
||||
"examples/flf2v_input_first_frame.png",
|
||||
"last_frame":
|
||||
"examples/flf2v_input_last_frame.png",
|
||||
},
|
||||
"vace-1.3B": {
|
||||
"src_ref_images": 'examples/girl.png,examples/snake.png',
|
||||
"prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
|
||||
"src_ref_images":
|
||||
'examples/girl.png,examples/snake.png',
|
||||
"prompt":
|
||||
"在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
|
||||
},
|
||||
"vace-14B": {
|
||||
"src_ref_images": 'examples/girl.png,examples/snake.png',
|
||||
"prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
|
||||
"src_ref_images":
|
||||
'examples/girl.png,examples/snake.png',
|
||||
"prompt":
|
||||
"在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
|
||||
}
|
||||
}
|
||||
|
||||
@ -64,7 +73,6 @@ def _validate_args(args):
|
||||
if "i2v" in args.task:
|
||||
args.sample_steps = 40
|
||||
|
||||
|
||||
if args.sample_shift is None:
|
||||
args.sample_shift = 5.0
|
||||
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
|
||||
@ -72,7 +80,6 @@ def _validate_args(args):
|
||||
elif "flf2v" in args.task or "vace" in args.task:
|
||||
args.sample_shift = 16
|
||||
|
||||
|
||||
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
|
||||
if args.frame_num is None:
|
||||
args.frame_num = 1 if "t2i" in args.task else 81
|
||||
@ -167,7 +174,8 @@ def _parse_args():
|
||||
"--src_ref_images",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The file list of the source reference images. Separated by ','. Default None.")
|
||||
help="The file list of the source reference images. Separated by ','. Default None."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
type=str,
|
||||
@ -209,12 +217,14 @@ def _parse_args():
|
||||
"--first_frame",
|
||||
type=str,
|
||||
default=None,
|
||||
help="[first-last frame to video] The image (first frame) to generate the video from.")
|
||||
help="[first-last frame to video] The image (first frame) to generate the video from."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--last_frame",
|
||||
type=str,
|
||||
default=None,
|
||||
help="[first-last frame to video] The image (last frame) to generate the video from.")
|
||||
help="[first-last frame to video] The image (last frame) to generate the video from."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_solver",
|
||||
type=str,
|
||||
@ -281,8 +291,10 @@ def generate(args):
|
||||
|
||||
if args.ulysses_size > 1 or args.ring_size > 1:
|
||||
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
|
||||
from xfuser.core.distributed import (initialize_model_parallel,
|
||||
init_distributed_environment)
|
||||
from xfuser.core.distributed import (
|
||||
init_distributed_environment,
|
||||
initialize_model_parallel,
|
||||
)
|
||||
init_distributed_environment(
|
||||
rank=dist.get_rank(), world_size=dist.get_world_size())
|
||||
|
||||
@ -295,7 +307,8 @@ def generate(args):
|
||||
if args.use_prompt_extend:
|
||||
if args.prompt_extend_method == "dashscope":
|
||||
prompt_expander = DashScopePromptExpander(
|
||||
model_name=args.prompt_extend_model, is_vl="i2v" in args.task or "flf2v" in args.task)
|
||||
model_name=args.prompt_extend_model,
|
||||
is_vl="i2v" in args.task or "flf2v" in args.task)
|
||||
elif args.prompt_extend_method == "local_qwen":
|
||||
prompt_expander = QwenPromptExpander(
|
||||
model_name=args.prompt_extend_model,
|
||||
@ -482,21 +495,22 @@ def generate(args):
|
||||
sampling_steps=args.sample_steps,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model
|
||||
)
|
||||
offload_model=args.offload_model)
|
||||
elif "vace" in args.task:
|
||||
if args.prompt is None:
|
||||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||||
args.src_video = EXAMPLE_PROMPT[args.task].get("src_video", None)
|
||||
args.src_mask = EXAMPLE_PROMPT[args.task].get("src_mask", None)
|
||||
args.src_ref_images = EXAMPLE_PROMPT[args.task].get("src_ref_images", None)
|
||||
args.src_ref_images = EXAMPLE_PROMPT[args.task].get(
|
||||
"src_ref_images", None)
|
||||
|
||||
logging.info(f"Input prompt: {args.prompt}")
|
||||
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
|
||||
logging.info("Extending prompt ...")
|
||||
if rank == 0:
|
||||
prompt = prompt_expander.forward(args.prompt)
|
||||
logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
|
||||
logging.info(
|
||||
f"Prompt extended from '{args.prompt}' to '{prompt}'")
|
||||
input_prompt = [prompt]
|
||||
else:
|
||||
input_prompt = [None]
|
||||
@ -517,10 +531,11 @@ def generate(args):
|
||||
t5_cpu=args.t5_cpu,
|
||||
)
|
||||
|
||||
src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
|
||||
[args.src_mask],
|
||||
[None if args.src_ref_images is None else args.src_ref_images.split(',')],
|
||||
args.frame_num, SIZE_CONFIGS[args.size], device)
|
||||
src_video, src_mask, src_ref_images = wan_vace.prepare_source(
|
||||
[args.src_video], [args.src_mask], [
|
||||
None if args.src_ref_images is None else
|
||||
args.src_ref_images.split(',')
|
||||
], args.frame_num, SIZE_CONFIGS[args.size], device)
|
||||
|
||||
logging.info(f"Generating video...")
|
||||
video = wan_vace.generate(
|
||||
|
@ -1,8 +1,8 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
import gc
|
||||
import os.path as osp
|
||||
import os
|
||||
import os.path as osp
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
@ -11,7 +11,8 @@ import gradio as gr
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# Model
|
||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
sys.path.insert(
|
||||
0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
import wan
|
||||
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
@ -69,13 +70,13 @@ def prompt_enc(prompt, img_first, img_last, tar_lang):
|
||||
return prompt_output.prompt
|
||||
|
||||
|
||||
def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, resolution, sd_steps,
|
||||
guide_scale, shift_scale, seed, n_prompt):
|
||||
def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last,
|
||||
resolution, sd_steps, guide_scale, shift_scale, seed,
|
||||
n_prompt):
|
||||
|
||||
if resolution == '------':
|
||||
print(
|
||||
'Please specify the resolution ckpt dir or specify the resolution'
|
||||
)
|
||||
'Please specify the resolution ckpt dir or specify the resolution')
|
||||
return None
|
||||
|
||||
else:
|
||||
@ -94,9 +95,7 @@ def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, re
|
||||
offload_model=True)
|
||||
pass
|
||||
else:
|
||||
print(
|
||||
'Sorry, currently only 720P is supported.'
|
||||
)
|
||||
print('Sorry, currently only 720P is supported.')
|
||||
return None
|
||||
|
||||
cache_video(
|
||||
@ -191,14 +190,17 @@ def gradio_interface():
|
||||
|
||||
run_p_button.click(
|
||||
fn=prompt_enc,
|
||||
inputs=[flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, tar_lang],
|
||||
inputs=[
|
||||
flf2vid_prompt, flf2vid_image_first, flf2vid_image_last,
|
||||
tar_lang
|
||||
],
|
||||
outputs=[flf2vid_prompt])
|
||||
|
||||
run_flf2v_button.click(
|
||||
fn=flf2v_generation,
|
||||
inputs=[
|
||||
flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, resolution, sd_steps,
|
||||
guide_scale, shift_scale, seed, n_prompt
|
||||
flf2vid_prompt, flf2vid_image_first, flf2vid_image_last,
|
||||
resolution, sd_steps, guide_scale, shift_scale, seed, n_prompt
|
||||
],
|
||||
outputs=[result_gallery],
|
||||
)
|
||||
|
@ -1,8 +1,8 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
import gc
|
||||
import os.path as osp
|
||||
import os
|
||||
import os.path as osp
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
@ -11,7 +11,8 @@ import gradio as gr
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# Model
|
||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
sys.path.insert(
|
||||
0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
import wan
|
||||
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
import os
|
||||
import os.path as osp
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
@ -10,7 +10,8 @@ import gradio as gr
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# Model
|
||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
sys.path.insert(
|
||||
0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
import wan
|
||||
from wan.configs import WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
import os
|
||||
import os.path as osp
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
@ -10,7 +10,8 @@ import gradio as gr
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# Model
|
||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
sys.path.insert(
|
||||
0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
import wan
|
||||
from wan.configs import WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
import os
|
||||
import os.path as osp
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
@ -10,7 +10,8 @@ import gradio as gr
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# Model
|
||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
sys.path.insert(
|
||||
0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
import wan
|
||||
from wan.configs import WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
|
200
gradio/vace.py
200
gradio/vace.py
@ -2,36 +2,48 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import os
|
||||
import sys
|
||||
import datetime
|
||||
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import gradio as gr
|
||||
|
||||
sys.path.insert(0, os.path.sep.join(os.path.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
sys.path.insert(
|
||||
0, os.path.sep.join(os.path.realpath(__file__).split(os.path.sep)[:-2]))
|
||||
import wan
|
||||
from wan import WanVace, WanVaceMP
|
||||
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS
|
||||
from wan.configs import SIZE_CONFIGS, WAN_CONFIGS
|
||||
|
||||
|
||||
class FixedSizeQueue:
|
||||
|
||||
def __init__(self, max_size):
|
||||
self.max_size = max_size
|
||||
self.queue = []
|
||||
|
||||
def add(self, item):
|
||||
self.queue.insert(0, item)
|
||||
if len(self.queue) > self.max_size:
|
||||
self.queue.pop()
|
||||
|
||||
def get(self):
|
||||
return self.queue
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.queue)
|
||||
|
||||
|
||||
class VACEInference:
|
||||
def __init__(self, cfg, skip_load=False, gallery_share=True, gallery_share_limit=5):
|
||||
|
||||
def __init__(self,
|
||||
cfg,
|
||||
skip_load=False,
|
||||
gallery_share=True,
|
||||
gallery_share_limit=5):
|
||||
self.cfg = cfg
|
||||
self.save_dir = cfg.save_dir
|
||||
self.gallery_share = gallery_share
|
||||
@ -53,9 +65,7 @@ class VACEInference:
|
||||
checkpoint_dir=cfg.ckpt_dir,
|
||||
use_usp=True,
|
||||
ulysses_size=cfg.ulysses_size,
|
||||
ring_size=cfg.ring_size
|
||||
)
|
||||
|
||||
ring_size=cfg.ring_size)
|
||||
|
||||
def create_ui(self, *args, **kwargs):
|
||||
gr.Markdown("""
|
||||
@ -80,30 +90,33 @@ class VACEInference:
|
||||
with gr.Row(variant='panel', equal_height=True):
|
||||
with gr.Column(scale=1, min_width=0):
|
||||
with gr.Row(equal_height=True):
|
||||
self.src_ref_image_1 = gr.Image(label='src_ref_image_1',
|
||||
height=200,
|
||||
interactive=True,
|
||||
type='filepath',
|
||||
image_mode='RGB',
|
||||
sources=['upload'],
|
||||
elem_id="src_ref_image_1",
|
||||
format='png')
|
||||
self.src_ref_image_2 = gr.Image(label='src_ref_image_2',
|
||||
height=200,
|
||||
interactive=True,
|
||||
type='filepath',
|
||||
image_mode='RGB',
|
||||
sources=['upload'],
|
||||
elem_id="src_ref_image_2",
|
||||
format='png')
|
||||
self.src_ref_image_3 = gr.Image(label='src_ref_image_3',
|
||||
height=200,
|
||||
interactive=True,
|
||||
type='filepath',
|
||||
image_mode='RGB',
|
||||
sources=['upload'],
|
||||
elem_id="src_ref_image_3",
|
||||
format='png')
|
||||
self.src_ref_image_1 = gr.Image(
|
||||
label='src_ref_image_1',
|
||||
height=200,
|
||||
interactive=True,
|
||||
type='filepath',
|
||||
image_mode='RGB',
|
||||
sources=['upload'],
|
||||
elem_id="src_ref_image_1",
|
||||
format='png')
|
||||
self.src_ref_image_2 = gr.Image(
|
||||
label='src_ref_image_2',
|
||||
height=200,
|
||||
interactive=True,
|
||||
type='filepath',
|
||||
image_mode='RGB',
|
||||
sources=['upload'],
|
||||
elem_id="src_ref_image_2",
|
||||
format='png')
|
||||
self.src_ref_image_3 = gr.Image(
|
||||
label='src_ref_image_3',
|
||||
height=200,
|
||||
interactive=True,
|
||||
type='filepath',
|
||||
image_mode='RGB',
|
||||
sources=['upload'],
|
||||
elem_id="src_ref_image_3",
|
||||
format='png')
|
||||
with gr.Row(variant='panel', equal_height=True):
|
||||
with gr.Column(scale=1):
|
||||
self.prompt = gr.Textbox(
|
||||
@ -158,10 +171,8 @@ class VACEInference:
|
||||
step=0.5,
|
||||
value=5.0,
|
||||
interactive=True)
|
||||
self.infer_seed = gr.Slider(minimum=-1,
|
||||
maximum=10000000,
|
||||
value=2025,
|
||||
label="Seed")
|
||||
self.infer_seed = gr.Slider(
|
||||
minimum=-1, maximum=10000000, value=2025, label="Seed")
|
||||
#
|
||||
with gr.Accordion(label="Usable without source video", open=False):
|
||||
with gr.Row(equal_height=True):
|
||||
@ -176,13 +187,9 @@ class VACEInference:
|
||||
value=1280,
|
||||
interactive=True)
|
||||
self.frame_rate = gr.Textbox(
|
||||
label='frame_rate',
|
||||
value=16,
|
||||
interactive=True)
|
||||
label='frame_rate', value=16, interactive=True)
|
||||
self.num_frames = gr.Textbox(
|
||||
label='num_frames',
|
||||
value=81,
|
||||
interactive=True)
|
||||
label='num_frames', value=81, interactive=True)
|
||||
#
|
||||
with gr.Row(equal_height=True):
|
||||
with gr.Column(scale=5):
|
||||
@ -201,17 +208,22 @@ class VACEInference:
|
||||
allow_preview=True,
|
||||
preview=True)
|
||||
|
||||
|
||||
def generate(self, output_gallery, src_video, src_mask, src_ref_image_1, src_ref_image_2, src_ref_image_3, prompt, negative_prompt, shift_scale, sample_steps, context_scale, guide_scale, infer_seed, output_height, output_width, frame_rate, num_frames):
|
||||
output_height, output_width, frame_rate, num_frames = int(output_height), int(output_width), int(frame_rate), int(num_frames)
|
||||
src_ref_images = [x for x in [src_ref_image_1, src_ref_image_2, src_ref_image_3] if
|
||||
x is not None]
|
||||
src_video, src_mask, src_ref_images = self.pipe.prepare_source([src_video],
|
||||
[src_mask],
|
||||
[src_ref_images],
|
||||
num_frames=num_frames,
|
||||
image_size=SIZE_CONFIGS[f"{output_width}*{output_height}"],
|
||||
device=self.pipe.device)
|
||||
def generate(self, output_gallery, src_video, src_mask, src_ref_image_1,
|
||||
src_ref_image_2, src_ref_image_3, prompt, negative_prompt,
|
||||
shift_scale, sample_steps, context_scale, guide_scale,
|
||||
infer_seed, output_height, output_width, frame_rate,
|
||||
num_frames):
|
||||
output_height, output_width, frame_rate, num_frames = int(
|
||||
output_height), int(output_width), int(frame_rate), int(num_frames)
|
||||
src_ref_images = [
|
||||
x for x in [src_ref_image_1, src_ref_image_2, src_ref_image_3]
|
||||
if x is not None
|
||||
]
|
||||
src_video, src_mask, src_ref_images = self.pipe.prepare_source(
|
||||
[src_video], [src_mask], [src_ref_images],
|
||||
num_frames=num_frames,
|
||||
image_size=SIZE_CONFIGS[f"{output_width}*{output_height}"],
|
||||
device=self.pipe.device)
|
||||
video = self.pipe.generate(
|
||||
prompt,
|
||||
src_video,
|
||||
@ -228,10 +240,17 @@ class VACEInference:
|
||||
|
||||
name = '{0:%Y%m%d%-H%M%S}'.format(datetime.datetime.now())
|
||||
video_path = os.path.join(self.save_dir, f'cur_gallery_{name}.mp4')
|
||||
video_frames = (torch.clamp(video / 2 + 0.5, min=0.0, max=1.0).permute(1, 2, 3, 0) * 255).cpu().numpy().astype(np.uint8)
|
||||
video_frames = (
|
||||
torch.clamp(video / 2 + 0.5, min=0.0, max=1.0).permute(1, 2, 3, 0) *
|
||||
255).cpu().numpy().astype(np.uint8)
|
||||
|
||||
try:
|
||||
writer = imageio.get_writer(video_path, fps=frame_rate, codec='libx264', quality=8, macro_block_size=1)
|
||||
writer = imageio.get_writer(
|
||||
video_path,
|
||||
fps=frame_rate,
|
||||
codec='libx264',
|
||||
quality=8,
|
||||
macro_block_size=1)
|
||||
for frame in video_frames:
|
||||
writer.append_data(frame)
|
||||
writer.close()
|
||||
@ -246,25 +265,57 @@ class VACEInference:
|
||||
return [video_path]
|
||||
|
||||
def set_callbacks(self, **kwargs):
|
||||
self.gen_inputs = [self.output_gallery, self.src_video, self.src_mask, self.src_ref_image_1, self.src_ref_image_2, self.src_ref_image_3, self.prompt, self.negative_prompt, self.shift_scale, self.sample_steps, self.context_scale, self.guide_scale, self.infer_seed, self.output_height, self.output_width, self.frame_rate, self.num_frames]
|
||||
self.gen_inputs = [
|
||||
self.output_gallery, self.src_video, self.src_mask,
|
||||
self.src_ref_image_1, self.src_ref_image_2, self.src_ref_image_3,
|
||||
self.prompt, self.negative_prompt, self.shift_scale,
|
||||
self.sample_steps, self.context_scale, self.guide_scale,
|
||||
self.infer_seed, self.output_height, self.output_width,
|
||||
self.frame_rate, self.num_frames
|
||||
]
|
||||
self.gen_outputs = [self.output_gallery]
|
||||
self.generate_button.click(self.generate,
|
||||
inputs=self.gen_inputs,
|
||||
outputs=self.gen_outputs,
|
||||
queue=True)
|
||||
self.refresh_button.click(lambda x: self.gallery_share_data.get() if self.gallery_share else x, inputs=[self.output_gallery], outputs=[self.output_gallery])
|
||||
self.generate_button.click(
|
||||
self.generate,
|
||||
inputs=self.gen_inputs,
|
||||
outputs=self.gen_outputs,
|
||||
queue=True)
|
||||
self.refresh_button.click(
|
||||
lambda x: self.gallery_share_data.get()
|
||||
if self.gallery_share else x,
|
||||
inputs=[self.output_gallery],
|
||||
outputs=[self.output_gallery])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Argparser for VACE-WAN Demo:\n')
|
||||
parser.add_argument('--server_port', dest='server_port', help='', type=int, default=7860)
|
||||
parser.add_argument('--server_name', dest='server_name', help='', default='0.0.0.0')
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Argparser for VACE-WAN Demo:\n')
|
||||
parser.add_argument(
|
||||
'--server_port', dest='server_port', help='', type=int, default=7860)
|
||||
parser.add_argument(
|
||||
'--server_name', dest='server_name', help='', default='0.0.0.0')
|
||||
parser.add_argument('--root_path', dest='root_path', help='', default=None)
|
||||
parser.add_argument('--save_dir', dest='save_dir', help='', default='cache')
|
||||
parser.add_argument("--mp", action="store_true", help="Use Multi-GPUs",)
|
||||
parser.add_argument("--model_name", type=str, default="vace-14B", choices=list(WAN_CONFIGS.keys()), help="The model name to run.")
|
||||
parser.add_argument("--ulysses_size", type=int, default=1, help="The size of the ulysses parallelism in DiT.")
|
||||
parser.add_argument("--ring_size", type=int, default=1, help="The size of the ring attention parallelism in DiT.")
|
||||
parser.add_argument(
|
||||
"--mp",
|
||||
action="store_true",
|
||||
help="Use Multi-GPUs",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
default="vace-14B",
|
||||
choices=list(WAN_CONFIGS.keys()),
|
||||
help="The model name to run.")
|
||||
parser.add_argument(
|
||||
"--ulysses_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The size of the ulysses parallelism in DiT.")
|
||||
parser.add_argument(
|
||||
"--ring_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The size of the ring attention parallelism in DiT.")
|
||||
parser.add_argument(
|
||||
"--ckpt_dir",
|
||||
type=str,
|
||||
@ -284,12 +335,15 @@ if __name__ == '__main__':
|
||||
os.makedirs(args.save_dir, exist_ok=True)
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
infer_gr = VACEInference(args, skip_load=False, gallery_share=True, gallery_share_limit=5)
|
||||
infer_gr = VACEInference(
|
||||
args, skip_load=False, gallery_share=True, gallery_share_limit=5)
|
||||
infer_gr.create_ui()
|
||||
infer_gr.set_callbacks()
|
||||
allowed_paths = [args.save_dir]
|
||||
demo.queue(status_update_rate=1).launch(server_name=args.server_name,
|
||||
server_port=args.server_port,
|
||||
root_path=args.root_path,
|
||||
allowed_paths=allowed_paths,
|
||||
show_error=True, debug=True)
|
||||
demo.queue(status_update_rate=1).launch(
|
||||
server_name=args.server_name,
|
||||
server_port=args.server_port,
|
||||
root_path=args.root_path,
|
||||
allowed_paths=allowed_paths,
|
||||
show_error=True,
|
||||
debug=True)
|
||||
|
@ -1,5 +1,5 @@
|
||||
from . import configs, distributed, modules
|
||||
from .first_last_frame2video import WanFLF2V
|
||||
from .image2video import WanI2V
|
||||
from .text2video import WanT2V
|
||||
from .first_last_frame2video import WanFLF2V
|
||||
from .vace import WanVace, WanVaceMP
|
||||
|
@ -8,6 +8,7 @@ from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
||||
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
|
||||
from torch.distributed.utils import _free_storage
|
||||
|
||||
|
||||
def shard_model(
|
||||
model,
|
||||
device_id,
|
||||
@ -32,6 +33,7 @@ def shard_model(
|
||||
sync_module_states=sync_module_states)
|
||||
return model
|
||||
|
||||
|
||||
def free_model(model):
|
||||
for m in model.modules():
|
||||
if isinstance(m, FSDP):
|
||||
|
@ -1,9 +1,11 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from xfuser.core.distributed import (get_sequence_parallel_rank,
|
||||
get_sequence_parallel_world_size,
|
||||
get_sp_group)
|
||||
from xfuser.core.distributed import (
|
||||
get_sequence_parallel_rank,
|
||||
get_sequence_parallel_world_size,
|
||||
get_sp_group,
|
||||
)
|
||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
||||
|
||||
from ..modules.model import sinusoidal_embedding_1d
|
||||
@ -63,19 +65,13 @@ def rope_apply(x, grid_sizes, freqs):
|
||||
return torch.stack(output).float()
|
||||
|
||||
|
||||
def usp_dit_forward_vace(
|
||||
self,
|
||||
x,
|
||||
vace_context,
|
||||
seq_len,
|
||||
kwargs
|
||||
):
|
||||
def usp_dit_forward_vace(self, x, vace_context, seq_len, kwargs):
|
||||
# embeddings
|
||||
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
|
||||
c = [u.flatten(2).transpose(1, 2) for u in c]
|
||||
c = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||||
dim=1) for u in c
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
||||
for u in c
|
||||
])
|
||||
|
||||
# arguments
|
||||
|
@ -21,8 +21,11 @@ from .modules.clip import CLIPModel
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
from .modules.vae import WanVAE
|
||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps)
|
||||
from .utils.fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
|
||||
@ -103,11 +106,12 @@ class WanFLF2V:
|
||||
init_on_cpu = False
|
||||
|
||||
if use_usp:
|
||||
from xfuser.core.distributed import \
|
||||
get_sequence_parallel_world_size
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward)
|
||||
from .distributed.xdit_context_parallel import (
|
||||
usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
)
|
||||
for block in self.model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
@ -181,8 +185,10 @@ class WanFLF2V:
|
||||
"""
|
||||
first_frame_size = first_frame.size
|
||||
last_frame_size = last_frame.size
|
||||
first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).to(self.device)
|
||||
last_frame = TF.to_tensor(last_frame).sub_(0.5).div_(0.5).to(self.device)
|
||||
first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).to(
|
||||
self.device)
|
||||
last_frame = TF.to_tensor(last_frame).sub_(0.5).div_(0.5).to(
|
||||
self.device)
|
||||
|
||||
F = frame_num
|
||||
first_frame_h, first_frame_w = first_frame.shape[1:]
|
||||
@ -199,8 +205,7 @@ class WanFLF2V:
|
||||
# 1. resize
|
||||
last_frame_resize_ratio = max(
|
||||
first_frame_size[0] / last_frame_size[0],
|
||||
first_frame_size[1] / last_frame_size[1]
|
||||
)
|
||||
first_frame_size[1] / last_frame_size[1])
|
||||
last_frame_size = [
|
||||
round(last_frame_size[0] * last_frame_resize_ratio),
|
||||
round(last_frame_size[1] * last_frame_resize_ratio),
|
||||
@ -216,8 +221,7 @@ class WanFLF2V:
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
noise = torch.randn(
|
||||
16,
|
||||
(F - 1) // 4 + 1,
|
||||
16, (F - 1) // 4 + 1,
|
||||
lat_h,
|
||||
lat_w,
|
||||
dtype=torch.float32,
|
||||
@ -225,8 +229,11 @@ class WanFLF2V:
|
||||
device=self.device)
|
||||
|
||||
msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
|
||||
msk[:, 1: -1] = 0
|
||||
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
|
||||
msk[:, 1:-1] = 0
|
||||
msk = torch.concat([
|
||||
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
|
||||
],
|
||||
dim=1)
|
||||
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
|
||||
msk = msk.transpose(1, 2)[0]
|
||||
|
||||
@ -247,7 +254,8 @@ class WanFLF2V:
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
self.clip.model.to(self.device)
|
||||
clip_context = self.clip.visual([first_frame[:, None, :, :], last_frame[:, None, :, :]])
|
||||
clip_context = self.clip.visual(
|
||||
[first_frame[:, None, :, :], last_frame[:, None, :, :]])
|
||||
if offload_model:
|
||||
self.clip.model.cpu()
|
||||
|
||||
@ -256,15 +264,14 @@ class WanFLF2V:
|
||||
torch.nn.functional.interpolate(
|
||||
first_frame[None].cpu(),
|
||||
size=(first_frame_h, first_frame_w),
|
||||
mode='bicubic'
|
||||
).transpose(0, 1),
|
||||
mode='bicubic').transpose(0, 1),
|
||||
torch.zeros(3, F - 2, first_frame_h, first_frame_w),
|
||||
torch.nn.functional.interpolate(
|
||||
last_frame[None].cpu(),
|
||||
size=(first_frame_h, first_frame_w),
|
||||
mode='bicubic'
|
||||
).transpose(0, 1),
|
||||
], dim=1).to(self.device)
|
||||
mode='bicubic').transpose(0, 1),
|
||||
],
|
||||
dim=1).to(self.device)
|
||||
])[0]
|
||||
y = torch.concat([msk, y])
|
||||
|
||||
|
@ -21,8 +21,11 @@ from .modules.clip import CLIPModel
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
from .modules.vae import WanVAE
|
||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps)
|
||||
from .utils.fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
|
||||
@ -103,11 +106,12 @@ class WanI2V:
|
||||
init_on_cpu = False
|
||||
|
||||
if use_usp:
|
||||
from xfuser.core.distributed import \
|
||||
get_sequence_parallel_world_size
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward)
|
||||
from .distributed.xdit_context_parallel import (
|
||||
usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
)
|
||||
for block in self.model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
@ -196,8 +200,7 @@ class WanI2V:
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
noise = torch.randn(
|
||||
16,
|
||||
(F - 1) // 4 + 1,
|
||||
16, (F - 1) // 4 + 1,
|
||||
lat_h,
|
||||
lat_w,
|
||||
dtype=torch.float32,
|
||||
|
@ -273,7 +273,7 @@ class WanAttentionBlock(nn.Module):
|
||||
nn.Linear(ffn_dim, dim))
|
||||
|
||||
# modulation
|
||||
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim ** 0.5)
|
||||
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -332,7 +332,7 @@ class Head(nn.Module):
|
||||
self.head = nn.Linear(dim, out_dim)
|
||||
|
||||
# modulation
|
||||
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim ** 0.5)
|
||||
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
||||
|
||||
def forward(self, x, e):
|
||||
r"""
|
||||
@ -357,7 +357,8 @@ class MLPProj(torch.nn.Module):
|
||||
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
|
||||
torch.nn.LayerNorm(out_dim))
|
||||
if flf_pos_emb: # NOTE: we only use this for `flf2v`
|
||||
self.emb_pos = nn.Parameter(torch.zeros(1, FIRST_LAST_FRAME_CONTEXT_TOKEN_NUMBER, 1280))
|
||||
self.emb_pos = nn.Parameter(
|
||||
torch.zeros(1, FIRST_LAST_FRAME_CONTEXT_TOKEN_NUMBER, 1280))
|
||||
|
||||
def forward(self, image_embeds):
|
||||
if hasattr(self, 'emb_pos'):
|
||||
|
@ -3,23 +3,24 @@ import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
from .model import WanModel, WanAttentionBlock, sinusoidal_embedding_1d
|
||||
|
||||
from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d
|
||||
|
||||
|
||||
class VaceWanAttentionBlock(WanAttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=0
|
||||
):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
|
||||
|
||||
def __init__(self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=0):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
|
||||
qk_norm, cross_attn_norm, eps)
|
||||
self.block_id = block_id
|
||||
if block_id == 0:
|
||||
self.before_proj = nn.Linear(self.dim, self.dim)
|
||||
@ -39,19 +40,19 @@ class VaceWanAttentionBlock(WanAttentionBlock):
|
||||
|
||||
|
||||
class BaseWanAttentionBlock(WanAttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=None
|
||||
):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
|
||||
|
||||
def __init__(self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=None):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
|
||||
qk_norm, cross_attn_norm, eps)
|
||||
self.block_id = block_id
|
||||
|
||||
def forward(self, x, hints, context_scale=1.0, **kwargs):
|
||||
@ -62,6 +63,7 @@ class BaseWanAttentionBlock(WanAttentionBlock):
|
||||
|
||||
|
||||
class VaceWanModel(WanModel):
|
||||
|
||||
@register_to_config
|
||||
def __init__(self,
|
||||
vace_layers=None,
|
||||
@ -81,42 +83,57 @@ class VaceWanModel(WanModel):
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6):
|
||||
super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
|
||||
num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)
|
||||
super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim,
|
||||
freq_dim, text_dim, out_dim, num_heads, num_layers,
|
||||
window_size, qk_norm, cross_attn_norm, eps)
|
||||
|
||||
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
|
||||
self.vace_layers = [i for i in range(0, self.num_layers, 2)
|
||||
] if vace_layers is None else vace_layers
|
||||
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
|
||||
|
||||
assert 0 in self.vace_layers
|
||||
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
|
||||
self.vace_layers_mapping = {
|
||||
i: n for n, i in enumerate(self.vace_layers)
|
||||
}
|
||||
|
||||
# blocks
|
||||
self.blocks = nn.ModuleList([
|
||||
BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
|
||||
self.cross_attn_norm, self.eps,
|
||||
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
|
||||
BaseWanAttentionBlock(
|
||||
't2v_cross_attn',
|
||||
self.dim,
|
||||
self.ffn_dim,
|
||||
self.num_heads,
|
||||
self.window_size,
|
||||
self.qk_norm,
|
||||
self.cross_attn_norm,
|
||||
self.eps,
|
||||
block_id=self.vace_layers_mapping[i]
|
||||
if i in self.vace_layers else None)
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
# vace blocks
|
||||
self.vace_blocks = nn.ModuleList([
|
||||
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
|
||||
self.cross_attn_norm, self.eps, block_id=i)
|
||||
for i in self.vace_layers
|
||||
VaceWanAttentionBlock(
|
||||
't2v_cross_attn',
|
||||
self.dim,
|
||||
self.ffn_dim,
|
||||
self.num_heads,
|
||||
self.window_size,
|
||||
self.qk_norm,
|
||||
self.cross_attn_norm,
|
||||
self.eps,
|
||||
block_id=i) for i in self.vace_layers
|
||||
])
|
||||
|
||||
# vace patch embeddings
|
||||
self.vace_patch_embedding = nn.Conv3d(
|
||||
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
|
||||
)
|
||||
self.vace_in_dim,
|
||||
self.dim,
|
||||
kernel_size=self.patch_size,
|
||||
stride=self.patch_size)
|
||||
|
||||
def forward_vace(
|
||||
self,
|
||||
x,
|
||||
vace_context,
|
||||
seq_len,
|
||||
kwargs
|
||||
):
|
||||
def forward_vace(self, x, vace_context, seq_len, kwargs):
|
||||
# embeddings
|
||||
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
|
||||
c = [u.flatten(2).transpose(1, 2) for u in c]
|
||||
@ -230,4 +247,4 @@ class VaceWanModel(WanModel):
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
||||
return [u.float() for u in x]
|
||||
|
@ -18,8 +18,11 @@ from .distributed.fsdp import shard_model
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
from .modules.vae import WanVAE
|
||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps)
|
||||
from .utils.fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
|
||||
@ -85,11 +88,12 @@ class WanT2V:
|
||||
self.model.eval().requires_grad_(False)
|
||||
|
||||
if use_usp:
|
||||
from xfuser.core.distributed import \
|
||||
get_sequence_parallel_world_size
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward)
|
||||
from .distributed.xdit_context_parallel import (
|
||||
usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
)
|
||||
for block in self.model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
|
@ -1,5 +1,8 @@
|
||||
from .fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas,
|
||||
retrieve_timesteps)
|
||||
from .fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from .vace_processor import VaceVideoProcessor
|
||||
|
||||
|
@ -9,9 +9,11 @@ from typing import List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
||||
SchedulerMixin,
|
||||
SchedulerOutput)
|
||||
from diffusers.schedulers.scheduling_utils import (
|
||||
KarrasDiffusionSchedulers,
|
||||
SchedulerMixin,
|
||||
SchedulerOutput,
|
||||
)
|
||||
from diffusers.utils import deprecate, is_scipy_available
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
|
@ -8,9 +8,11 @@ from typing import List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
||||
SchedulerMixin,
|
||||
SchedulerOutput)
|
||||
from diffusers.schedulers.scheduling_utils import (
|
||||
KarrasDiffusionSchedulers,
|
||||
SchedulerMixin,
|
||||
SchedulerOutput,
|
||||
)
|
||||
from diffusers.utils import deprecate, is_scipy_available
|
||||
|
||||
if is_scipy_available():
|
||||
|
@ -7,7 +7,7 @@ import sys
|
||||
import tempfile
|
||||
from dataclasses import dataclass
|
||||
from http import HTTPStatus
|
||||
from typing import Optional, Union, List
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import dashscope
|
||||
import torch
|
||||
@ -96,7 +96,6 @@ VL_EN_SYS_PROMPT = \
|
||||
'''4. In the style of an American drama promotional poster, Walter White sits in a metal folding chair wearing a yellow protective suit, with the words "Breaking Bad" written in sans-serif English above him, surrounded by piles of dollar bills and blue plastic storage boxes. He wears glasses, staring forward, dressed in a yellow jumpsuit, with his hands resting on his knees, exuding a calm and confident demeanor. The background shows an abandoned, dim factory with light filtering through the windows. There’s a noticeable grainy texture. A medium shot with a straight-on close-up of the character.\n''' \
|
||||
'''Directly output the rewritten English text.'''
|
||||
|
||||
|
||||
VL_ZH_SYS_PROMPT_FOR_MULTI_IMAGES = """你是一位Prompt优化师,旨在参考用户输入的图像的细节内容,把用户输入的Prompt改写为优质Prompt,使其更完整、更具表现力,同时不改变原意。你需要综合用户输入的照片内容和输入的Prompt进行改写,严格参考示例的格式进行改写
|
||||
任务要求:
|
||||
1. 用户会输入两张图片,第一张是视频的第一帧,第二张时视频的最后一帧,你需要综合两个照片的内容进行优化改写
|
||||
@ -198,8 +197,8 @@ class PromptExpander:
|
||||
if system_prompt is None:
|
||||
system_prompt = self.decide_system_prompt(
|
||||
tar_lang=tar_lang,
|
||||
multi_images_input=isinstance(image, (list, tuple)) and len(image) > 1
|
||||
)
|
||||
multi_images_input=isinstance(image, (list, tuple)) and
|
||||
len(image) > 1)
|
||||
if seed < 0:
|
||||
seed = random.randint(0, sys.maxsize)
|
||||
if image is not None and self.is_vl:
|
||||
@ -289,7 +288,8 @@ class DashScopePromptExpander(PromptExpander):
|
||||
def extend_with_img(self,
|
||||
prompt,
|
||||
system_prompt,
|
||||
image: Union[List[Image.Image], List[str], Image.Image, str] = None,
|
||||
image: Union[List[Image.Image], List[str], Image.Image,
|
||||
str] = None,
|
||||
seed=-1,
|
||||
*args,
|
||||
**kwargs):
|
||||
@ -308,13 +308,15 @@ class DashScopePromptExpander(PromptExpander):
|
||||
_image.save(f.name)
|
||||
image_path = f"file://{f.name}"
|
||||
return image_path
|
||||
|
||||
if not isinstance(image, (list, tuple)):
|
||||
image = [image]
|
||||
image_path_list = [ensure_image(_image) for _image in image]
|
||||
role_content = [
|
||||
{"text": prompt},
|
||||
*[{"image": image_path} for image_path in image_path_list]
|
||||
]
|
||||
role_content = [{
|
||||
"text": prompt
|
||||
}, *[{
|
||||
"image": image_path
|
||||
} for image_path in image_path_list]]
|
||||
system_content = [{"text": system_prompt}]
|
||||
prompt = f"{prompt}"
|
||||
messages = [
|
||||
@ -393,8 +395,11 @@ class QwenPromptExpander(PromptExpander):
|
||||
|
||||
if self.is_vl:
|
||||
# default: Load the model on the available device(s)
|
||||
from transformers import (AutoProcessor, AutoTokenizer,
|
||||
Qwen2_5_VLForConditionalGeneration)
|
||||
from transformers import (
|
||||
AutoProcessor,
|
||||
AutoTokenizer,
|
||||
Qwen2_5_VLForConditionalGeneration,
|
||||
)
|
||||
try:
|
||||
from .qwen_vl_utils import process_vision_info
|
||||
except:
|
||||
@ -459,7 +464,8 @@ class QwenPromptExpander(PromptExpander):
|
||||
def extend_with_img(self,
|
||||
prompt,
|
||||
system_prompt,
|
||||
image: Union[List[Image.Image], List[str], Image.Image, str] = None,
|
||||
image: Union[List[Image.Image], List[str], Image.Image,
|
||||
str] = None,
|
||||
seed=-1,
|
||||
*args,
|
||||
**kwargs):
|
||||
@ -468,26 +474,19 @@ class QwenPromptExpander(PromptExpander):
|
||||
if not isinstance(image, (list, tuple)):
|
||||
image = [image]
|
||||
|
||||
system_content = [{
|
||||
system_content = [{"type": "text", "text": system_prompt}]
|
||||
role_content = [{
|
||||
"type": "text",
|
||||
"text": system_prompt
|
||||
}]
|
||||
role_content = [
|
||||
{
|
||||
"type": "text",
|
||||
"text": prompt
|
||||
},
|
||||
*[
|
||||
{"image": image_path} for image_path in image
|
||||
]
|
||||
]
|
||||
"text": prompt
|
||||
}, *[{
|
||||
"image": image_path
|
||||
} for image_path in image]]
|
||||
|
||||
messages = [{
|
||||
'role': 'system',
|
||||
'content': system_content,
|
||||
}, {
|
||||
"role":
|
||||
"user",
|
||||
"role": "user",
|
||||
"content": role_content,
|
||||
}]
|
||||
|
||||
@ -611,25 +610,38 @@ if __name__ == "__main__":
|
||||
print("VL qwen vl en result -> en",
|
||||
qwen_result.prompt) # , qwen_result.system_prompt)
|
||||
# test multi images
|
||||
image = ["./examples/flf2v_input_first_frame.png", "./examples/flf2v_input_last_frame.png"]
|
||||
image = [
|
||||
"./examples/flf2v_input_first_frame.png",
|
||||
"./examples/flf2v_input_last_frame.png"
|
||||
]
|
||||
prompt = "无人机拍摄,镜头快速推进,然后拉远至全景俯瞰,展示一个宁静美丽的海港。海港内停满了游艇,水面清澈透蓝。周围是起伏的山丘和错落有致的建筑,整体景色宁静而美丽。"
|
||||
en_prompt = ("Shot from a drone perspective, the camera rapidly zooms in before pulling back to reveal a panoramic "
|
||||
"aerial view of a serene and picturesque harbor. The tranquil bay is dotted with numerous yachts "
|
||||
"resting on crystal-clear blue waters. Surrounding the harbor are rolling hills and well-spaced "
|
||||
"architectural structures, combining to create a tranquil and breathtaking coastal landscape.")
|
||||
en_prompt = (
|
||||
"Shot from a drone perspective, the camera rapidly zooms in before pulling back to reveal a panoramic "
|
||||
"aerial view of a serene and picturesque harbor. The tranquil bay is dotted with numerous yachts "
|
||||
"resting on crystal-clear blue waters. Surrounding the harbor are rolling hills and well-spaced "
|
||||
"architectural structures, combining to create a tranquil and breathtaking coastal landscape."
|
||||
)
|
||||
|
||||
dashscope_prompt_expander = DashScopePromptExpander(model_name=ds_model_name, is_vl=True)
|
||||
dashscope_result = dashscope_prompt_expander(prompt, tar_lang="zh", image=image, seed=seed)
|
||||
dashscope_prompt_expander = DashScopePromptExpander(
|
||||
model_name=ds_model_name, is_vl=True)
|
||||
dashscope_result = dashscope_prompt_expander(
|
||||
prompt, tar_lang="zh", image=image, seed=seed)
|
||||
print("VL dashscope result -> zh", dashscope_result.prompt)
|
||||
|
||||
dashscope_prompt_expander = DashScopePromptExpander(model_name=ds_model_name, is_vl=True)
|
||||
dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="zh", image=image, seed=seed)
|
||||
dashscope_prompt_expander = DashScopePromptExpander(
|
||||
model_name=ds_model_name, is_vl=True)
|
||||
dashscope_result = dashscope_prompt_expander(
|
||||
en_prompt, tar_lang="zh", image=image, seed=seed)
|
||||
print("VL dashscope en result -> zh", dashscope_result.prompt)
|
||||
|
||||
qwen_prompt_expander = QwenPromptExpander(model_name=qwen_model_name, is_vl=True, device=0)
|
||||
qwen_result = qwen_prompt_expander(prompt, tar_lang="zh", image=image, seed=seed)
|
||||
qwen_prompt_expander = QwenPromptExpander(
|
||||
model_name=qwen_model_name, is_vl=True, device=0)
|
||||
qwen_result = qwen_prompt_expander(
|
||||
prompt, tar_lang="zh", image=image, seed=seed)
|
||||
print("VL qwen result -> zh", qwen_result.prompt)
|
||||
|
||||
qwen_prompt_expander = QwenPromptExpander(model_name=qwen_model_name, is_vl=True, device=0)
|
||||
qwen_result = qwen_prompt_expander(prompt, tar_lang="zh", image=image, seed=seed)
|
||||
qwen_prompt_expander = QwenPromptExpander(
|
||||
model_name=qwen_model_name, is_vl=True, device=0)
|
||||
qwen_result = qwen_prompt_expander(
|
||||
prompt, tar_lang="zh", image=image, seed=seed)
|
||||
print("VL qwen en result -> zh", qwen_result.prompt)
|
||||
|
@ -1,12 +1,13 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms.functional as TF
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class VaceImageProcessor(object):
|
||||
|
||||
def __init__(self, downsample=None, seq_len=None):
|
||||
self.downsample = downsample
|
||||
self.seq_len = seq_len
|
||||
@ -16,9 +17,10 @@ class VaceImageProcessor(object):
|
||||
if image.mode == 'P':
|
||||
image = image.convert(f'{cvt_type}A')
|
||||
if image.mode == f'{cvt_type}A':
|
||||
bg = Image.new(cvt_type,
|
||||
size=(image.width, image.height),
|
||||
color=(255, 255, 255))
|
||||
bg = Image.new(
|
||||
cvt_type,
|
||||
size=(image.width, image.height),
|
||||
color=(255, 255, 255))
|
||||
bg.paste(image, (0, 0), mask=image)
|
||||
image = bg
|
||||
else:
|
||||
@ -41,10 +43,8 @@ class VaceImageProcessor(object):
|
||||
if iw != ow or ih != oh:
|
||||
# resize
|
||||
scale = max(ow / iw, oh / ih)
|
||||
img = img.resize(
|
||||
(round(scale * iw), round(scale * ih)),
|
||||
resample=Image.Resampling.LANCZOS
|
||||
)
|
||||
img = img.resize((round(scale * iw), round(scale * ih)),
|
||||
resample=Image.Resampling.LANCZOS)
|
||||
assert img.width >= ow and img.height >= oh
|
||||
|
||||
# center crop
|
||||
@ -66,7 +66,11 @@ class VaceImageProcessor(object):
|
||||
def load_image_pair(self, data_key, data_key2, **kwargs):
|
||||
return self.load_image_batch(data_key, data_key2, **kwargs)
|
||||
|
||||
def load_image_batch(self, *data_key_batch, normalize=True, seq_len=None, **kwargs):
|
||||
def load_image_batch(self,
|
||||
*data_key_batch,
|
||||
normalize=True,
|
||||
seq_len=None,
|
||||
**kwargs):
|
||||
seq_len = self.seq_len if seq_len is None else seq_len
|
||||
imgs = []
|
||||
for data_key in data_key_batch:
|
||||
@ -85,7 +89,9 @@ class VaceImageProcessor(object):
|
||||
|
||||
|
||||
class VaceVideoProcessor(object):
|
||||
def __init__(self, downsample, min_area, max_area, min_fps, max_fps, zero_start, seq_len, keep_last, **kwargs):
|
||||
|
||||
def __init__(self, downsample, min_area, max_area, min_fps, max_fps,
|
||||
zero_start, seq_len, keep_last, **kwargs):
|
||||
self.downsample = downsample
|
||||
self.min_area = min_area
|
||||
self.max_area = max_area
|
||||
@ -130,8 +136,7 @@ class VaceVideoProcessor(object):
|
||||
video,
|
||||
size=(round(scale * ih), round(scale * iw)),
|
||||
mode='bicubic',
|
||||
antialias=True
|
||||
)
|
||||
antialias=True)
|
||||
assert video.size(3) >= ow and video.size(2) >= oh
|
||||
|
||||
# center crop
|
||||
@ -146,7 +151,8 @@ class VaceVideoProcessor(object):
|
||||
def _video_preprocess(self, video, oh, ow):
|
||||
return self.resize_crop(video, oh, ow)
|
||||
|
||||
def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box, rng):
|
||||
def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box,
|
||||
rng):
|
||||
target_fps = min(fps, self.max_fps)
|
||||
duration = frame_timestamps[-1].mean()
|
||||
x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
|
||||
@ -154,11 +160,10 @@ class VaceVideoProcessor(object):
|
||||
ratio = h / w
|
||||
df, dh, dw = self.downsample
|
||||
|
||||
area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
|
||||
of = min(
|
||||
(int(duration * target_fps) - 1) // df + 1,
|
||||
int(self.seq_len / area_z)
|
||||
)
|
||||
area_z = min(self.seq_len, self.max_area / (dh * dw),
|
||||
(h // dh) * (w // dw))
|
||||
of = min((int(duration * target_fps) - 1) // df + 1,
|
||||
int(self.seq_len / area_z))
|
||||
|
||||
# deduce target shape of the [latent video]
|
||||
target_area_z = min(area_z, int(self.seq_len / of))
|
||||
@ -170,26 +175,27 @@ class VaceVideoProcessor(object):
|
||||
|
||||
# sample frame ids
|
||||
target_duration = of / target_fps
|
||||
begin = 0. if self.zero_start else rng.uniform(0, duration - target_duration)
|
||||
begin = 0. if self.zero_start else rng.uniform(
|
||||
0, duration - target_duration)
|
||||
timestamps = np.linspace(begin, begin + target_duration, of)
|
||||
frame_ids = np.argmax(np.logical_and(
|
||||
timestamps[:, None] >= frame_timestamps[None, :, 0],
|
||||
timestamps[:, None] < frame_timestamps[None, :, 1]
|
||||
), axis=1).tolist()
|
||||
frame_ids = np.argmax(
|
||||
np.logical_and(timestamps[:, None] >= frame_timestamps[None, :, 0],
|
||||
timestamps[:, None] < frame_timestamps[None, :, 1]),
|
||||
axis=1).tolist()
|
||||
return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
|
||||
|
||||
def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w, crop_box, rng):
|
||||
def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w,
|
||||
crop_box, rng):
|
||||
duration = frame_timestamps[-1].mean()
|
||||
x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
|
||||
h, w = y2 - y1, x2 - x1
|
||||
ratio = h / w
|
||||
df, dh, dw = self.downsample
|
||||
|
||||
area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
|
||||
of = min(
|
||||
(len(frame_timestamps) - 1) // df + 1,
|
||||
int(self.seq_len / area_z)
|
||||
)
|
||||
area_z = min(self.seq_len, self.max_area / (dh * dw),
|
||||
(h // dh) * (w // dw))
|
||||
of = min((len(frame_timestamps) - 1) // df + 1,
|
||||
int(self.seq_len / area_z))
|
||||
|
||||
# deduce target shape of the [latent video]
|
||||
target_area_z = min(area_z, int(self.seq_len / of))
|
||||
@ -203,27 +209,39 @@ class VaceVideoProcessor(object):
|
||||
target_duration = duration
|
||||
target_fps = of / target_duration
|
||||
timestamps = np.linspace(0., target_duration, of)
|
||||
frame_ids = np.argmax(np.logical_and(
|
||||
timestamps[:, None] >= frame_timestamps[None, :, 0],
|
||||
timestamps[:, None] <= frame_timestamps[None, :, 1]
|
||||
), axis=1).tolist()
|
||||
frame_ids = np.argmax(
|
||||
np.logical_and(timestamps[:, None] >= frame_timestamps[None, :, 0],
|
||||
timestamps[:, None] <= frame_timestamps[None, :, 1]),
|
||||
axis=1).tolist()
|
||||
# print(oh, ow, of, target_duration, target_fps, len(frame_timestamps), len(frame_ids))
|
||||
return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
|
||||
|
||||
|
||||
def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng):
|
||||
if self.keep_last:
|
||||
return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h, w, crop_box, rng)
|
||||
return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h,
|
||||
w, crop_box, rng)
|
||||
else:
|
||||
return self._get_frameid_bbox_default(fps, frame_timestamps, h, w, crop_box, rng)
|
||||
return self._get_frameid_bbox_default(fps, frame_timestamps, h, w,
|
||||
crop_box, rng)
|
||||
|
||||
def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
|
||||
return self.load_video_batch(data_key, crop_box=crop_box, seed=seed, **kwargs)
|
||||
return self.load_video_batch(
|
||||
data_key, crop_box=crop_box, seed=seed, **kwargs)
|
||||
|
||||
def load_video_pair(self, data_key, data_key2, crop_box=None, seed=2024, **kwargs):
|
||||
return self.load_video_batch(data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
|
||||
def load_video_pair(self,
|
||||
data_key,
|
||||
data_key2,
|
||||
crop_box=None,
|
||||
seed=2024,
|
||||
**kwargs):
|
||||
return self.load_video_batch(
|
||||
data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
|
||||
|
||||
def load_video_batch(self, *data_key_batch, crop_box=None, seed=2024, **kwargs):
|
||||
def load_video_batch(self,
|
||||
*data_key_batch,
|
||||
crop_box=None,
|
||||
seed=2024,
|
||||
**kwargs):
|
||||
rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
|
||||
# read video
|
||||
import decord
|
||||
@ -235,36 +253,53 @@ class VaceVideoProcessor(object):
|
||||
|
||||
fps = readers[0].get_avg_fps()
|
||||
length = min([len(r) for r in readers])
|
||||
frame_timestamps = [readers[0].get_frame_timestamp(i) for i in range(length)]
|
||||
frame_timestamps = [
|
||||
readers[0].get_frame_timestamp(i) for i in range(length)
|
||||
]
|
||||
frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
|
||||
h, w = readers[0].next().shape[:2]
|
||||
frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(fps, frame_timestamps, h, w, crop_box, rng)
|
||||
frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(
|
||||
fps, frame_timestamps, h, w, crop_box, rng)
|
||||
|
||||
# preprocess video
|
||||
videos = [reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :] for reader in readers]
|
||||
videos = [
|
||||
reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :]
|
||||
for reader in readers
|
||||
]
|
||||
videos = [self._video_preprocess(video, oh, ow) for video in videos]
|
||||
return *videos, frame_ids, (oh, ow), fps
|
||||
# return videos if len(videos) > 1 else videos[0]
|
||||
|
||||
|
||||
def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, device):
|
||||
def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size,
|
||||
device):
|
||||
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
||||
if sub_src_video is None and sub_src_mask is None:
|
||||
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
|
||||
src_mask[i] = torch.ones((1, num_frames, image_size[0], image_size[1]), device=device)
|
||||
src_video[i] = torch.zeros(
|
||||
(3, num_frames, image_size[0], image_size[1]), device=device)
|
||||
src_mask[i] = torch.ones(
|
||||
(1, num_frames, image_size[0], image_size[1]), device=device)
|
||||
for i, ref_images in enumerate(src_ref_images):
|
||||
if ref_images is not None:
|
||||
for j, ref_img in enumerate(ref_images):
|
||||
if ref_img is not None and ref_img.shape[-2:] != image_size:
|
||||
canvas_height, canvas_width = image_size
|
||||
ref_height, ref_width = ref_img.shape[-2:]
|
||||
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
|
||||
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
||||
white_canvas = torch.ones(
|
||||
(3, 1, canvas_height, canvas_width),
|
||||
device=device) # [-1, 1]
|
||||
scale = min(canvas_height / ref_height,
|
||||
canvas_width / ref_width)
|
||||
new_height = int(ref_height * scale)
|
||||
new_width = int(ref_width * scale)
|
||||
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
|
||||
resized_image = F.interpolate(
|
||||
ref_img.squeeze(1).unsqueeze(0),
|
||||
size=(new_height, new_width),
|
||||
mode='bilinear',
|
||||
align_corners=False).squeeze(0).unsqueeze(1)
|
||||
top = (canvas_height - new_height) // 2
|
||||
left = (canvas_width - new_width) // 2
|
||||
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
|
||||
white_canvas[:, :, top:top + new_height,
|
||||
left:left + new_width] = resized_image
|
||||
src_ref_images[i][j] = white_canvas
|
||||
return src_video, src_mask, src_ref_images
|
||||
|
273
wan/vace.py
273
wan/vace.py
@ -1,32 +1,41 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import os
|
||||
import sys
|
||||
import gc
|
||||
import math
|
||||
import time
|
||||
import random
|
||||
import types
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
import types
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
from PIL import Image
|
||||
import torchvision.transforms.functional as TF
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.cuda.amp as amp
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms.functional as TF
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from .text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler)
|
||||
from .modules.vace_model import VaceWanModel
|
||||
from .text2video import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
FlowUniPCMultistepScheduler,
|
||||
T5EncoderModel,
|
||||
WanT2V,
|
||||
WanVAE,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
shard_model,
|
||||
)
|
||||
from .utils.vace_processor import VaceVideoProcessor
|
||||
|
||||
|
||||
class WanVace(WanT2V):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
@ -87,12 +96,13 @@ class WanVace(WanT2V):
|
||||
self.model.eval().requires_grad_(False)
|
||||
|
||||
if use_usp:
|
||||
from xfuser.core.distributed import \
|
||||
get_sequence_parallel_world_size
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
usp_dit_forward_vace)
|
||||
from .distributed.xdit_context_parallel import (
|
||||
usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
usp_dit_forward_vace,
|
||||
)
|
||||
for block in self.model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
@ -100,7 +110,8 @@ class WanVace(WanT2V):
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
||||
self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model)
|
||||
self.model.forward_vace = types.MethodType(usp_dit_forward_vace,
|
||||
self.model)
|
||||
self.sp_size = get_sequence_parallel_world_size()
|
||||
else:
|
||||
self.sp_size = 1
|
||||
@ -114,14 +125,16 @@ class WanVace(WanT2V):
|
||||
|
||||
self.sample_neg_prompt = config.sample_neg_prompt
|
||||
|
||||
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
|
||||
min_area=720*1280,
|
||||
max_area=720*1280,
|
||||
min_fps=config.sample_fps,
|
||||
max_fps=config.sample_fps,
|
||||
zero_start=True,
|
||||
seq_len=75600,
|
||||
keep_last=True)
|
||||
self.vid_proc = VaceVideoProcessor(
|
||||
downsample=tuple(
|
||||
[x * y for x, y in zip(config.vae_stride, self.patch_size)]),
|
||||
min_area=720 * 1280,
|
||||
max_area=720 * 1280,
|
||||
min_fps=config.sample_fps,
|
||||
max_fps=config.sample_fps,
|
||||
zero_start=True,
|
||||
seq_len=75600,
|
||||
keep_last=True)
|
||||
|
||||
def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
|
||||
vae = self.vae if vae is None else vae
|
||||
@ -138,7 +151,9 @@ class WanVace(WanT2V):
|
||||
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
|
||||
inactive = vae.encode(inactive)
|
||||
reactive = vae.encode(reactive)
|
||||
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
|
||||
latents = [
|
||||
torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)
|
||||
]
|
||||
|
||||
cat_latents = []
|
||||
for latent, refs in zip(latents, ref_images):
|
||||
@ -147,7 +162,10 @@ class WanVace(WanT2V):
|
||||
ref_latent = vae.encode(refs)
|
||||
else:
|
||||
ref_latent = vae.encode(refs)
|
||||
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
|
||||
ref_latent = [
|
||||
torch.cat((u, torch.zeros_like(u)), dim=0)
|
||||
for u in ref_latent
|
||||
]
|
||||
assert all([x.shape[1] == 1 for x in ref_latent])
|
||||
latent = torch.cat([*ref_latent, latent], dim=1)
|
||||
cat_latents.append(latent)
|
||||
@ -169,16 +187,17 @@ class WanVace(WanT2V):
|
||||
|
||||
# reshape
|
||||
mask = mask[0, :, :, :]
|
||||
mask = mask.view(
|
||||
depth, height, vae_stride[1], width, vae_stride[1]
|
||||
) # depth, height, 8, width, 8
|
||||
mask = mask.view(depth, height, vae_stride[1], width,
|
||||
vae_stride[1]) # depth, height, 8, width, 8
|
||||
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
|
||||
mask = mask.reshape(
|
||||
vae_stride[1] * vae_stride[2], depth, height, width
|
||||
) # 8*8, depth, height, width
|
||||
mask = mask.reshape(vae_stride[1] * vae_stride[2], depth, height,
|
||||
width) # 8*8, depth, height, width
|
||||
|
||||
# interpolation
|
||||
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
|
||||
mask = F.interpolate(
|
||||
mask.unsqueeze(0),
|
||||
size=(new_depth, height, width),
|
||||
mode='nearest-exact').squeeze(0)
|
||||
|
||||
if refs is not None:
|
||||
length = len(refs)
|
||||
@ -190,27 +209,35 @@ class WanVace(WanT2V):
|
||||
def vace_latent(self, z, m):
|
||||
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
|
||||
|
||||
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device):
|
||||
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames,
|
||||
image_size, device):
|
||||
area = image_size[0] * image_size[1]
|
||||
self.vid_proc.set_area(area)
|
||||
if area == 720*1280:
|
||||
if area == 720 * 1280:
|
||||
self.vid_proc.set_seq_len(75600)
|
||||
elif area == 480*832:
|
||||
elif area == 480 * 832:
|
||||
self.vid_proc.set_seq_len(32760)
|
||||
else:
|
||||
raise NotImplementedError(f'image_size {image_size} is not supported')
|
||||
raise NotImplementedError(
|
||||
f'image_size {image_size} is not supported')
|
||||
|
||||
image_size = (image_size[1], image_size[0])
|
||||
image_sizes = []
|
||||
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
||||
for i, (sub_src_video,
|
||||
sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
||||
if sub_src_mask is not None and sub_src_video is not None:
|
||||
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask)
|
||||
src_video[i], src_mask[
|
||||
i], _, _, _ = self.vid_proc.load_video_pair(
|
||||
sub_src_video, sub_src_mask)
|
||||
src_video[i] = src_video[i].to(device)
|
||||
src_mask[i] = src_mask[i].to(device)
|
||||
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
|
||||
src_mask[i] = torch.clamp(
|
||||
(src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
|
||||
image_sizes.append(src_video[i].shape[2:])
|
||||
elif sub_src_video is None:
|
||||
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
|
||||
src_video[i] = torch.zeros(
|
||||
(3, num_frames, image_size[0], image_size[1]),
|
||||
device=device)
|
||||
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
||||
image_sizes.append(image_size)
|
||||
else:
|
||||
@ -225,18 +252,27 @@ class WanVace(WanT2V):
|
||||
for j, ref_img in enumerate(ref_images):
|
||||
if ref_img is not None:
|
||||
ref_img = Image.open(ref_img).convert("RGB")
|
||||
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
||||
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(
|
||||
0.5).unsqueeze(1)
|
||||
if ref_img.shape[-2:] != image_size:
|
||||
canvas_height, canvas_width = image_size
|
||||
ref_height, ref_width = ref_img.shape[-2:]
|
||||
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
|
||||
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
||||
white_canvas = torch.ones(
|
||||
(3, 1, canvas_height, canvas_width),
|
||||
device=device) # [-1, 1]
|
||||
scale = min(canvas_height / ref_height,
|
||||
canvas_width / ref_width)
|
||||
new_height = int(ref_height * scale)
|
||||
new_width = int(ref_width * scale)
|
||||
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
|
||||
resized_image = F.interpolate(
|
||||
ref_img.squeeze(1).unsqueeze(0),
|
||||
size=(new_height, new_width),
|
||||
mode='bilinear',
|
||||
align_corners=False).squeeze(0).unsqueeze(1)
|
||||
top = (canvas_height - new_height) // 2
|
||||
left = (canvas_width - new_width) // 2
|
||||
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
|
||||
white_canvas[:, :, top:top + new_height,
|
||||
left:left + new_width] = resized_image
|
||||
ref_img = white_canvas
|
||||
src_ref_images[i][j] = ref_img.to(device)
|
||||
return src_video, src_mask, src_ref_images
|
||||
@ -256,8 +292,6 @@ class WanVace(WanT2V):
|
||||
|
||||
return vae.decode(trimed_zs)
|
||||
|
||||
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
input_frames,
|
||||
@ -335,7 +369,8 @@ class WanVace(WanT2V):
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
# vace context encode
|
||||
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks)
|
||||
z0 = self.vace_encode_frames(
|
||||
input_frames, input_ref_images, masks=input_masks)
|
||||
m0 = self.vace_encode_masks(input_masks, input_ref_images)
|
||||
z = self.vace_latent(z0, m0)
|
||||
|
||||
@ -399,9 +434,17 @@ class WanVace(WanT2V):
|
||||
|
||||
self.model.to(self.device)
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0]
|
||||
latent_model_input,
|
||||
t=timestep,
|
||||
vace_context=z,
|
||||
vace_context_scale=context_scale,
|
||||
**arg_c)[0]
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0]
|
||||
latent_model_input,
|
||||
t=timestep,
|
||||
vace_context=z,
|
||||
vace_context_scale=context_scale,
|
||||
**arg_null)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
@ -433,14 +476,13 @@ class WanVace(WanT2V):
|
||||
|
||||
|
||||
class WanVaceMP(WanVace):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
checkpoint_dir,
|
||||
use_usp=False,
|
||||
ulysses_size=None,
|
||||
ring_size=None
|
||||
):
|
||||
|
||||
def __init__(self,
|
||||
config,
|
||||
checkpoint_dir,
|
||||
use_usp=False,
|
||||
ulysses_size=None,
|
||||
ring_size=None):
|
||||
self.config = config
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.use_usp = use_usp
|
||||
@ -457,7 +499,8 @@ class WanVaceMP(WanVace):
|
||||
|
||||
self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
|
||||
self.vid_proc = VaceVideoProcessor(
|
||||
downsample=tuple([x * y for x, y in zip(config.vae_stride, config.patch_size)]),
|
||||
downsample=tuple(
|
||||
[x * y for x, y in zip(config.vae_stride, config.patch_size)]),
|
||||
min_area=480 * 832,
|
||||
max_area=480 * 832,
|
||||
min_fps=self.config.sample_fps,
|
||||
@ -466,20 +509,30 @@ class WanVaceMP(WanVace):
|
||||
seq_len=32760,
|
||||
keep_last=True)
|
||||
|
||||
|
||||
def dynamic_load(self):
|
||||
if hasattr(self, 'inference_pids') and self.inference_pids is not None:
|
||||
return
|
||||
gpu_infer = os.environ.get('LOCAL_WORLD_SIZE') or torch.cuda.device_count()
|
||||
gpu_infer = os.environ.get(
|
||||
'LOCAL_WORLD_SIZE') or torch.cuda.device_count()
|
||||
pmi_rank = int(os.environ['RANK'])
|
||||
pmi_world_size = int(os.environ['WORLD_SIZE'])
|
||||
in_q_list = [torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)]
|
||||
in_q_list = [
|
||||
torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)
|
||||
]
|
||||
out_q = torch.multiprocessing.Manager().Queue()
|
||||
initialized_events = [torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)]
|
||||
context = mp.spawn(self.mp_worker, nprocs=gpu_infer, args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, self), join=False)
|
||||
initialized_events = [
|
||||
torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)
|
||||
]
|
||||
context = mp.spawn(
|
||||
self.mp_worker,
|
||||
nprocs=gpu_infer,
|
||||
args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q,
|
||||
initialized_events, self),
|
||||
join=False)
|
||||
all_initialized = False
|
||||
while not all_initialized:
|
||||
all_initialized = all(event.is_set() for event in initialized_events)
|
||||
all_initialized = all(
|
||||
event.is_set() for event in initialized_events)
|
||||
if not all_initialized:
|
||||
time.sleep(0.1)
|
||||
print('Inference model is initialized', flush=True)
|
||||
@ -495,12 +548,19 @@ class WanVaceMP(WanVace):
|
||||
if isinstance(data, torch.Tensor):
|
||||
data = data.to(device)
|
||||
elif isinstance(data, list):
|
||||
data = [self.transfer_data_to_cuda(subdata, device) for subdata in data]
|
||||
data = [
|
||||
self.transfer_data_to_cuda(subdata, device)
|
||||
for subdata in data
|
||||
]
|
||||
elif isinstance(data, dict):
|
||||
data = {key: self.transfer_data_to_cuda(val, device) for key, val in data.items()}
|
||||
data = {
|
||||
key: self.transfer_data_to_cuda(val, device)
|
||||
for key, val in data.items()
|
||||
}
|
||||
return data
|
||||
|
||||
def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, work_env):
|
||||
def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list,
|
||||
out_q, initialized_events, work_env):
|
||||
try:
|
||||
world_size = pmi_world_size * gpu_infer
|
||||
rank = pmi_rank * gpu_infer + gpu
|
||||
@ -511,19 +571,19 @@ class WanVaceMP(WanVace):
|
||||
backend='nccl',
|
||||
init_method='env://',
|
||||
rank=rank,
|
||||
world_size=world_size
|
||||
)
|
||||
world_size=world_size)
|
||||
|
||||
from xfuser.core.distributed import (initialize_model_parallel,
|
||||
init_distributed_environment)
|
||||
from xfuser.core.distributed import (
|
||||
init_distributed_environment,
|
||||
initialize_model_parallel,
|
||||
)
|
||||
init_distributed_environment(
|
||||
rank=dist.get_rank(), world_size=dist.get_world_size())
|
||||
|
||||
initialize_model_parallel(
|
||||
sequence_parallel_degree=dist.get_world_size(),
|
||||
ring_degree=self.ring_size or 1,
|
||||
ulysses_degree=self.ulysses_size or 1
|
||||
)
|
||||
ulysses_degree=self.ulysses_size or 1)
|
||||
|
||||
num_train_timesteps = self.config.num_train_timesteps
|
||||
param_dtype = self.config.param_dtype
|
||||
@ -532,14 +592,17 @@ class WanVaceMP(WanVace):
|
||||
text_len=self.config.text_len,
|
||||
dtype=self.config.t5_dtype,
|
||||
device=torch.device('cpu'),
|
||||
checkpoint_path=os.path.join(self.checkpoint_dir, self.config.t5_checkpoint),
|
||||
tokenizer_path=os.path.join(self.checkpoint_dir, self.config.t5_tokenizer),
|
||||
checkpoint_path=os.path.join(self.checkpoint_dir,
|
||||
self.config.t5_checkpoint),
|
||||
tokenizer_path=os.path.join(self.checkpoint_dir,
|
||||
self.config.t5_tokenizer),
|
||||
shard_fn=shard_fn if True else None)
|
||||
text_encoder.model.to(gpu)
|
||||
vae_stride = self.config.vae_stride
|
||||
patch_size = self.config.patch_size
|
||||
vae = WanVAE(
|
||||
vae_pth=os.path.join(self.checkpoint_dir, self.config.vae_checkpoint),
|
||||
vae_pth=os.path.join(self.checkpoint_dir,
|
||||
self.config.vae_checkpoint),
|
||||
device=gpu)
|
||||
logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
|
||||
model = VaceWanModel.from_pretrained(self.checkpoint_dir)
|
||||
@ -547,9 +610,12 @@ class WanVaceMP(WanVace):
|
||||
|
||||
if self.use_usp:
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
usp_dit_forward_vace)
|
||||
|
||||
from .distributed.xdit_context_parallel import (
|
||||
usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
usp_dit_forward_vace,
|
||||
)
|
||||
for block in model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
@ -557,7 +623,8 @@ class WanVaceMP(WanVace):
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
model.forward = types.MethodType(usp_dit_forward, model)
|
||||
model.forward_vace = types.MethodType(usp_dit_forward_vace, model)
|
||||
model.forward_vace = types.MethodType(usp_dit_forward_vace,
|
||||
model)
|
||||
sp_size = get_sequence_parallel_world_size()
|
||||
else:
|
||||
sp_size = 1
|
||||
@ -577,7 +644,8 @@ class WanVaceMP(WanVace):
|
||||
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
|
||||
input_frames = self.transfer_data_to_cuda(input_frames, gpu)
|
||||
input_masks = self.transfer_data_to_cuda(input_masks, gpu)
|
||||
input_ref_images = self.transfer_data_to_cuda(input_ref_images, gpu)
|
||||
input_ref_images = self.transfer_data_to_cuda(
|
||||
input_ref_images, gpu)
|
||||
|
||||
if n_prompt == "":
|
||||
n_prompt = sample_neg_prompt
|
||||
@ -589,8 +657,10 @@ class WanVaceMP(WanVace):
|
||||
context_null = text_encoder([n_prompt], gpu)
|
||||
|
||||
# vace context encode
|
||||
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, vae=vae)
|
||||
m0 = self.vace_encode_masks(input_masks, input_ref_images, vae_stride=vae_stride)
|
||||
z0 = self.vace_encode_frames(
|
||||
input_frames, input_ref_images, masks=input_masks, vae=vae)
|
||||
m0 = self.vace_encode_masks(
|
||||
input_masks, input_ref_images, vae_stride=vae_stride)
|
||||
z = self.vace_latent(z0, m0)
|
||||
|
||||
target_shape = list(z0[0].shape)
|
||||
@ -616,7 +686,8 @@ class WanVaceMP(WanVace):
|
||||
no_sync = getattr(model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=param_dtype), torch.no_grad(), no_sync():
|
||||
with amp.autocast(
|
||||
dtype=param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
@ -631,7 +702,8 @@ class WanVaceMP(WanVace):
|
||||
num_train_timesteps=num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
sampling_sigmas = get_sampling_sigmas(
|
||||
sampling_steps, shift)
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=gpu,
|
||||
@ -653,14 +725,20 @@ class WanVaceMP(WanVace):
|
||||
|
||||
model.to(gpu)
|
||||
noise_pred_cond = model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[
|
||||
0]
|
||||
latent_model_input,
|
||||
t=timestep,
|
||||
vace_context=z,
|
||||
vace_context_scale=context_scale,
|
||||
**arg_c)[0]
|
||||
noise_pred_uncond = model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,
|
||||
latent_model_input,
|
||||
t=timestep,
|
||||
vace_context=z,
|
||||
vace_context_scale=context_scale,
|
||||
**arg_null)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
@ -673,7 +751,8 @@ class WanVaceMP(WanVace):
|
||||
torch.cuda.empty_cache()
|
||||
x0 = latents
|
||||
if rank == 0:
|
||||
videos = self.decode_latent(x0, input_ref_images, vae=vae)
|
||||
videos = self.decode_latent(
|
||||
x0, input_ref_images, vae=vae)
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
@ -691,8 +770,6 @@ class WanVaceMP(WanVace):
|
||||
print(trace_info, flush=True)
|
||||
print(e, flush=True)
|
||||
|
||||
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
input_frames,
|
||||
@ -709,8 +786,10 @@ class WanVaceMP(WanVace):
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
|
||||
input_data = (input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale,
|
||||
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model)
|
||||
input_data = (input_prompt, input_frames, input_masks, input_ref_images,
|
||||
size, frame_num, context_scale, shift, sample_solver,
|
||||
sampling_steps, guide_scale, n_prompt, seed,
|
||||
offload_model)
|
||||
for in_q in self.in_q_list:
|
||||
in_q.put(input_data)
|
||||
value_output = self.out_q.get()
|
||||
|
Loading…
Reference in New Issue
Block a user