mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-03 22:04:53 +00:00
* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
251 lines
8.1 KiB
Python
251 lines
8.1 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import torch
|
|
import torch.cuda.amp as amp
|
|
import torch.nn as nn
|
|
from diffusers.configuration_utils import register_to_config
|
|
|
|
from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d
|
|
|
|
|
|
class VaceWanAttentionBlock(WanAttentionBlock):
|
|
|
|
def __init__(self,
|
|
cross_attn_type,
|
|
dim,
|
|
ffn_dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=0):
|
|
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
|
|
qk_norm, cross_attn_norm, eps)
|
|
self.block_id = block_id
|
|
if block_id == 0:
|
|
self.before_proj = nn.Linear(self.dim, self.dim)
|
|
nn.init.zeros_(self.before_proj.weight)
|
|
nn.init.zeros_(self.before_proj.bias)
|
|
self.after_proj = nn.Linear(self.dim, self.dim)
|
|
nn.init.zeros_(self.after_proj.weight)
|
|
nn.init.zeros_(self.after_proj.bias)
|
|
|
|
def forward(self, c, x, **kwargs):
|
|
if self.block_id == 0:
|
|
c = self.before_proj(c) + x
|
|
|
|
c = super().forward(c, **kwargs)
|
|
c_skip = self.after_proj(c)
|
|
return c, c_skip
|
|
|
|
|
|
class BaseWanAttentionBlock(WanAttentionBlock):
|
|
|
|
def __init__(self,
|
|
cross_attn_type,
|
|
dim,
|
|
ffn_dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=None):
|
|
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
|
|
qk_norm, cross_attn_norm, eps)
|
|
self.block_id = block_id
|
|
|
|
def forward(self, x, hints, context_scale=1.0, **kwargs):
|
|
x = super().forward(x, **kwargs)
|
|
if self.block_id is not None:
|
|
x = x + hints[self.block_id] * context_scale
|
|
return x
|
|
|
|
|
|
class VaceWanModel(WanModel):
|
|
|
|
@register_to_config
|
|
def __init__(self,
|
|
vace_layers=None,
|
|
vace_in_dim=None,
|
|
model_type='vace',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6):
|
|
super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim,
|
|
freq_dim, text_dim, out_dim, num_heads, num_layers,
|
|
window_size, qk_norm, cross_attn_norm, eps)
|
|
|
|
self.vace_layers = [i for i in range(0, self.num_layers, 2)
|
|
] if vace_layers is None else vace_layers
|
|
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
|
|
|
|
assert 0 in self.vace_layers
|
|
self.vace_layers_mapping = {
|
|
i: n for n, i in enumerate(self.vace_layers)
|
|
}
|
|
|
|
# blocks
|
|
self.blocks = nn.ModuleList([
|
|
BaseWanAttentionBlock(
|
|
't2v_cross_attn',
|
|
self.dim,
|
|
self.ffn_dim,
|
|
self.num_heads,
|
|
self.window_size,
|
|
self.qk_norm,
|
|
self.cross_attn_norm,
|
|
self.eps,
|
|
block_id=self.vace_layers_mapping[i]
|
|
if i in self.vace_layers else None)
|
|
for i in range(self.num_layers)
|
|
])
|
|
|
|
# vace blocks
|
|
self.vace_blocks = nn.ModuleList([
|
|
VaceWanAttentionBlock(
|
|
't2v_cross_attn',
|
|
self.dim,
|
|
self.ffn_dim,
|
|
self.num_heads,
|
|
self.window_size,
|
|
self.qk_norm,
|
|
self.cross_attn_norm,
|
|
self.eps,
|
|
block_id=i) for i in self.vace_layers
|
|
])
|
|
|
|
# vace patch embeddings
|
|
self.vace_patch_embedding = nn.Conv3d(
|
|
self.vace_in_dim,
|
|
self.dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size)
|
|
|
|
def forward_vace(self, x, vace_context, seq_len, kwargs):
|
|
# embeddings
|
|
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
|
|
c = [u.flatten(2).transpose(1, 2) for u in c]
|
|
c = torch.cat([
|
|
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
|
dim=1) for u in c
|
|
])
|
|
|
|
# arguments
|
|
new_kwargs = dict(x=x)
|
|
new_kwargs.update(kwargs)
|
|
|
|
hints = []
|
|
for block in self.vace_blocks:
|
|
c, c_skip = block(c, **new_kwargs)
|
|
hints.append(c_skip)
|
|
return hints
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
t,
|
|
vace_context,
|
|
context,
|
|
seq_len,
|
|
vace_context_scale=1.0,
|
|
clip_fea=None,
|
|
y=None,
|
|
):
|
|
r"""
|
|
Forward pass through the diffusion model
|
|
|
|
Args:
|
|
x (List[Tensor]):
|
|
List of input video tensors, each with shape [C_in, F, H, W]
|
|
t (Tensor):
|
|
Diffusion timesteps tensor of shape [B]
|
|
context (List[Tensor]):
|
|
List of text embeddings each with shape [L, C]
|
|
seq_len (`int`):
|
|
Maximum sequence length for positional encoding
|
|
clip_fea (Tensor, *optional*):
|
|
CLIP image features for image-to-video mode
|
|
y (List[Tensor], *optional*):
|
|
Conditional video inputs for image-to-video mode, same shape as x
|
|
|
|
Returns:
|
|
List[Tensor]:
|
|
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
|
"""
|
|
# if self.model_type == 'i2v':
|
|
# assert clip_fea is not None and y is not None
|
|
# params
|
|
device = self.patch_embedding.weight.device
|
|
if self.freqs.device != device:
|
|
self.freqs = self.freqs.to(device)
|
|
|
|
# if y is not None:
|
|
# x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
|
|
|
# embeddings
|
|
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
|
grid_sizes = torch.stack(
|
|
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
|
x = [u.flatten(2).transpose(1, 2) for u in x]
|
|
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
|
assert seq_lens.max() <= seq_len
|
|
x = torch.cat([
|
|
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
|
dim=1) for u in x
|
|
])
|
|
|
|
# time embeddings
|
|
with amp.autocast(dtype=torch.float32):
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
|
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
|
|
|
# context
|
|
context_lens = None
|
|
context = self.text_embedding(
|
|
torch.stack([
|
|
torch.cat(
|
|
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
|
for u in context
|
|
]))
|
|
|
|
# if clip_fea is not None:
|
|
# context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
|
# context = torch.concat([context_clip, context], dim=1)
|
|
|
|
# arguments
|
|
kwargs = dict(
|
|
e=e0,
|
|
seq_lens=seq_lens,
|
|
grid_sizes=grid_sizes,
|
|
freqs=self.freqs,
|
|
context=context,
|
|
context_lens=context_lens)
|
|
|
|
hints = self.forward_vace(x, vace_context, seq_len, kwargs)
|
|
kwargs['hints'] = hints
|
|
kwargs['context_scale'] = vace_context_scale
|
|
|
|
for block in self.blocks:
|
|
x = block(x, **kwargs)
|
|
|
|
# head
|
|
x = self.head(x, e)
|
|
|
|
# unpatchify
|
|
x = self.unpatchify(x, grid_sizes)
|
|
return [u.float() for u in x]
|